Skip to main content

Requirements for Open Pluggable Edge Services (OPES) Callout Protocols
RFC 3836

Document Type RFC - Informational (August 2004)
Authors Andre Beck , Reinaldo Penno , Hilarie Orman , Markus Hofmann , Andreas Terzis
Last updated 2015-10-14
RFC stream Internet Engineering Task Force (IETF)
Formats
Additional resources Mailing list discussion
IESG Responsible AD Ned Freed
Send notices to (None)
RFC 3836
Network Working Group                                          M. Thomas
Request for Comments: 5016                                 Cisco Systems
Category: Informational                                     October 2007

                          Requirements for a
      DomainKeys Identified Mail (DKIM) Signing Practices Protocol

Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Abstract

   DomainKeys Identified Mail (DKIM) provides a cryptographic mechanism
   for domains to assert responsibility for the messages they handle.  A
   related mechanism will allow an administrator to publish various
   statements about their DKIM signing practices.  This document defines
   requirements for this mechanism, distinguishing between those that
   must be satisfied (MUST), and those that are highly desirable
   (SHOULD).

Thomas                       Informational                      [Page 1]
RFC 5016                      DKIM-SSP-REQ                  October 2007

Table of Contents

   1. Introduction ....................................................2
   2. Definitions and Requirements Language ...........................3
   3. SSP Problem Scenarios ...........................................4
      3.1. Problem Scenario 1: Is All Mail Signed with DKIM? ..........4
      3.2. Problem Scenario 2: Illegitimate Domain Name Use ...........5
   4. SSP Deployment Considerations ...................................6
      4.1. Deployment Consideration 1: Outsourced Signing .............6
      4.2. Deployment Consideration 2: Subdomain Coverage .............6
      4.3. Deployment Consideration 3: Resent Original Mail ...........7
      4.4. Deployment Consideration 4: Incremental Deployment
           of Signing .................................................7
      4.5. Deployment Consideration 5: Performance and Caching ........8
      4.6. Deployment Consideration 6: Human Legibility of Practices ..8
      4.7. Deployment Consideration 7: Extensibility ..................8
      4.8. Deployment Consideration 8: Security .......................8
   5. Requirements ....................................................9
      5.1. Discovery Requirements .....................................9
      5.2. SSP Transport Requirements ................................10
      5.3. Practice and Expectation Requirements .....................10
      5.4. Extensibility and Forward Compatibility Requirements ......13
   6. Requirements for SSP Security ..................................13
   7. Security Considerations ........................................13
   8. Acknowledgments ................................................13
   9. References .....................................................14
      9.1. Normative References ......................................14

1.  Introduction

   DomainKeys Identified Mail [RFC4871] defines a message level signing
   and verification mechanism for email.  While a DKIM signed message
   speaks for itself, there is ambiguity if a message doesn't have a
   valid first party signature (i.e., on behalf of the [RFC2822].From
   address): is this to be expected or not?  For email, this is an
   especially difficult problem since there is no expectation of a
   priori knowledge of a sending domain's practices.  This ambiguity can
   be used to mount a bid down attack that is inherent with systems like
   email that allow optional authentication: if a receiver doesn't know
   otherwise, it should not assume that the lack of a valid signature is
   exceptional without other information.  Thus, an attacker can take
   advantage of the ambiguity and simply not sign messages.  If a
   protocol could be developed for a domain to publish its DKIM signing
   practices, a message verifier could take that into account when it
   receives an unsigned piece of email.

Thomas                       Informational                      [Page 2]
RFC 5016                      DKIM-SSP-REQ                  October 2007

   This document defines the requirements for a mechanism that permits
   the publication of Sender Signing Practices (SSP).  The document is
   organized into two main sections: first, a Problem and Deployment
   Scenario section that describes the problems that SSP is intended to
   address as well as the deployment issues surrounding the base
   problems, and the second section is the Requirements that arise
   because of those scenarios.

