Skip to main content

I2NSF Capability YANG Data Model
draft-ietf-i2nsf-capability-data-model-05

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft whose latest revision state is "Active".
Authors Susan Hares , Jaehoon Paul Jeong , Jinyong Tim Kim , Robert Moskowitz , Qiushi Lin
Last updated 2020-05-12 (Latest revision 2019-07-25)
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state Submitted to IESG for Publication
Doc Shepherd Follow-up Underway
Document shepherd Linda Dunbar
Shepherd write-up Show Last changed 2019-12-11
IESG IESG state AD Evaluation::Revised I-D Needed
Consensus boilerplate Yes
Telechat date (None)
Responsible AD Roman Danyliw
Send notices to Linda Dunbar <dunbar.ll@gmail.com>
draft-ietf-i2nsf-capability-data-model-05
New version available: Hares, et al.           Expires January 26, 2020               [Page 34]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

            base anti-virus-capability;
          }
          description
            "Anti-virus capabilities";
          reference
            "draft-dong-i2nsf-asf-config-01: Configuration of
             Advanced Security Functions with I2NSF Security
             Controller";
        }

        leaf-list anti-ddos-capability {
          type identityref {
            base anti-ddos-capability;
          }
          description
            "Anti-ddos capabilities";
          reference
            "draft-dong-i2nsf-asf-config-01: Configuration of
             Advanced Security Functions with I2NSF Security
             Controller";
        }

        leaf-list ips-capability {
          type identityref {
            base ips-capability;
          }
          description
            "Intrusion Prevention System (IPS) capabilities";
          reference
            "draft-dong-i2nsf-asf-config-01: Configuration of
             Advanced Security Functions with I2NSF Security
             Controller";
        }

        leaf-list url-capability {
          type identityref {
            base url-capability;
          }
          description
            "URL capabilities";
          reference
            "draft-dong-i2nsf-asf-config-01: Configuration of
             Advanced Security Functions with I2NSF Security
             Controller";
        }

        leaf-list voip-volte-capability {
          type identityref {

Hares, et al.           Expires January 26, 2020               [Page 35]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

            base voip-volte-capability;
         }
          description
            "VoIP and VoLTE capabilities";
          reference
            "draft-dong-i2nsf-asf-config-01: Configuration of
             Advanced Security Functions with I2NSF Security
             Controller";
        }
      }

      leaf-list context-capabilities {
        type identityref {
          base context-capability;
        }
        description
          "Security context capabilities";
      }

    }
    container action-capabilities {
      description
        "Action capabilities.
         If network security function has
         the action capabilities, it supports
         the attendant actions for policy rules.";

      leaf-list ingress-action-capability {
        type identityref {
          base ingress-action-capability;
        }
        description
          "Ingress-action capabilities";
      }

      leaf-list egress-action-capability {
        type identityref {
          base egress-action-capability;
        }
        description
          "Egress-action capabilities";
      }

      leaf-list log-action-capability {
        type identityref {
          base log-action-capability;
        }
        description

Hares, et al.           Expires January 26, 2020               [Page 36]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

          "Log-action capabilities";
      }
    }

    leaf-list resolution-strategy-capabilities {
      type identityref {
        base resolution-strategy-capability;
      }
      description
        "Resolution strategy capabilities.
        The resolution strategies can be used to
        specify how to resolve conflicts that occur between
        the actions of the same or different policy rules that
        are matched for the smae packet and by particular NSF";
      reference
        "draft-ietf-i2nsf-capability-04: Information Model
         of NSFs Capabilities - Resolution strategy";
    }

    leaf-list default-action-capabilities {
      type identityref {
        base default-action-capability;
      }
      description
        "Default action capabilities.
         A default action is used to execute I2NSF policy rules
         when no rule matches a packet. The default action is
         defined as pass, drop, reject, alert, or mirror.";
      reference
        "draft-ietf-i2nsf-capability-04: Information Model
         of NSFs Capabilities - Default action";
    }

    leaf-list ipsec-method {
      type identityref {
        base ipsec-capability;
      }
      description
        "IPsec method capabilities";
      reference
        " draft-ietf-i2nsf-sdn-ipsec-flow-protection-04";
    }
  }

  /*
   * Data nodes
   */

Hares, et al.           Expires January 26, 2020               [Page 37]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

  list nsf {
    key "nsf-name";
    description
      "The list of Network security Function (NSF)
      capabilities";
    leaf nsf-name {
      type string;
      mandatory true;
      description
        "The name of network security function";
    }
  }
}

<CODE ENDS>

              Figure 3: YANG Data Module of I2NSF Capability

7.  IANA Considerations

   This document requests IANA to register the following URI in the
   "IETF XML Registry" [RFC3688]:

      Uri: urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability

      Registrant Contact: The IESG.

