Skip to main content

OSPF Traffic Engineering (TE) Metric Extensions
draft-ietf-ospf-te-metric-extensions-04

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 7471.
Expired & archived
Authors Spencer Giacalone , David Ward , John Drake , Alia Atlas , Stefano Previdi
Last updated 2013-12-05 (Latest revision 2013-06-03)
Replaces draft-ospf-te-metric-extensions
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state WG Document
Document shepherd (None)
IESG IESG state Became RFC 7471 (Proposed Standard)
Consensus boilerplate Unknown
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-ietf-ospf-te-metric-extensions-04
Internet-Draft        OSPF TE Metric Extensions               June 2013

4. Sub TLV Details

4.1. Unidirectional Link Delay Sub-TLV

   This sub-TLV advertises the average link delay between two directly
   connected OSPF neighbors. The delay advertised by this sub-TLV MUST
   be the delay from the local neighbor to the remote one (i.e. the
   forward path latency). The format of this sub-TLV is shown in the
   following diagram:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              TBD1             |               4               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |A|  RESERVED   |                     Delay                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.1.1. Type

   This sub-TLV has a type of TBD1.

4.1.2. Length

   The length is 4.

4.1.3. A bit

   This field represents the Anomalous (A) bit. The A bit is set when
   the measured value of this parameter exceeds its configured maximum
   threshold. The A bit is cleared when the measured value falls below
   its configured reuse threshold. If the A bit is clear, the sub-TLV
   represents steady state link performance.

4.1.4. Reserved

   This field is reserved for future use. It MUST be set to 0 when sent
   and MUST be ignored when received.

4.1.5. Delay Value

   This 24-bit field carries the average link delay over a configurable
   interval in micro-seconds, encoded as an integer value. When set to
   the maximum value 16,777,215 (16.777215 sec), then the delay is at
   least that value and may be larger.  If there is no value to send

Giacalone, et al       Expires December 3, 2013                [Page 7]
Internet-Draft        OSPF TE Metric Extensions               June 2013

   (unmeasured and not statically specified), then the sub-TLV should
   not be sent or be withdrawn.

4.2. Min/Max Unidirectional Link Delay Sub-TLV

   This sub-TLV advertises the minimum and maximum delay values between
   two directly connected OSPF neighbors. The delay advertised by this
   sub-TLV MUST be the delay from the local neighbor to the remote one
   (i.e. the forward path latency). The format of this sub-TLV is shown
   in the following diagram:

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              TBD2             |               8               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |A|  RESERVED   |                   Min Delay                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |   RESERVED    |                   Max Delay                   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.2.1. Type

   This sub-TLV has a type of TBD2.

4.2.2. Length

   The length is 8.

4.2.3. A bit

   This field represents the Anomalous (A) bit. The A bit is set when
   one or more measured values exceed a configured maximum threshold.
   The A bit is cleared when the measured value falls below its
   configured reuse threshold. If the A bit is clear, the sub-TLV
   represents steady state link performance.

4.2.4. Reserved

   This field is reserved for future use. It MUST be set to 0 when sent
   and MUST be ignored when received.

Giacalone, et al       Expires December 3, 2013                [Page 8]
Internet-Draft        OSPF TE Metric Extensions               June 2013

4.2.5. Low Delay

   This 24-bit field carries minimum measured link delay value (in
   microseconds) over a configurable interval, encoded as an integer
   value.

   Implementations MAY also permit the configuration of a static (non
   dynamic) offset value (in microseconds) to be added to the measured
   delay value, to facilitate the communication of operator specific
   delay constraints.

   When set to the maximum value 16,777,215 (16.777215 sec), then the
   delay is at least that value and may be larger.

4.2.6. High Delay

   This 24-bit field carries the maximum measured link delay value (in
   microseconds) over a configurable interval, encoded as an integer
   value.

   Implementations MAY also permit the configuration of a static (non
   dynamic) offset value (in microseconds) to be added to the measured
   delay value, to facilitate the communication of operator specific
   delay constraints.

   It is possible for the high delay and low delay to be the same value.

   When the delay value is set to maximum value 16,777,215 (16.777215
   sec), then the delay is at least that value and may be larger.

4.2.7. Reserved

   This field is reserved for future use. It MUST be set to 0 when sent
   and MUST be ignored when received.