2.  Definitions and Requirements Language

   o  Domain Holder: the entity that controls the contents of the DNS
      subtree starting at the domain, either directly or by delegation
      via NS records it controls.

   o  First Party Address: for DKIM, a first party address is defined to
      be the [RFC2822].From address in the message header; a first party
      address is also known as an Author address.

   o  First Party Signature: a first party signature is a valid
      signature where the signing identity (the d= tag or the more
      specific identity i= tag) matches the first party address.
      "Matches" in this context is defined in [RFC4871].

   o  Third Party Signature: a third party signature is a valid
      signature that does not qualify as a first party signature.  Note
      that a DKIM third party signature is not required to correspond to
      a header field address such as the contents of Sender or List-Id,
      etc.

   o  Practice: a statement according to the [RFC2822].From domain
      holder of externally verifiable behavior in the email messages it
      sends.

   o  Expectation: an expectation combines with a practice to convey
      what the domain holder considers the likely survivability of the
      practice for a receiver, in particular receivers that may be more
      than one SMTP hop away.

   o  DKIM Signing Complete: a practice where the domain holder asserts
      that all legitimate mail will be sent with a valid first party
      signature.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", &RFC 3836        Requirements for OPES Callout Protocols      August 2004

   capabilities, such as the fail-over behavior, MAY be negotiated
   between the two endpoints independently of callout connections.

   The parties to a callout protocol MAY use callout connections to
   negotiate all or some of their capabilities and parameters.
   Alternatively, a separate control connection MAY be used for this
   purpose.

3.13.  Meta Data and Instructions

   The OPES callout protocol MUST provide a mechanism for the endpoints
   of a particular callout transaction to include metadata and
   instructions for the OPES processor or callout server in callout
   requests and responses.

   Specifically, the callout protocol MUST enable an OPES processor to
   include information about the forwarded application message in a
   callout request, e.g.  in order to specify the type of forwarded
   application message or to specify what part(s) of the application
   message are forwarded to the callout server.  Likewise, the callout
   server MUST be able to include information about the returned
   application message.

   The OPES processor MUST further be able to include an ordered list of
   one or more uniquely specified OPES services which are to be
   performed on the forwarded application message in the specified
   order.  However, as the callout protocol MAY also choose to associate
   callout connections with specific OPES services, there may not be a
   need to identify OPES services on a per-callout transaction basis.

   Additionally, the OPES callout protocol MUST allow the callout server
   to indicate to the OPES processor the cacheability of callout
   responses.  This implies that callout responses may have to carry
   cache-control instructions for the OPES processor.

   The OPES callout protocol MUST further enable the OPES processor to
   indicate to the callout server if it has kept a local copy of the
   forwarded application message (or parts thereof).  This information
   enables the callout server to determine whether the forwarded
   application message must be returned to the OPES processor, even if
   it has not been modified by an OPES service.

   The OPES callout protocol MUST also allow OPES processors to comply
   with the tracing requirements of the OPES architecture as laid out in
   [1] and [3].  This implies that the callout protocol MUST enable a
   callout server to convey to the OPES processor information about the
   OPES service operations performed on the forwarded application
   message.

Beck, et al.                 Informational                      [Page 8]
RFC 3836        Requirements for OPES Callout Protocols      August 2004

4.  Performance Requirements

4.1.  Protocol Efficiency

   The OPES callout protocol SHOULD have minimal latency.  For example,
   the size and complexity of its headers could be minimized.

   Because OPES callout transactions add latency to application protocol
   transactions on the data path, callout protocol efficiency is crucial
   to overall performance.

5.  Security Requirements

   In the absence of any security mechanisms, sensitive information
   might be communicated between the OPES processor and the callout
   server in violation of either endpoint's security and privacy policy,
   through misconfiguration or deliberate insider attack.  By using
   strong authentication, message encryption, and integrity checks, this
   threat can be minimized to a smaller set of insiders and/or operator
   configuration errors.