      XML: N/A; the requested URI is an XML namespace.

   This document requests IANA to register the following YANG module in
   the "YANG Module Names" registry [RFC7950].

      name: ietf-i2nsf-capability

      namespace: urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability

      prefix: nsfcap

      reference: RFC XXXX

8.  Security Considerations

   The YANG module specified in this document defines a data schema
   designed to be accessed through network management protocols such as
   NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer is
   the secure transport layer, and the required transport secure
   transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer

Hares, et al.           Expires January 26, 2020               [Page 38]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

   is HTTPS, and the required transport secure transport is TLS
   [RFC8446].

   The NETCONF access control model [RFC8341] provides a means of
   restricting access to specific NETCONF or RESTCONF users to a
   preconfigured subset of all available NETCONF or RESTCONF protocol
   operations and content.

   There are a number of data nodes defined in this YANG module that are
   writable/creatable/deletable (i.e., config true, which is the
   default).  These data nodes may be considered sensitive or vulnerable
   in some network environments.  Write operations (e.g., edit-config)
   to these data nodes without proper protection can have a negative
   effect on network operations.  These are the subtrees and data nodes
   and their sensitivity/vulnerability:

   o  ietf-i2nsf-capability: The attacker may provide incorrect
      information of the security capability of any target NSF by
      illegally modifying this.

   Some of the readable data nodes in this YANG module may be considered
   sensitive or vulnerable in some network environments.  It is thus
   important to control read access (e.g., via get, get-config, or
   notification) to these data nodes.  These are the subtrees and data
   nodes and their sensitivity/vulnerability:

   o  ietf-i2nsf-capability: The attacker may gather the security
      capability information of any target NSF and misuse the
      information for subsequent attacks.

9.  References

9.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
              A., Peterson, J., Sparks, R., Handley, M., and E.
              Schooler, "SIP: Session Initiation Protocol", RFC 3261,
              DOI 10.17487/RFC3261, June 2002,
              <https://www.rfc-editor.org/info/rfc3261>.

Hares, et al.           Expires January 26, 2020               [Page 39]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/info/rfc6020>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

   [RFC768]   Postel, J., "User Datagram Protocol", RFC 768, August
              1980.

   [RFC790]   Postel, J., "Assigned Numbers", RFC 790, September 1981.

   [RFC791]   Postel, J., "Internet Protocol", RFC 791, September 1981.

   [RFC792]   Postel, J., "Internet Control Message Protocol", RFC 792,
              September 1981.

   [RFC793]   Postel, J., "Transmission Control Protocol", RFC 793,
              September 1981.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <https://www.rfc-editor.org/info/rfc8040>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8192]  Hares, S., Lopez, D., Zarny, M., Jacquenet, C., Kumar, R.,
              and J. Jeong, "Interface to Network Security Functions
              (I2NSF): Problem Statement and Use Cases", RFC 8192,
              DOI 10.17487/RFC8192, July 2017,
              <https://www.rfc-editor.org/info/rfc8192>.

Hares, et al.           Expires January 26, 2020               [Page 40]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

   [RFC8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", STD 86, RFC 8200,
              DOI 10.17487/RFC8200, July 2017,
              <https://www.rfc-editor.org/info/rfc8200>.

   [RFC8329]  Lopez, D., Lopez, E., Dunbar, L., Strassner, J., and R.
              Kumar, "Framework for Interface to Network Security
              Functions", RFC 8329, DOI 10.17487/RFC8329, February 2018,
              <https://www.rfc-editor.org/info/rfc8329>.

   [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/info/rfc8340>.

   [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/info/rfc8341>.