   When only an average delay value is sent, this field is not present
   in the TLV.

4.3. Unidirectional Delay Variation Sub-TLV

   This sub-TLV advertises the average link delay variation between two
   directly connected OSPF neighbors. The delay variation advertised by
   this sub-TLV MUST be the delay from the local neighbor to the remote
   one (i.e. the forward path latency). The format of this sub-TLV is
   shown in the following diagram:

Giacalone, et al       Expires December 3, 2013                [Page 9]
Internet-Draft        OSPF TE Metric Extensions               June 2013

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              TBD3             |               4               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    RESERVED   |              Delay Variation                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.3.1. Type

   This sub-TLV has a type of TBD3.

4.3.2. Length

   The length is 4.

4.3.3. Reserved

   This field is reserved for future use. It MUST be set to 0 when sent
   and MUST be ignored when received.

4.3.4. Delay Variation

   This 24-bit field carries the average link delay variation over a
   configurable interval in micro-seconds, encoded as an integer value.
   When set to 0, it has not been measured. When set to the maximum
   value 16,777,215 (16.777215 sec), then the delay is at least that
   value and may be larger.

4.4. Unidirectional Link Loss Sub-TLV

   This sub-TLV advertises the loss (as a packet percentage) between two
   directly connected OSPF neighbors. The link loss advertised by this
   sub-TLV MUST be the packet loss from the local neighbor to the remote
   one (i.e. the forward path loss). The format of this sub-TLV is shown
   in the following diagram:

   0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              TBD4             |               4               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Giacalone, et al       Expires December 3, 2013               [Page 10]
Internet-Draft        OSPF TE Metric Extensions               June 2013

     |A|  RESERVED   |                 Link Loss                     |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.4.1. Type

   This sub-TLV has a type of TBD4

4.4.2. Length

   The length is 4.

4.4.3. A bit

   This field represents the Anomalous (A) bit. The A bit is set when
   the measured value of this parameter exceeds its configured maximum
   threshold. The A bit is cleared when the measured value falls below
   its configured reuse threshold. If the A bit is clear, the sub-TLV
   represents steady state link performance.

4.4.4. Reserved

   This field is reserved for future use. It MUST be set to 0 when sent
   and MUST be ignored when received.

4.4.5. Link Loss

   This 24-bit field carries link packet loss as a percentage of the
   total traffic sent over a configurable interval.  The basic unit is
   0.000003%, where (2^24 - 2) is 50.331642%. This value is the highest
   packet loss percentage that can be expressed (the assumption being
   that precision is more important on high speed links than the ability
   to advertise loss rates greater than this, and that high speed links
   with over 50% loss are unusable). Therefore, measured values that are
   larger than the field maximum SHOULD be encoded as the maximum value.
   When set to a value of all 1s (2^24 - 1), the link packet loss has
   not been measured.

4.5. Unidirectional Residual Bandwidth Sub-TLV

   This TLV advertises the residual bandwidth (defined in section 4.5.3.
   between two directly connected OSPF neighbors. The residual bandwidth
   advertised by this sub-TLV MUST be the residual bandwidth from the
   system originating the LSA to its neighbor.

Giacalone, et al       Expires December 3, 2013               [Page 11]
Internet-Draft        OSPF TE Metric Extensions               June 2013

   The format of this sub-TLV is shown in the following diagram:

       0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              TBD5             |               4               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       Residual Bandwidth                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.5.1. Type

    This sub-TLV has a type of TBD5.

4.5.2. Length

   The length is 4.

4.5.3. Residual Bandwidth

   This field carries the residual bandwidth on a link, forwarding
   adjacency [RFC4206], or bundled link in IEEE floating point format
   with units of bytes per second.  For a link or forwarding adjacency,
   residual bandwidth is defined to be Maximum Bandwidth [RFC3630] minus
   the bandwidth currently allocated to RSVP-TE LSPs.  For a bundled
   link, residual bandwidth is defined to be the sum of the component
   link residual bandwidths.

