Skip to main content

Session Description Protocol (SDP) Format for Binary Floor Control Protocol (BFCP) Streams
RFC 8856

Document Type RFC - Proposed Standard (January 2021)
Obsoletes RFC 4583
Authors Gonzalo Camarillo , Tom Kristensen , Christer Holmberg
Last updated 2021-01-19
RFC stream Internet Engineering Task Force (IETF)
Formats
Additional resources Mailing list discussion
IESG Responsible AD Adam Roach
Send notices to (None)
RFC 8856
#x27; attribute in offers and answers.  The attribute value, if
   present, MUST be in accordance with the definition of the version
   ("Ver") field in [RFC8855].  If the attribute is not present,
   endpoints MUST assume a default value in accordance with [RFC8855]:
   when used over a reliable transport, the default attribute value is
   "1", and when used over an unreliable transport, the default
   attribute value is "2".  The value is inferred from the transport
   specified in the "m=" line (Section 4) of the "m=" section associated
   with the stream.

   The SDP Offer/Answer procedures for the 'bfcpver' attribute are
   defined in Section 10.

6.  Multiplexing Considerations

   [RFC8843] defines how multiplexing of multiple media streams can be
   negotiated.  This specification does not define how BFCP streams can
   be multiplexed with other media streams.  Therefore, a BFCP stream
   MUST NOT be associated with a BUNDLE group [RFC8843].  Note that
   BFCP-controlled media streams might be multiplexed with other media
   streams.

   [RFC8859] defines the mux categories for the SDP attributes defined
   in this specification, except for the 'bfcpver' attribute.  Table 2
   defines the mux category for the 'bfcpver' attribute:

      +=========+===========================+=======+==============+
      | Name    | Notes                     | Level | Mux Category |
      +=========+===========================+=======+==============+
      | bfcpver | Needs further analysis in | M     | TBD          |
      |         | a separate specification  |       |              |
      +---------+---------------------------+-------+--------------+

                 Table 2: Multiplexing Attribute Analysis

7.  BFCP Connection Management

   BFCP streams can use TCP or UDP as the underlying transport.
   Endpoints exchanging BFCP messages over UDP send the BFCP messages
   towards the peer using the connection address and port provided in
   the SDP "c=" and "m=" lines.  TCP connection management is more
   complicated and is described in the following section.

      |  Note: When using Interactive Connectivity Establishment (ICE)
      |  [RFC8445], TCP/DTLS/BFCP, or UDP/TLS/BFCP, the straightforward
      |  procedures for connection management via UDP/BFCP, as described
      |  above, apply.  TCP/TLS/BFCP follows the same procedures as
      |  TCP/BFCP and is described below.

7.1.  TCP Connection Management

   The management of the TCP connection used to transport BFCP messages
   is performed using the SDP 'setup' and 'connection' attributes
   [RFC4145].  The 'setup' attribute indicates which of the endpoints
   initiates the TCP connection.  The 'connection' attribute handles TCP
   connection re-establishment.

   The BFCP specification [RFC8855] describes a number of situations
   when the TCP connection between a floor control client and the floor
   control server needs to be re-established.  However, [RFC8855] does
   not describe the re-establishment process, because this process
   depends on how the connection was established in the first place.
   Endpoints using the offer/answer mechanism follow the following
   rules.

   When the existing TCP connection is closed and re-established
   following the rules in [RFC8855], the floor control client MUST send
   an offer towards the floor control server in order to re-establish
   the connection.  If a TCP connection cannot deliver a BFCP message
   and times out, the endpoint that attempted to send the message (i.e.,
   the one that detected the TCP timeout) MUST send an offer in order to
   re-establish the TCP connection.

   Endpoints that use the offer/answer mechanism to negotiate TCP
   connections MUST support the 'setup' and 'connection' attributes.

8.  TLS/DTLS Considerations

   When DTLS is used with UDP, the generic procedures defined in
   Section 5 of [RFC8842] MUST be followed.