   [RFC8431]  Wang, L., Chen, M., Dass, A., Ananthakrishnan, H., Kini,
              S., and N. Bahadur, "A YANG Data Model for the Routing
              Information Base (RIB)", RFC 8431, DOI 10.17487/RFC8431,
              September 2018, <https://www.rfc-editor.org/info/rfc8431>.

   [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

9.2.  Informative References

   [draft-dong-i2nsf-asf-config]
              Pan, W. and L. Xia, "Configuration of Advanced Security
              Functions with I2NSF Security Controller", draft-dong-
              i2nsf-asf-config-01 (work in progress), October 2018.

   [draft-ietf-i2nsf-capability]
              Xia, L., Strassner, J., Basile, C., and D. Lopez,
              "Information Model of NSFs Capabilities", draft-ietf-
              i2nsf-capability-05 (work in progress), April 2019.

   [draft-ietf-i2nsf-nsf-facing-interface-dm]
              Kim, J., Jeong, J., Park, J., Hares, S., and Q. Lin,
              "I2NSF Network Security Function-Facing Interface YANG
              Data Model", draft-ietf-i2nsf-nsf-facing-interface-dm-07
              (work in progress), July 2019.

Hares, et al.           Expires January 26, 2020               [Page 41]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

   [draft-ietf-i2nsf-nsf-monitoring-data-model]
              Jeong, J., Chung, C., Hares, S., Xia, L., and H. Birkholz,
              "I2NSF NSF Monitoring YANG Data Model", draft-ietf-i2nsf-
              nsf-monitoring-data-model-01 (work in progress), July
              2019.

   [draft-ietf-i2nsf-sdn-ipsec-flow-protection]
              Marin-Lopez, R., Lopez-Millan, G., and F. Pereniguez-
              Garcia, "Software-Defined Networking (SDN)-based IPsec
              Flow Protection", draft-ietf-i2nsf-sdn-ipsec-flow-
              protection-05 (work in progress), July 2019.

   [draft-ietf-i2nsf-terminology]
              Hares, S., Strassner, J., Lopez, D., Xia, L., and H.
              Birkholz, "Interface to Network Security Functions (I2NSF)
              Terminology", draft-ietf-i2nsf-terminology-08 (work in
              progress), July 2019.

   [draft-ietf-supa-generic-policy-info-model]
              Strassner, J., Halpern, J., and S. Meer, "Generic Policy
              Information Model for Simplified Use of Policy
              Abstractions (SUPA)", draft-ietf-supa-generic-policy-info-
              model-03 (work in progress), May 2017.

Hares, et al.           Expires January 26, 2020               [Page 42]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

Appendix A.  Configuration Examples

   This section shows configuration examples of "ietf-i2nsf-capability"
   module for capabilities registration of general firewall.

A.1.  Example 1: Registration for Capabilities of General Firewall

   This section shows a configuration example for capabilities
   registration of general firewall.

   <nsf xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
    <nsf-name>general_firewall</nsf-name>
    <condition-capabilities>
     <generic-nsf-capabilities>
      <ipv4-capability>ipv4-protocol</ipv4-capability>
      <ipv4-capability>exact-ipv4-address</ipv4-capability>
      <ipv4-capability>range-ipv4-address</ipv4-capability>
      <tcp-capability>exact-fourth-layer-port-num</tcp-capability>
      <tcp-capability>range-fourth-layer-port-num</tcp-capability>
     </generic-nsf-capabilities>
    </condition-capabilities>
    <action-capabilities>
     <ingress-action-capability>pass</ingress-action-capability>
     <ingress-action-capability>drop</ingress-action-capability>
     <ingress-action-capability>alert</ingress-action-capability>
     <egress-action-capability>pass</egress-action-capability>
     <egress-action-capability>drop</egress-action-capability>
     <egress-action-capability>alert</egress-action-capability>
    </action-capabilities>
   </nsf>

   Figure 4: Configuration XML for Capabilities Registration of General
                                 Firewall

   Figure 4 shows the configuration XML for capabilities registration of
   general firewall and its capabilities are as follows.

   1.  The name of the NSF is general_firewall.

   2.  The NSF can inspect protocol, exact IPv4 address, and range IPv4
       address for IPv4 packets.

   3.  The NSF can inspect exact port number and range port number for
       fourth layer packets.

Hares, et al.           Expires January 26, 2020               [Page 43]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

   4.  The NSF can control whether the packets are allowed to pass,
       drop, or alert.

A.2.  Example 2: Registration for Capabilities of Time based Firewall

   This section shows a configuration example for capabilities
   registration of time based firewall.