   The OPES processor and the callout servers SHOULD have enforceable
   policies that limit the parties they communicate with and that
   determine the protections to use based on identities of the endpoints
   and other data (such as enduser policies).  In order to enforce the
   policies, they MUST be able to authenticate the callout protocol
   endpoints using cryptographic methods.

5.1.  Authentication, Confidentiality, and Integrity

   The parties to the callout protocol MUST have a sound basis for
   binding authenticated identities to the protocol endpoints, and they
   MUST verify that these identities are consistent with their security
   policies.

   The OPES callout protocol MUST provide for message authentication,
   confidentiality, and integrity between the OPES processor and the
   callout server.  It MUST provide mutual authentication.  For this
   purpose, the callout protocol SHOULD use existing security
   mechanisms.  The callout protocol specification is not required to
   specify the security mechanisms, but it MAY instead refer to a
   lower-level security protocol and discuss how its mechanisms are to
   be used with the callout protocol.

Beck, et al.                 Informational                      [Page 9]
RFC 3836        Requirements for OPES Callout Protocols      August 2004

5.2.  Hop-by-Hop Confidentiality

   If hop-by-hop encryption is a requirement for the content path, then
   this confidentiality MUST be extended to the communication between
   the OPES processor and the callout server.  While it is recommended
   that the communication between the OPES processor and callout server
   always be encrypted, encryption MAY be optional if both the OPES
   processor and the callout server are co-located together in a single
   administrative domain with strong confidentiality guarantees.

   In order to minimize data exposure, the callout protocol MUST use a
   different encryption key for each encrypted content stream.

5.3.  Operation Across Untrusted Domains

   The OPES callout protocol MUST operate securely across untrusted
   domains between the OPES processor and the callout server.

   If the communication channels between the OPES processor and callout
   server cross outside of the organization which is responsible for the
   OPES services,  then endpoint authentication and message protection
   (confidentiality and integrity) MUST be used.

5.4.  Privacy

   Any communication carrying information relevant to privacy policies
   MUST protect the data using encryption.

6.  Security Considerations

   The security requirements for the OPES callout protocol are discussed
   in Section 5.

7.  References

7.1.  Normative References

   [1]  Barbir, A., Penno, R., Chen, R., Hofmann, M., and H. Orman, "An
        Architecture for Open Pluggable Edge Services (OPES)", RFC 3835,
        August 2004.

   [2]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

   [3]  Floyd, S. and L. Daigle, "IAB Architectural and Policy
        Considerations for Open Pluggable Edge Services", RFC 3238,
        January 2002.

Beck, et al.                 Informational                     [Page 10]
RFC 3836        Requirements for OPES Callout Protocols      August 2004

   [4]  Floyd, S. and L. Daigle, "IAB Architectural and Policy
        Considerations for Open Pluggable Edge Services", RFC 3238,
        January 2002.

   [5]  Fielding,  R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
        Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --
        HTTP/1.1", RFC 2616, June 1999.

7.2.  Informative References

   [6]  Postel, J., "Transmission Control Protocol", STD 7, RFC 793,
        September 1981.

   [7]  Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer,
        H., Taylor, T., Rytina, I., Kalla, M., Zhang, L., and V. Paxson,
        "Stream Control Transmission Protocol", RFC 2960, October 2000.

   [8]  Schulzrinne, H.,  Casner, S., Frederick, R., and V. Jacobson,
        "RTP: A Transport Protocol for Real-Time Applications", RFC
        3550, July 2003.

8.  Acknowledgments

   Parts of this document are based on previous work by Anca Dracinschi
   Sailer, Volker Hilt, and Rama R. Menon.

   The authors would like to thank the participants of the OPES WG for
   their comments on this document.

