OSPFv2 HMAC-SHA Cryptographic Authentication
RFC 5709
Document | Type |
RFC - Proposed Standard
(October 2009; Errata)
Updated by RFC 7474
Updates RFC 2328
|
|
---|---|---|---|
Authors | M Fanto , Randall Atkinson , Michael Barnes , Vishwas Manral , Russ White , Tony Li , Manav Bhatia | ||
Last updated | 2015-10-14 | ||
Stream | IETF | ||
Formats | plain text html pdf htmlized bibtex | ||
Reviews | |||
Stream | WG state | (None) | |
Document shepherd | No shepherd assigned | ||
IESG | IESG state | RFC 5709 (Proposed Standard) | |
Consensus Boilerplate | Unknown | ||
Telechat date | |||
Responsible AD | Ross Callon | ||
Send notices to | (None) |
Network Working Group M. Bhatia Request for Comments: 5709 Alcatel-Lucent Updates: 2328 V. Manral Category: Standards Track IP Infusion M. Fanto Aegis Data Security R. White M. Barnes Cisco Systems T. Li Ericsson R. Atkinson Extreme Networks October 2009 OSPFv2 HMAC-SHA Cryptographic Authentication Abstract This document describes how the National Institute of Standards and Technology (NIST) Secure Hash Standard family of algorithms can be used with OSPF version 2's built-in, cryptographic authentication mechanism. This updates, but does not supercede, the cryptographic authentication mechanism specified in RFC 2328. Status of This Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. Copyright and License Notice Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the BSD License. Bhatia, et al. Standards Track [Page 1] RFC 5709 OSPFv2 HMAC-SHA October 2009 This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English. 1. Introduction A variety of risks exist when deploying any routing protocol [Bell89]. This document provides an update to OSPFv2 Cryptographic Authentication, which is specified in Appendix D of RFC 2328. This document does not deprecate or supercede RFC 2328. OSPFv2, itself, is defined in RFC 2328 [RFC2328]. This document adds support for Secure Hash Algorithms (SHA) defined in the US NIST Secure Hash Standard (SHS), which is defined by NIST FIPS 180-2. [FIPS-180-2] includes SHA-1, SHA-224, SHA-256, SHA-384, and SHA-512. The Hashed Message Authentication Code (HMAC) authentication mode defined in NIST FIPS 198 is used [FIPS-198]. It is believed that [RFC2104] is mathematically identical to [FIPS-198] and it is also believed that algorithms in [RFC4634] are mathematically identical to [FIPS-180-2]. The creation of this addition to OSPFv2 was driven by operator requests that they be able to use the NIST SHS family of algorithms in the NIST HMAC mode, instead of being forced to use the Keyed-MD5 algorithm and mode with OSPFv2 Cryptographic Authentication. Cryptographic matters are discussed in more detail in the Security Considerations section of this document. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119]. 2. Background All OSPF protocol exchanges can be authenticated. The OSPF packet header (see Appendix A.3.1 of RFC 2328) includes an Authentication Type field and 64 bits of data for use by the appropriateShow full document text