   When TLS is used with TCP, once the underlying connection is
   established, the answerer always acts as the TLS server.  If the TCP
   connection is lost, the active endpoint [RFC4583] is responsible for
   re-establishing the TCP connection.  Unless a new TLS connection is
   negotiated, subsequent SDP offers and answers will not impact the
   previously negotiated TLS roles.

      |  Note: For TLS, it was decided to keep the original procedures
      |  in [RFC4583] to determine which endpoint acts as the TLS
      |  server, in order to retain backward compatibility.

9.  ICE Considerations

   Generic SDP offer/answer procedures for ICE are defined in [RFC8839].

   When BFCP is used with UDP-based ICE candidates [RFC8445], the
   procedures for UDP/TLS/BFCP are used.

   When BFCP is used with TCP-based ICE candidates [RFC6544], the
   procedures for TCP/DTLS/BFCP are used.

   Based on the procedures defined in [RFC8842], endpoints treat all ICE
   candidate pairs associated with a BFCP stream on top of a DTLS
   association as part of the same DTLS association.  Thus, there will
   only be one BFCP handshake and one DTLS handshake even if there are
   multiple valid candidate pairs, and even if BFCP media is shifted
   between candidate pairs (including switching between UDP candidate
   pairs and TCP candidate pairs) prior to nomination.  If new
   candidates are added, they will also be part of the same DTLS
   association.

   In order to maximize the likelihood of interoperability between the
   endpoints, all ICE-enabled BFCP-over-DTLS endpoints SHOULD implement
   support for UDP/TLS/BFCP.

   When an SDP offer or answer conveys multiple ICE candidates for a
   BFCP stream, UDP-based candidates SHOULD be included and the default
   candidate SHOULD be chosen from one of those UDP candidates.  If UDP
   transport is used for the default candidate, then the "m=" line proto
   value MUST be 'UDP/TLS/BFCP'.  If TCP transport is used for the
   default candidate, the "m=" line proto value MUST be 'TCP/DTLS/BFCP'.

      |  Note: Usage of ICE with protocols other than UDP/TLS/BFCP and
      |  TCP/DTLS/BFCP is out of scope for this specification.

10.  SDP Offer/Answer Procedures

   This section defines the SDP offer/answer [RFC3264] procedures for
   negotiating and establishing a BFCP stream.  Generic procedures for
   DTLS are defined in [RFC8842].  Generic procedures for TLS are
   defined in [RFC8122].

   This section only defines the BFCP-specific procedures.  Unless
   explicitly stated otherwise, the procedures apply to an "m=" section
   describing a BFCP stream.  If an offer or answer contains multiple
   "m=" sections describing BFCP streams, the procedures are applied
   independently to each stream.

   Within this document, 'initial offer' refers to the first offer
   within an SDP session (e.g., a Session Initiation Protocol (SIP)
   dialog when SIP [RFC3261] is used to carry SDP) in which the offerer
   indicates that it wants to negotiate the establishment of a BFCP
   stream.

   If the "m=" line 'proto' value is 'TCP/TLS/BFCP', 'TCP/DTLS/BFCP', or
   'UDP/TLS/BFCP', the offerer and answerer follow the generic
   procedures defined in [RFC8122].

   If the "m=" line proto value is 'TCP/BFCP', 'TCP/TLS/BFCP',
   'TCP/DTLS/TCP', or 'UDP/TLS/BFCP', the offerer and answerer use the
   SDP 'setup' attribute according to the procedures in [RFC4145].

   If the "m=" line proto value is 'TCP/BFCP', 'TCP/TLS/BFCP', or
   'TCP/DTLS/BFCP', the offerer and answerer use the SDP 'connection'
   attribute according to the procedures in [RFC4145].

      |  Note: The use of source-specific SDP parameters [RFC5576] is
      |  not defined for BFCP streams.