   <nsf xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
    <nsf-name>time_based_firewall</nsf-name>
    <time-capabilities>absolute-time</time-capabilities>
    <time-capabilities>periodic-time</time-capabilities>
    <condition-capabilities>
     <generic-nsf-capabilities>
      <ipv4-capability>ipv4-protocol</ipv4-capability>
      <ipv4-capability>exact-ipv4-address</ipv4-capability>
      <ipv4-capability>range-ipv4-address</ipv4-capability>
     </generic-nsf-capabilities>
    </condition-capabilities>
    <action-capabilities>
     <ingress-action-capability>pass</ingress-action-capability>
     <ingress-action-capability>drop</ingress-action-capability>
     <ingress-action-capability>alert</ingress-action-capability>
     <egress-action-capability>pass</egress-action-capability>
     <egress-action-capability>drop</egress-action-capability>
     <egress-action-capability>alert</egress-action-capability>
    </action-capabilities>
   </nsf>

     Figure 5: Configuration XML for Capabilities Registration of Time
                              based Firewall

   Figure 5 shows the configuration XML for capabilities registration of
   time based firewall and its capabilities are as follows.

   1.  The name of the NSF is time_based_firewall.

   2.  The NSF can execute the security policy rule according to
       absolute time and periodic time.

   3.  The NSF can inspect protocol, exact IPv4 address, and range IPv4
       address for IPv4 packets.

   4.  The NSF can control whether the packets are allowed to pass,
       drop, or alert.

Hares, et al.           Expires January 26, 2020               [Page 44]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

A.3.  Example 3: Registration for Capabilities of Web Filter

   This section shows a configuration example for capabilities
   registration of web filter.

   <nsf xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
    <nsf-name>web_filter</nsf-name>
    <condition-capabilities>
     <advanced-nsf-capabilities>
      <url-capability>user-defined</url-capability>
     </advanced-nsf-capabilities>
    </condition-capabilities>
    <action-capabilities>
     <ingress-action-capability>pass</ingress-action-capability>
     <ingress-action-capability>drop</ingress-action-capability>
     <ingress-action-capability>alert</ingress-action-capability>
     <egress-action-capability>pass</egress-action-capability>
     <egress-action-capability>drop</egress-action-capability>
     <egress-action-capability>alert</egress-action-capability>
    </action-capabilities>
   </nsf>

     Figure 6: Configuration XML for Capabilities Registration of Web
                                  Filter

   Figure 6 shows the configuration XML for capabilities registration of
   web filter and its capabilities are as follows.

   1.  The name of the NSF is web_filter.

   2.  The NSF can inspect url for http and https packets.

   3.  The NSF can control whether the packets are allowed to pass,
       drop, or alert.

A.4.  Example 4: Registration for Capabilities of VoIP/VoLTE Filter

   This section shows a configuration example for capabilities
   registration of VoIP/VoLTE filter.

Hares, et al.           Expires January 26, 2020               [Page 45]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

   <nsf xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
    <nsf-name>voip_volte_filter</nsf-name>
    <condition-capabilities>
     <advanced-nsf-capabilities>
      <voip-volte-capability>voice-id</voip-volte-capability>
     </advanced-nsf-capabilities>
    </condition-capabilities>
    <action-capabilities>
     <ingress-action-capability>pass</ingress-action-capability>
     <ingress-action-capability>drop</ingress-action-capability>
     <ingress-action-capability>alert</ingress-action-capability>
     <egress-action-capability>pass</egress-action-capability>
     <egress-action-capability>drop</egress-action-capability>
     <egress-action-capability>alert</egress-action-capability>
    </action-capabilities>
   </nsf>

    Figure 7: Configuration XML for Capabilities Registration of VoIP/
                               VoLTE Filter

   Figure 7 shows the configuration XML for capabilities registration of
   VoIP/VoLTE filter and its capabilities are as follows.

   1.  The name of the NSF is voip_volte_filter.

   2.  The NSF can inspect voice id for VoIP/VoLTE packets.

   3.  The NSF can control whether the packets are allowed to pass,
       drop, or alert.

A.5.  Example 5: Registration for Capabilities of HTTP and HTTPS Flood
      Mitigation

   This section shows a configuration example for capabilities
   registration of http and https flood mitigation.

