Observations on the Management of the Internet Address Space
RFC 1744
|
Document |
Type |
|
RFC - Informational
(December 1994; No errata)
|
|
Author |
|
Geoff Huston
|
|
Last updated |
|
2013-03-02
|
|
Stream |
|
Legacy
|
|
Formats |
|
plain text
html
pdf
htmlized
bibtex
|
Stream |
Legacy state
|
|
(None)
|
|
Consensus Boilerplate |
|
Unknown
|
|
RFC Editor Note |
|
(None)
|
IESG |
IESG state |
|
RFC 1744 (Informational)
|
|
Telechat date |
|
|
|
Responsible AD |
|
(None)
|
|
Send notices to |
|
(None)
|
Network Working Group G. Huston
Request for Comments: 1744 AARNet
Category: Informational December 1994
Observations on the Management of
the Internet Address Space
Status of this Memo
This memo provides information for the Internet community. This memo
does not specify an Internet standard of any kind. Distribution of
this memo is unlimited.
Abstract
This memo examines some of the issues associated with the current
management practices of the Internet IPv4 address space, and examines
the potential outcomes of these practices as the unallocated address
pool shrinks in size. Possible modifications to the management
practices are examined, and potential outcomes considered. Some
general conclusions are drawn, and the relevance of these conclusions
to the matter of formulation of address management policies for IPv6
are noted.
1. Introduction
The area explicitly examined here is the allocatable globally unique
IPv4 address space. Explicitly this includes those address groups
uniquely assigned from a single comprehensive address pool to
specific entities which are then at liberty to assign individual
address values within the address group to individual hosts. The
address group is handled by the technology as a single network
entity.
At present these addresses are allocated to entities on a freely
available, first-come, first-served allocation basis, within the
scope of a number of administrative grounds which attempt to direct
the allocation process to result in rational use of the space, and
attempt to achieve a result of a level of equity of availability that
is expressed in a sense of multi-national "regions" [1].
In examining the current management policies in further detail it is
useful to note that the IPv4 address space presents a number of
attributes in common with other public space resources, and there are
parallels in an economic analysis of this resource which include:
Huston [Page 1]
RFC 1744 Management of Internet Address Space December 1994
- the finite nature of the resource
This attribute is a consequence of the underlying technology
which has defined addressed entities in terms of a 32 bit address
value. The total pool is composed of 2**32 distinct values (not
all of which are assignable to end systems).
- the address space has considerable market value
This valuation is a consequence of the availability and extensive
deployment of the underlying Internet technology that allows
uniquely addressed entities the capability to conduct direct end-
to-end transactions with peer entities via the Internet. The
parameters of this valuation are also influenced by considerations
of efficiency of use of the allocated space, availability of end
system based internet technologies, the availability of Internet-
based service providers and the resultant Internet market size.
- address space management is a necessary activity
Management processes are requires to ensure unique allocation and
fair access to the resource, as well as the activity of continuing
maintenance of allocation record databases.
Increasing rates of Internet address allocation in recent years imply
that the IPv4 address space is now a visibly finite resource, and
current projections, assuming a continuation of existing demand for
addresses predict unallocated address space exhaustion in the next 6
- 12 years (rephrasing current interim projections from the IETF
Address Lifetime Expectancy Working Group). There are two derivative
questions that arise from this prediction. Firstly what is the
likely outcome of unallocated address space exhaustion if it does
occur, and secondly, are there corrective processes that may be
applied to the current address management mechanisms that could allow
both more equitable allocation and potentially extend the lifetime of
the unallocated address space pool. These two issues are considered
in the following sections.
2. Outcomes of Unallocated Address Space Exhaustion - No change in
current Address Management Policies
As the pool of available addresses for allocation depletes, the
initial anticipated outcome will be the inability of the available
address pool to service large block address allocation requests.
Such requests have already been phrased from various utility
operators, and the demand for very large address blocks is likely to
be a continuing feature of address pool management. It is noted that
the overall majority of the allocated address space is very
Huston [Page 2]
Show full document text