10.1.  Generating the Initial SDP Offer

   When the offerer creates an initial offer, the offerer MUST include
   an SDP 'floorctrl' attribute (Section 5.1) and an SDP 'bfcpver'
   attribute (Section 5.5) in the "m=" section.

   In addition, if the offerer includes an SDP 'floorctrl' attribute
   with "s-only" or "c-s" attribute values in the offer, the offerer

   *  MUST include an SDP 'confid' attribute (Section 5.2) in the "m="
      section,

   *  MUST include an SDP 'userid' attribute (Section 5.3) in the "m="
      section,

   *  MUST include an SDP 'floorid' attribute (Section 5.4) in the "m="
      section, and

   *  MUST include an SDP 'label' attribute [RFC4574] with the "m="
      section of each BFCP-controlled media stream.

      |  Note: If the offerer includes an SDP 'floorctrl' attribute with
      |  a "c-s" attribute value, or both a "c-only" and an "s-only"
      |  attribute value in the offer, the attribute values above will
      |  only be used if it is determined (Section 5.1) that the offerer
      |  will act as a floor control server.

10.2.  Generating the SDP Answer

   When the answerer receives an offer that contains an "m=" section
   describing a BFCP stream, the answerer MUST check whether it supports
   one or more of the BFCP versions supported by the offerer
   (Section 5.5).  If the answerer does not support any of the BFCP
   versions, it MUST NOT accept the "m=" section.  Otherwise, if the
   answerer accepts the "m=" section, the answerer

   *  MUST insert a corresponding "m=" section in the answer, with an
      identical "m=" line proto value [RFC8866],

   *  MUST include a 'bfcpver' attribute in the "m=" section; the
      versions indicated by the answer MUST be the same or a subset of
      the versions indicated by the offerer in the corresponding offer,
      and

   *  MUST, if the offer contained an SDP 'floorctrl' attribute, include
      a 'floorctrl' attribute in the "m=" section.

   In addition, if the answerer includes an SDP 'floorctrl' attribute
   with an "s-only" attribute value in the answer, the answerer

   *  MUST include an SDP 'confid' attribute in the "m=" section,

   *  MUST include an SDP 'userid' attribute in the "m=" section,

   *  MUST include an SDP 'floorid' attribute in the "m=" section, and

   *  MUST include an SDP 'label' attribute in the "m=" section of each
      BFCP-controlled media stream.

      |  Note: An offerer compliant with [RFC4583] might not include
      |  'floorctrl' and 'bfcpver' attributes in offers, in which case
      |  the default values apply.

   Once the answerer has sent the answer, the answerer

   *  MUST, if the answerer is the active endpoint and if a TCP
      connection associated with the "m=" section is to be established
      (or re-established), initiate the establishment of the TCP
      connection, and

   *  MUST, if the answerer is the active endpoint and if a TLS/DTLS
      connection associated with the "m=" section is to be established
      (or re-established), initiate the establishment of the TLS/DTLS
      connection (by sending a ClientHello message).

   If the answerer does not accept the "m=" section in the offer, it
   MUST assign a zero port value to the "m=" line of the corresponding
   "m=" section in the answer.  In addition, the answerer MUST NOT
   establish a TCP connection or a TLS/DTLS connection associated with
   the "m=" section.

10.3.  Offerer Processing of the SDP Answer

   When the offerer receives an answer that contains an "m=" section
   describing a BFCP stream and with a non-zero port value in the "m="
   line, the offerer

   *  MUST, if the offerer is the active endpoint and if a TCP
      connection associated with the "m=" section is to be established
      (or re-established), initiate the establishment of the TCP
      connection, and

   *  MUST, if the offerer is the active endpoint and if a TLS/DTLS
      connection associated with the "m=" section is to be established
      (or re-established), initiate the establishment of the TLS/DTLS
      connection (by sending a ClientHello message).

      |  Note: An answerer compliant with [RFC4583] might not include
      |  'floorctrl' and 'bfcpver' attributes in answers, in which case
      |  the default values apply.