   The calculation of Residual Bandwidth is different than that of
   Unreserved Bandwidth [RFC3630]. Residual Bandwidth subtracts tunnel
   reservations from Maximum Bandwidth (i.e. the link capacity)
   [RFC3630] and provides an aggregated remainder across QoS classes.
   Unreserved Bandwidth [RFC3630], on the other hand, is subtracted from
   the Maximum Reservable Bandwidth (the bandwidth that can
   theoretically be reserved) [RFC3630] and provides per-QoS-class
   remainders. Residual Bandwidth and Unreserved Bandwidth [RFC3630] can
   be used concurrently, and each has a separate use case (e.g. the
   former can be used for applications like Weighted ECMP while the
   latter can be used for call admission control).

Giacalone, et al       Expires December 3, 2013               [Page 12]
Internet-Draft        OSPF TE Metric Extensions               June 2013

4.5. Unidirectional Available Bandwidth Sub-TLV

   This TLV advertises the available bandwidth (defined in section
   4.5.6. ) between two directly connected OSPF neighbors. The available
   bandwidth advertised by this sub-TLV MUST be the available bandwidth
   from the system originating the LSA to its neighbor. The format of
   this sub-TLV is shown in the following diagram:

       0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              TBD6             |               4               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                      Available Bandwidth                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

4.5.4. Type

   This sub-TLV has a type of TBD6.

4.5.5. Length

   The length is 4.

4.5.6. Available Bandwidth

   This field carries the available bandwidth on a link, forwarding
   adjacency, or bundled link in IEEE floating point format with units
   of bytes per second.  For a link or forwarding adjacency, available
   bandwidth is defined to be residual bandwidth (see section 4.5. )
   minus the measured bandwidth used for the actual forwarding of non-
   RSVP-TE LSP packets.  For a bundled link, available bandwidth is
   defined to be the sum of the component link available bandwidths.

5. Announcement Thresholds and Filters

   The values advertised in all sub-TLVs (except min/max delay and
   residual bandwidth) MUST represent an average over a period or be
   obtained by a filter that is reasonably representative of an
   average. For example, a rolling average is one such filter.

   Low or high delay MAY be the lowest and/or highest measured value
   over a measurement interval or MAY make use of a filter, or other

Giacalone, et al       Expires December 3, 2013               [Page 13]
Internet-Draft        OSPF TE Metric Extensions               June 2013

   technique to obtain a reasonable representation of a low and high
   value representative of the interval with compensation for outliers.

   The measurement interval, any filter coefficients, and any
   advertisement intervals MUST be configurable per sub-TLV.

   In addition to the measurement intervals governing re-advertisement,
   implementations SHOULD provide per sub-TLV configurable accelerated
   advertisement thresholds, such that:

   1. If the measured parameter falls outside a configured  upper bound
      for all but the min delay metric (or lower bound for min-delay
      metric only) and the advertised sub-TLV is not already outside
      that bound or,

   2. If the difference between the last advertised value and current
      measured value exceed a configured threshold then,

   3. The advertisement is made immediately.

   4. For sub-TLVs which include an A-bit (except low/high delay), an
      additional threshold SHOULD be included corresponding to the
      threshold for which the performance is considered anomalous (and
      sub-TLVs with the A bit are sent). The A-bit is cleared when the
      sub-TLV's performance has been below (or re-crosses) this
      threshold for an advertisement interval(s) to permit fail back.

   To prevent oscillations, only the high threshold or the low threshold
   (but not both) may be used to trigger any given sub-TLV that supports
   both.

   Additionally, once outside of the bounds of the threshold, any
   readvertisement of a measurement within the bounds would remain
   governed solely by the measurement interval for that sub-TLV.

6. Announcement Suppression

   When link performance values change by small amounts that fall under
   thresholds that would cause the announcement of a sub-TLV,
   implementations SHOULD suppress sub-TLV readvertisement and/or
   lengthen the period within which they are refreshed.

   Only the accelerated advertisement threshold mechanism described in
   section 6 may shorten the re-advertisement interval.

Giacalone, et al       Expires December 3, 2013               [Page 14]
Internet-Draft        OSPF TE Metric Extensions               June 2013

   All suppression and re-advertisement interval backoff timer features
   SHOULD be configurable.

7. Network Stability and Announcement Periodicity

   Sections 6 and 7 provide configurable mechanisms to bound the number
   of re-advertisements.  Instability might occur in very large networks
   if measurement intervals are set low enough to     overwhelm the
   processing of flooded information at some of the routers in the
   topology. Therefore care SHOULD be taken in setting these values.