Beck, et al.                 Informational                     [Page 11]
RFC 3836        Requirements for OPES Callout Protocols      August 2004

9.  Authors' Addresses

   Andre Beck
   Lucent Technologies
   101 Crawfords Corner Road
   Holmdel, NJ  07733
   US

   EMail: abeck@bell-labs.com

   Markus Hofmann
   Lucent Technologies
   Room 4F-513
   101 Crawfords Corner Road
   Holmdel, NJ  07733
   US

   Phone: +1 732 332 5983
   EMail: hofmann@bell-labs.com

   Hilarie Orman
   Purple Streak Development

   EMail: ho@alum.mit.edu
   URI:   http://www.purplestreak.com

   Reinaldo Penno
   Nortel Networks
   600 Technology Park Drive
   Billerica, MA 01821
   US

   EMail: rpenno@nortelnetworks.com

   Andreas Terzis
   Computer Science Department
   Johns Hopkins University
   3400 North Charles Street, 224 NEB
   Baltimore, MD 21218

   Phone: +1 410 516 5847
   EMail: terzis@cs.jhu.edu

Beck, et al.                 Informational                     [Page 12]
RFC 3836        Requirements for OPES Callout Protocols      August 2004

quot;MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

Thomas                       Informational                      [Page 3]
RFC 5016                      DKIM-SSP-REQ                  October 2007

3.  SSP Problem Scenarios

   The email world is a diverse place with many deployment
   considerations.  This section outlines expected usage scenarios where
   DKIM signing/verifying will take place, and how a new protocol might
   help to clarify the relevance of DKIM-signed mail.

3.1.  Problem Scenario 1: Is All Mail Signed with DKIM?

   After auditing their outgoing mail and deploying DKIM signing for all
   of their legitimate outgoing mail, a domain could be said to be DKIM
   signing complete.  That is, the domain has, to the best of its
   ability, ensured that all legitimate mail purporting to have come
   from that domain contains a valid DKIM signature.

   A receiver in the general case doesn't know what the practices are
   for a given domain.  Thus, the receiver is at a disadvantage in not
   knowing whether or not it should expect all mail to be signed from a
   given domain.  This knowledge gap leads to a trivially exploitable
   bid-down attack where the attacker merely sends unsigned mail; since
   the receiver doesn't know the practices of the signing domain, it
   cannot treat the message any more harshly for lack of a valid
   signature.

   An information service that allows a receiver to query for the
   practices and expectations of the first party domain when no valid
   first party signature is found could be useful in closing this gap.
   A receiver could use this information to treat such questionable mail
   with varying degrees of prejudice.

   Note that, for the foreseeable future, unrestricted use patterns of
   mail (e.g., where users may be members of mailing lists, etc.) will
   likely suffer occasional, non-malicious signature failure in transit.
   While probably not a large percentage of total traffic, this kind of
   breakage may be a significant concern for those usage patterns.  This
   scenario defines where the sender cannot set any expectation as to
   whether an individual message will arrive intact.

   Even without that expectation, a receiver may be able to take
   advantage of the knowledge that the domain's practice is to sign all
   mail and bias its filters against unsigned or damaged in transit
   mail.  This information should not be expected to be used in a binary
   yes/no fashion, but instead as a data point among others in a
   filtering system.

Thomas                       Informational                      [Page 4]
RFC 5016                      DKIM-SSP-REQ                  October 2007

   The following exchange illustrates problem scenario 1.

   1.  Mail with a [RFC2822].From domain Alice is sent to domain Bob
       with a missing or broken DKIM first party signature from Alice.

   2.  Domain Bob would like to know whether that is an expected state
       of affairs.

   3.  Domain Alice provides information that it signs all outgoing
       mail, but places no expectation on whether it will arrive with an
       intact first party signature.

   4.  Domain Bob could use this information to bias its filters to
       examine the message with some suspicion.

3.2.  Problem Scenario 2: Illegitimate Domain Name Use

   A class of mail typified by transactional mail from high-value
   domains is currently the target of phishing attacks.  In particular,
   many phishing scams forge the [RFC2822].From address in addition to
   spoofing much of the content to trick unsuspecting users into
   revealing sensitive information.  Domain holders sending this mail
   would like the ability to give an enhanced guarantee that mail sent
   with their domain name should always arrive with the proof that the
   domain holder consented to its transmission.  That is, the message
   should contain a valid first party signature as defined above.