   If the "m=" line in the answer contains a zero port value or if the
   offerer for some other reason does not accept the answer (e.g., if
   the answerer only indicates support of BFCP versions not supported by
   the offerer), the offerer MUST NOT establish a TCP connection or a
   TLS/DTLS connection associated with the "m=" section.

10.4.  Modifying the Session

   When an offerer sends an updated offer, in order to modify a
   previously established BFCP stream, it follows the procedures in
   Section 10.1, with the following exceptions:

   *  If the BFCP stream is carried on top of TCP and if the offerer
      does not want to re-establish an existing TCP connection, the
      offerer MUST include in the "m=" section an SDP 'connection'
      attribute with a value of "existing", and

   *  If the offerer wants to disable a previously established BFCP
      stream, it MUST assign a zero port value to the "m=" line
      associated with the BFCP connection, following the procedures in
      [RFC3264].

11.  Examples

   For the purpose of brevity, the main portion of the session
   description is omitted in the examples, which only show "m=" sections
   and their "m=" lines and attributes.

   The following is an example of an offer sent by a conference server
   to a client.

   m=application 50000 TCP/TLS/BFCP *
   a=setup:actpass
   a=connection:new
   a=fingerprint:sha-256 \
        19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04: \
        BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
   a=floorctrl:c-only s-only
   a=confid:4321
   a=userid:1234
   a=floorid:1 mstrm:10
   a=floorid:2 mstrm:11
   a=bfcpver:1 2
   m=audio 50002 RTP/AVP 0
   a=label:10
   m=video 50004 RTP/AVP 31
   a=label:11

   Note that due to RFC formatting conventions, this document splits the
   SDP entries across lines whose content would exceed the maximum line
   length.  A backslash character ("\") marks where this line folding
   has taken place.  This backslash and its trailing CRLF and whitespace
   would not appear in actual SDP content.

   The following is the answer returned by the client.

   m=application 9 TCP/TLS/BFCP *
   a=setup:active
   a=connection:new
   a=fingerprint:sha-256 \
        6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35: \
        DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
   a=floorctrl:c-only
   a=bfcpver:1
   m=audio 55000 RTP/AVP 0
   m=video 55002 RTP/AVP 31

   A similar example using an unreliable transport and DTLS is shown
   below, where the offer is sent from a client.

   m=application 50000 UDP/TLS/BFCP *
   a=setup:actpass
   a=dtls-id:abc3dl
   a=fingerprint:sha-256 \
        19:E2:1C:3B:4B:9F:81:E6:B8:5C:F4:A5:A8:D8:73:04: \
        BB:05:2F:70:9F:04:A9:0E:05:E9:26:33:E8:70:88:A2
   a=floorctrl:c-only s-only
   a=confid:4321
   a=userid:1234
   a=floorid:1 mstrm:10
   a=floorid:2 mstrm:11
   a=bfcpver:1 2
   m=audio 50002 RTP/AVP 0
   a=label:10
   m=video 50004 RTP/AVP 31
   a=label:11

   The following is the answer returned by the server.

   m=application 55000 UDP/TLS/BFCP *
   a=setup:active
   a=dtls-id:abc3dl
   a=fingerprint:sha-256 \
        6B:8B:F0:65:5F:78:E2:51:3B:AC:6F:F3:3F:46:1B:35: \
        DC:B8:5F:64:1A:24:C2:43:F0:A1:58:D0:A1:2C:19:08
   a=floorctrl:s-only
   a=confid:4321
   a=userid:1234
   a=floorid:1 mstrm:10
   a=floorid:2 mstrm:11
   a=bfcpver:2
   m=audio 55002 RTP/AVP 0
   m=video 55004 RTP/AVP 31

12.  Security Considerations

   The BFCP specification [RFC8855], SDP specification [RFC8866], and
   offer/answer specification [RFC3264] discuss security issues related
   to BFCP, SDP, and offer/answer, respectively.  In addition, [RFC4145]
   and [RFC8122] discuss security issues related to the establishment of
   TCP and TLS connections using an offer/answer model.  Furthermore,
   when using DTLS over UDP, the generic offer/answer considerations
   defined in [RFC8842] MUST be followed.