   Additionally, the default measurement interval for all sub-TLVs
   SHOULD be 30 seconds.

   Announcements MUST also be able to be throttled using configurable
   inter-update throttle timers. The minimum announcement periodicity is
   1 announcement per second. The default value SHOULD be set to 120
   seconds.

   Implementations SHOULD NOT permit the inter-update timer to be lower
   than the measurement interval.

   Furthermore, it is RECOMMENDED that any underlying performance
   measurement mechanisms not include any significant buffer delay, any
   significant buffer induced delay variation, or any significant
   loss due to buffer overflow or due to active queue management.

8. Enabling and Disabling Sub-TLVs

   Implementations MUST make it possible to individually enable or
   disable each sub-TLV based on configuration.

9. Static Metric Override

   Implementations SHOULD permit the static configuration and/or manual
   override of dynamic measurements data on a per sub-TLV, per metric
   basis in order to simplify migrations and to mitigate scenarios where
   measurements are not possible across an entire network.

Giacalone, et al       Expires December 3, 2013               [Page 15]
Internet-Draft        OSPF TE Metric Extensions               June 2013

10. Compatibility

   As per (RFC3630), unrecognized TLVs should be silently ignored

11. Security Considerations

   This document does not introduce security issues beyond those
   discussed in [RFC3630] and [RFC5329].

12. IANA Considerations

   IANA maintains the registry for the sub-TLVs. OSPF TE Metric
   Extensions will require one new type code per sub-TLV defined in this
   document.

13. References

13.1. Normative References

   [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC3630] Katz, D., Kompella, K., Yeung, D., "Traffic
             Engineering (TE) Extensions to OSPF Version 2", RFC 3630,
             September 2003.

   [RFC6374] Frost, D. and S. Bryant, "Packet Loss and Delay
             Measurement for MPLS Networks", RFC 6374, September 2011.

13.2. Informative References

   [RFC2328] Moy, J, "OSPF Version 2", RFC 2328, April 1998

   [RFC3031] Rosen, E., Viswanathan, A., Callon, R., "Multiprotocol
             Label Switching Architecture", January 2001

Giacalone, et al       Expires December 3, 2013               [Page 16]
Internet-Draft        OSPF TE Metric Extensions               June 2013

   [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan,
             V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
             Tunnels", RFC 3209, December 2001.

   [RFC5250] Berger, L., Bryskin I., Zinin, A., Coltun, R., "The OSPF
             Opaque LSA Option", RFC 5250, July 2008.

   [RFC6375]  Frost, D. and S. Bryant, "A Packet Loss and Delay
              Measurement Profile for MPLS-Based Transport Networks",
              RFC 6375, September 2011.

   [Alto]    R. Alimi R. Penno Y. Yang, "ALTO Protocol"

14. Acknowledgments

   The authors would like to recognize Ayman Soliman, Nabil Bitar, David
   McDysan, Edward Crabbe, and Don Fedyk for their contributions.

   The authors also recognize Curtis Villamizar for significant comments
   and direct content collaboration.

   This document was prepared using 2-Word-v2.0.template.dot.

15. Author's Addresses

   Spencer Giacalone
   Thomson Reuters
   195 Broadway
   New York, NY 10007, USA

   Email: Spencer.giacalone@thomsonreuters.com

   Dave Ward
   Cisco Systems
   170 West Tasman Dr.
   San Jose, CA  95134, USA

   Email: dward@cisco.com

Giacalone, et al       Expires December 3, 2013               [Page 17]
Internet-Draft        OSPF TE Metric Extensions               June 2013

   John Drake
   Juniper Networks
   1194 N. Mathilda Ave.
   Sunnyvale, CA  94089, USA

   Email: jdrake@juniper.net

   Alia Atlas
   Juniper Networks
   1194 N. Mathilda Ave.
   Sunnyvale, CA  94089, USA

   Email: akatlas@juniper.net

   Stefano Previdi
   Cisco Systems
   Via Del Serafico 200
   00142 Rome
   Italy

   Email: sprevidi@cisco.com

Giacalone, et al       Expires December 3, 2013               [Page 18]