   From a receiver's standpoint, knowing that a domain not only signs
   all of its mail, but places a very high value on the receipt of a
   valid first party signature from that domain is helpful.  Hence, a
   receiver knows that the sending domain signs all its mail, and that
   the sending domain considers mail from this domain particularly
   sensitive in some sense, and is asking the receiver to be more
   suspicious than it otherwise might be of a broken or missing first-
   party signature.  A receiver with the knowledge of the sender's
   expectations in hand might choose to process messages not conforming
   to the published practices in a special manner.  Note that the
   ability to state an enhanced guarantee of a valid signature means
   that senders should expect mail that traverses modifying
   intermediaries (e.g., mailing lists, etc.) will likely be quarantined
   or deleted; thus, this scenario is more narrow than problem scenario
   1.

      Informative Note: a receiving filter may choose to treat scenario
      2 much more harshly than scenario 1; where scenario 1 looks odd,
      scenario 2 looks like something is very wrong.

Thomas                       Informational                      [Page 5]
RFC 5016                      DKIM-SSP-REQ                  October 2007

   1.  Mail with a [RFC2822].From domain Alice is sent to domain Bob
       with a missing or broken first party DKIM signature from domain
       Alice.

   2.  Domain Bob would like to know whether that is an expected state
       of affairs.

   3.  Domain Alice provides information that it signs all outgoing
       mail, and furthermore places an expectation that it should arrive
       with an intact first party signature, and that the receiver
       should be much more wary if it does not.

   4.  Domain Bob could use this information to bias its filters such
       that it examines the message with great suspicion.

4.  SSP Deployment Considerations

   Given the problems enumerated above for which we'd like SSP to
   provide information to recipients, there are a number of scenarios
   that are not related to the problems that are to be solved, per se,
   but the actual mechanics of implementing/deploying the information
   service that SSP would provide.

4.1.  Deployment Consideration 1: Outsourced Signing

   Many domains do not run their own mail infrastructure, or may
   outsource parts of it to third parties.  It is desirable for a domain
   holder to have the ability to delegate to other entities the ability
   to sign for the domain holder.  One obvious use scenario is a domain
   holder from a small domain that needs to have the ability for their
   outgoing ISP to sign all of their mail on behalf of the domain
   holder.  Other use scenarios include outsourced bulk mail for
   marketing campaigns, as well as outsourcing various business
   functions, such as insurance benefits, etc.

4.2.  Deployment Consideration 2: Subdomain Coverage

   An SSP client will perform lookups on incoming mail streams to
   provide the information as proposed in the problem scenarios.  The
   domain part of the first address of the [RFC2822].From will form the
   basis to fetch the published information.  A trivial attack to
   circumvent finding the published information can be mounted by simply
   using a subdomain of the parent domain that doesn't have published
   information.  This attack is called the subdomain attack: that is, a
   domain wants to not only publish a policy for a given DNS label it
   controls, but it would also like to protect all subdomains of that
   label as well.  If this characteristic is not met, an attacker would
   need only create a possibly fictitious subdomain that was not covered

Thomas                       Informational                      [Page 6]
RFC 5016                      DKIM-SSP-REQ                  October 2007

   by the SSP's information service.  Thus, it would be advantageous for
   SSP to not only cover a given domain, but all subdomains of that
   domain as well.

4.3.  Deployment Consideration 3: Resent Original Mail

   Resent mail is a common occurrence in many scenarios in the email
   world of today.  For example, domain Alice sends a DKIM-signed
   message with a published practice of signing all messages to domain
   Bob's mailing list.  Bob, being a good net citizen, wants to be able
   to take his part of the responsibility of the message in question, so
   he DKIM signs the message, perhaps corresponding to the Sender
   address.