   The usage of certain proto values in the SDP offer/answer negotiation
   will result in a BFCP stream that is not protected by TLS or DTLS.
   Operators will need to provide integrity protection and
   confidentiality protection of the BFCP stream using other means.

   The generic security considerations associated with SDP attributes
   are defined in [RFC3264].  While the attributes defined in this
   specification do not reveal information about the content of
   individual BFCP-controlled media streams, they do reveal which media
   streams will be BFCP controlled.

13.  IANA Considerations

   This document registers three new values in the "proto" subregistry
   within the "Session Description Protocol (SDP) Parameters" registry:
   'TCP/DTLS/BFCP', 'UDP/BFCP', and 'UDP/TLS/BFCP' (see Section 13.1).

   This document also registers a new SDP attribute in the 'attribute-
   name (formerly "att-field")' subregistry within the "Session
   Description Protocol (SDP) Parameters" registry: 'bfcpver' (see
   Section 5.5).

   The remaining values are unchanged from [RFC4582], except that the
   references have been updated to refer to this document.

13.1.  Registration of SDP 'proto' Values

   The IANA has registered three new values in the SDP 'proto' field
   under the "Session Description Protocol (SDP) Parameters" registry.

                       +===============+===========+
                       | Value         | Reference |
                       +===============+===========+
                       | TCP/BFCP      |  RFC 8856 |
                       +---------------+-----------+
                       | TCP/DTLS/BFCP |  RFC 8856 |
                       +---------------+-----------+
                       | TCP/TLS/BFCP  |  RFC 8856 |
                       +---------------+-----------+
                       | UDP/BFCP      |  RFC 8856 |
                       +---------------+-----------+
                       | UDP/TLS/BFCP  |  RFC 8856 |
                       +---------------+-----------+

                          Table 3: Values for the
                             SDP 'proto' Field

13.2.  Registration of the SDP 'floorctrl' Attribute

   This document defines the SDP 'floorctrl' attribute.  Details
   regarding this attribute are provided in Section 5.1.

13.3.  Registration of the SDP 'confid' Attribute

   This document defines the SDP 'confid' attribute.  Details regarding
   this attribute are provided in Section 5.2.

13.4.  Registration of the SDP 'userid' Attribute

   This document defines the SDP 'userid' attribute.  Details regarding
   this attribute are provided in Section 5.3.

13.5.  Registration of the SDP 'floorid' Attribute

   This document defines the SDP 'floorid' attribute.  Details regarding
   this attribute are provided in Section 5.4.

13.6.  Registration of the SDP 'bfcpver' Attribute

   This document defines the SDP 'bfcpver' attribute.  Details regarding
   this attribute are provided in Section 5.5.

14.  Changes from RFC 4583

   The technical changes and other fixes from [RFC4583] are listed
   below.

   The main purpose of this work was to add signaling support necessary
   to support BFCP over an unreliable transport, as described in
   [RFC8855], resulting in the following changes:

   *  Fields in the "m=" Line (Section 4):

      This section has been rewritten to remove reference to the
      exclusivity of TCP as a transport for BFCP streams.  The proto
      field values 'TCP/DTLS/BFCP', 'UDP/BFCP', and 'UDP/TLS/BFCP' have
      been added.

   *  Security Considerations (Section 12):

      For the DTLS-over-UDP case, we direct the reader to existing
      considerations and requirements for the offer/answer exchange as
      provided in [RFC8842].

   *  Registration of SDP 'proto' Values (Section 13.1):

      This document registers the three new values 'TCP/DTLS/BFCP',
      'UDP/BFCP', and 'UDP/TLS/BFCP' in the "Session Description
      Protocol (SDP) Parameters" registry.