Hares, et al.           Expires January 26, 2020               [Page 46]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

   <nsf xmlns="urn:ietf:params:xml:ns:yang:ietf-i2nsf-capability">
    <nsf-name>http_and_https_flood_mitigation</nsf-name>
    <condition-capabilities>
     <advanced-nsf-capabilities>
      <anti-ddos-capability>http-flood-action</anti-ddos-capability>
      <anti-ddos-capability>https-flood-action</anti-ddos-capability>
     </advanced-nsf-capabilities>
    </condition-capabilities>
    <action-capabilities>
     <ingress-action-capability>pass</ingress-action-capability>
     <ingress-action-capability>drop</ingress-action-capability>
     <ingress-action-capability>alert</ingress-action-capability>
     <egress-action-capability>pass</egress-action-capability>
     <egress-action-capability>drop</egress-action-capability>
     <egress-action-capability>alert</egress-action-capability>
    </action-capabilities>
   </nsf>

   Figure 8: Configuration XML for Capabilities Registration of HTTP and
                          HTTPS Flood Mitigation

   Figure 8 shows the configuration XML for capabilities registration of
   http and https flood mitigation and its capabilities are as follows.

   1.  The name of the NSF is http_and_https_flood_mitigation.

   2.  The location of the NSF is 221.159.112.140.

   3.  The NSF can control the amount of packets for http and https
       packets.

   4.  The NSF can control whether the packets are allowed to pass,
       drop, or alert.

Appendix B.  Changes from draft-ietf-i2nsf-capability-data-model-04

   The following changes are made from draft-ietf-i2nsf-capability-data-
   model-04:

   o  The version is revised according to the comments from Acee Lindem
      and Carl Moberg who are YANG doctors for review.

Appendix C.  Acknowledgments

   This work was supported by Institute of Information & Communications
   Technology Planning & Evaluation (IITP) grant funded by the Korea
   MSIT (Ministry of Science and ICT) (R-20160222-002755, Cloud based

Hares, et al.           Expires January 26, 2020               [Page 47]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

   Security Intelligence Technology Development for the Customized
   Security Service Provisioning).

Appendix D.  Contributors

   This document is made by the group effort of I2NSF working group.
   Many people actively contributed to this document.  The following are
   considered co-authors:

   o  Hyoungshick Kim (Sungkyunkwan University)

   o  Daeyoung Hyun (Sungkyunkwan University)

   o  Dongjin Hong (Sungkyunkwan University)

   o  Liang Xia (Huawei)

   o  Jung-Soo Park (ETRI)

   o  Tae-Jin Ahn (Korea Telecom)

   o  Se-Hui Lee (Korea Telecom)

Authors' Addresses

   Susan Hares
   Huawei
   7453 Hickory Hill
   Saline, MI  48176
   USA

   Phone: +1-734-604-0332
   EMail: shares@ndzh.com

   Jaehoon Paul Jeong
   Department of Computer Science and Engineering
   Sungkyunkwan University
   2066 Seobu-Ro, Jangan-Gu
   Suwon, Gyeonggi-Do  16419
   Republic of Korea

   Phone: +82 31 299 4957
   Fax:   +82 31 290 7996
   EMail: pauljeong@skku.edu
   URI:   http://iotlab.skku.edu/people-jaehoon-jeong.php

Hares, et al.           Expires January 26, 2020               [Page 48]
Internet-Draft      I2NSF Capability YANG Data Model           July 2019

   Jinyong Tim Kim
   Department of Electronic, Electrical and Computer Engineering
   Sungkyunkwan University
   2066 Seobu-Ro, Jangan-Gu
   Suwon, Gyeonggi-Do  16419
   Republic of Korea

   Phone: +82 10 8273 0930
   EMail: timkim@skku.edu

   Robert Moskowitz
   HTT Consulting
   Oak Park, MI
   USA

   Phone: +1-248-968-9809
   EMail: rgm@htt-consult.com

   Qiushi Lin
   Huawei
   Huawei Industrial Base
   Shenzhen, Guangdong 518129
   China

   EMail: linqiushi@huawei.com

Hares, et al.           Expires January 26, 2020               [Page 49]