   Note that this scenario is completely orthogonal to whether Alice's
   signature survived Bob's mailing list: Bob merely wants to assert his
   part in the chain of accountability for the benefit of the ultimate
   receivers.  It would be useful for this practice to be encouraged as
   it gives a more accurate view of who handled the message.  It also
   has the side benefit that remailers that break DKIM first party
   signatures can be potentially assessed by the receiver based on the
   receiver's opinion of the signing domains that actually survived.

4.4.  Deployment Consideration 4: Incremental Deployment of Signing

   As a practical matter, it may be difficult for a domain to roll out
   DKIM signing such that they can publish the DKIM Signing Complete
   practice given the complexities of the user population, the
   outsourced vendors sending on its behalf, etc.  This leaves open an
   exploit that high-value mail, such as in Problem Scenario 2, must be
   classified to the least common denominator of the published
   practices.  It would be desirable to allow a domain holder to publish
   a list of exceptions that would have a more restrictive practices
   statement.  NB: this consideration has been deemed met by the
   mechanisms provided by the base DKIM signing mechanism; it is merely
   documented here as having been an issue.

   For example, bigbank.example.com might be ready to say that
   statements@bigbank.example.com is always signed, but the rest of the
   domain, say, is not.  Another situation is that the practices of some
   address local parts in a given domain are not the same as practices
   of other local parts.  Using the same example of
   statements@bigbank.example.com being a transactional kind of email
   that would like to publish very strong practices, mixed in with the
   rest of the user population local parts, which may go through mailing
   lists, etc., for which a less strong statement is appropriate.

Thomas                       Informational                      [Page 7]
RFC 5016                      DKIM-SSP-REQ                  October 2007

   It should be said that DKIM, through the use of subdomains, can
   already support this kind of differentiation.  That is, in order to
   publish a strong practice, one only has to segregate those cases into
   different subdomains.  For example: accounts.bigbank.example.com
   would publish constrained practices, while
   corporateusers.bigbank.example.com might publish more permissive
   practices.

4.5.  Deployment Consideration 5: Performance and Caching

   Email service provides an any-any mesh of potential connections: all
   that is required is the publication of an MX record and an SMTP
   listener to receive mail.  Thus, the use of SSP is likely to fall
   into two main scenarios, the first of which are large, well-known
   domains that are in constant contact with one another.  In this case,
   caching of records is essential for performance, including the
   caching of the non-existence of records (i.e., negative caching).

   The second main scenario is when a domain exchanges mail with a much
   smaller volume domain.  This scenario can be both perfectly normal as
   with the case of vanity domains, and unfortunately, a vector for
   those sending mail for anti-social reasons.  In this case, we'd like
   the message exchange burden to SSP querier to be low, since many of
   the lookups will not provide a useful answer.  Likewise, it would be
   advantageous to have upstream caching here as well so that, say, a
   mailing list exploder on a small domain does not result in an
   explosion of queries back at the root and authoritative server for
   the small domain.

4.6.  Deployment Consideration 6: Human Legibility of Practices

   While SSP records are likely to be primarily consumed by an
   automaton, for the foreseeable future they are also likely to be
   inspected by hand.  It would be nice to have the practices stated in
   a fashion that is also intuitive to the human inspectors.

4.7.  Deployment Consideration 7: Extensibility

   While this document pertains only to requirements surrounding DKIM
   signing practices, it would be beneficial for the protocol to be able
   to extend to other protocols.

4.8.  Deployment Consideration 8: Security

   SSP must be able to withstand life in a hostile, open-Internet
   environment.  These include DoS attacks, and especially DoS attacks
   that leverage themselves through amplification inherent in the
   protocol.  In addition, while a useful protocol may be built without

Thomas                       Informational                      [Page 8]10.  Full Copyright Statement

   Copyright (C) The Internet Society (2004).  This document is subject
   to the rights, licenses and restrictions contained in BCP 78, and
   except as set forth therein, the authors retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

Beck, et al.                 Informational                     [Page 13]