   *  SDP 'bfcpver' Attribute (Section 5.5):

      A new 'bfcpver' SDP media-level attribute has been added, in order
      to signal the supported version number.

   In addition to the changes associated with support of BFCP over an
   unreliable transport, the possibility that an endpoint can act as
   both a floor control client and a floor control server at the same
   time has been removed.  An endpoint will now take the same role for
   all BFCP-controlled streams associated with the BFCP stream.

   Clarifications and bug fixes:

   *  Erratum ID 712 (Sections 3 and 10 of [RFC4583]; see [Err712] for
      details):

      Do not use language such as 'used in an "m=" line' when discussing
      an SDP attribute; instead, make clear that the attribute is a
      media-level attribute.

   *  Spelling corrected in the first SDP example in Section 9 of
      [RFC4583]:

      Do not use 'm-stream' as listed in the first SDP example in
      [RFC4583]; instead, use the correct 'mstrm' as specified in
      Section 11 of this document.  However, we recommend continuing to
      interpret 'm-stream', if received, because it is still present in
      some implementations.

   *  Assorted clarifications (throughout the document):

      Language clarifications were made as a result of reviews.  Also,
      normative language was "tightened" where appropriate, i.e.,
      changed from "SHOULD" strength to "MUST" in a number of places.

15.  References

15.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
              A., Peterson, J., Sparks, R., Handley, M., and E.
              Schooler, "SIP: Session Initiation Protocol", RFC 3261,
              DOI 10.17487/RFC3261, June 2002,
              <https://www.rfc-editor.org/info/rfc3261>.

   [RFC3264]  Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
              with Session Description Protocol (SDP)", RFC 3264,
              DOI 10.17487/RFC3264, June 2002,
              <https://www.rfc-editor.org/info/rfc3264>.

   [RFC4145]  Yon, D. and G. Camarillo, "TCP-Based Media Transport in
              the Session Description Protocol (SDP)", RFC 4145,
              DOI 10.17487/RFC4145, September 2005,
              <https://www.rfc-editor.org/info/rfc4145>.

   [RFC4571]  Lazzaro, J., "Framing Real-time Transport Protocol (RTP)
              and RTP Control Protocol (RTCP) Packets over Connection-
              Oriented Transport", RFC 4571, DOI 10.17487/RFC4571, July
              2006, <https://www.rfc-editor.org/info/rfc4571>.

   [RFC4574]  Levin, O. and G. Camarillo, "The Session Description
              Protocol (SDP) Label Attribute", RFC 4574,
              DOI 10.17487/RFC4574, August 2006,
              <https://www.rfc-editor.org/info/rfc4574>.

   [RFC4582]  Camarillo, G., Ott, J., and K. Drage, "The Binary Floor
              Control Protocol (BFCP)", RFC 4582, DOI 10.17487/RFC4582,
              November 2006, <https://www.rfc-editor.org/info/rfc4582>.

   [RFC4583]  Camarillo, G., "Session Description Protocol (SDP) Format
              for Binary Floor Control Protocol (BFCP) Streams",
              RFC 4583, DOI 10.17487/RFC4583, November 2006,
              <https://www.rfc-editor.org/info/rfc4583>.

   [RFC5234]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", STD 68, RFC 5234,
              DOI 10.17487/RFC5234, January 2008,
              <https://www.rfc-editor.org/info/rfc5234>.

   [RFC6347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
              January 2012, <https://www.rfc-editor.org/info/rfc6347>.

   [RFC6544]  Rosenberg, J., Keranen, A., Lowekamp, B. B., and A. B.
              Roach, "TCP Candidates with Interactive Connectivity
              Establishment (ICE)", RFC 6544, DOI 10.17487/RFC6544,
              March 2012, <https://www.rfc-editor.org/info/rfc6544>.

   [RFC8122]  Lennox, J. and C. Holmberg, "Connection-Oriented Media
              Transport over the Transport Layer Security (TLS) Protocol
              in the Session Description Protocol (SDP)", RFC 8122,
              DOI 10.17487/RFC8122, March 2017,
              <https://www.rfc-editor.org/info/rfc8122>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8445]  Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive
              Connectivity Establishment (ICE): A Protocol for Network
              Address Translator (NAT) Traversal", RFC 8445,
              DOI 10.17487/RFC8445, July 2018,
              <https://www.rfc-editor.org/info/rfc8445>.

   [RFC8839]  Petit-Huguenin, M., Nandakumar, S., Holmberg, C., Keränen,
              A., and R. Shpount, "Session Description Protocol (SDP)
              Offer/Answer Procedures for Interactive Connectivity
              Establishment (ICE)", RFC 8839, DOI 10.17487/RFC8839,
              January 2021, <https://www.rfc-editor.org/info/rfc8839>.

   [RFC8842]  Holmberg, C. and R. Shpount, "Session Description Protocol
              (SDP) Offer/Answer Considerations for Datagram Transport
              Layer Security (DTLS) and Transport Layer Security (TLS)",
              RFC 8842, DOI 10.17487/RFC8842, January 2021,
              <https://www.rfc-editor.org/info/rfc8842>.

   [RFC8855]  Camarillo, G., Drage, K., Kristensen, T., Ott, J., and C.
              Eckel, "The Binary Floor Control Protocol (BFCP)",
              RFC 8855, DOI 10.17487/RFC8855, January 2021,
              <https://www.rfc-editor.org/info/rfc8855>.

   [RFC8859]  Nandakumar, S., "A Framework for Session Description
              Protocol (SDP) Attributes When Multiplexing", RFC 8859,
              DOI 10.17487/RFC8859, January 2021,
              <https://www.rfc-editor.org/info/rfc8859>.

   [RFC8866]  Begen, A., Kyzivat, P., Perkins, C., and M. Handley, "SDP:
              Session Description Protocol", RFC 8866,
              DOI 10.17487/RFC8866, January 2021,
              <https://www.rfc-editor.org/info/rfc8866>.

15.2.  Informative References

   [Err712]   RFC Errata, Erratum ID 712, RFC 4583,
              <https://www.rfc-editor.org/errata/eid712>.

   [RFC5576]  Lennox, J., Ott, J., and T. Schierl, "Source-Specific
              Media Attributes in the Session Description Protocol
              (SDP)", RFC 5576, DOI 10.17487/RFC5576, June 2009,
              <https://www.rfc-editor.org/info/rfc5576>.

   [RFC8843]  Holmberg, C., Alvestrand, H., and C. Jennings,
              "Negotiating Media Multiplexing Using the Session
              Description Protocol (SDP)", RFC 8843,
              DOI 10.17487/RFC8843, January 2021,
              <https://www.rfc-editor.org/info/rfc8843>.

Acknowledgements

   Jörg Ott, Keith Drage, Alan Johnston, Eric Rescorla, Roni Even, and
   Oscar Novo provided useful ideas for the original [RFC4583].  The
   authors also acknowledge contributions to the revision of BFCP for
   use over an unreliable transport from Geir Arne Sandbakken, Charles
   Eckel, Alan Ford, Eoin McLeod, and Mark Thompson.  Useful and
   important final reviews were done by Ali C. Begen, Mary Barnes, and
   Charles Eckel.  In the final stages, Roman Shpount made a
   considerable effort in adding proper ICE support and considerations.

Authors' Addresses

   Gonzalo Camarillo
   Ericsson
   Hirsalantie 11
   FI-02420 Jorvas
   Finland

   Email: Gonzalo.Camarillo@ericsson.com

   Tom Kristensen
   Jotron AS
   Ringdalskogen 8
   3270 Larvik
   Norway

   Email: tom.kristensen@jotron.com, tomkri@ifi.uio.no

   Christer Holmberg
   Ericsson
   Hirsalantie 11
   FI-02420 Jorvas
   Finland

   Email: christer.holmberg@ericsson.com