Critical issues in high bandwidth networking
RFC 1077
|
Document |
Type |
|
RFC - Unknown
(November 1988; No errata)
|
|
Authors |
|
|
|
Last updated |
|
2013-03-02
|
|
Stream |
|
Legacy
|
|
Formats |
|
plain text
html
pdf
htmlized
bibtex
|
Stream |
Legacy state
|
|
(None)
|
|
Consensus Boilerplate |
|
Unknown
|
|
RFC Editor Note |
|
(None)
|
IESG |
IESG state |
|
RFC 1077 (Unknown)
|
|
Telechat date |
|
|
|
Responsible AD |
|
(None)
|
|
Send notices to |
|
(None)
|
Network Working Group Gigabit Working Group
Request for Comments: 1077 B. Leiner, Editor
November 1988
Critical Issues in High Bandwidth Networking
Status of this Memo
This memo presents the results of a working group on High Bandwidth
Networking. This RFC is for your information and you are encouraged
to comment on the issues presented. Distribution of this memo is
unlimited.
ABSTRACT
At the request of Maj. Mark Pullen and Maj. Brian Boesch of DARPA, an
ad-hoc working group was assembled to develop a set of
recommendations on the research required to achieve a ubiquitous
high-bandwidth network as discussed in the FCCSET recommendations for
Phase III.
This report outlines a set of research topics aimed at providing the
technology base for an interconnected set of networks that can
provide highbandwidth capabilities. The suggested research focus
draws upon ongoing research and augments it with basic and applied
components. The major activities are the development and
demonstration of a gigabit backbone network, the development and
demonstration of an interconnected set of networks with gigabit
throughput and appropriate management techniques, and the development
and demonstration of the required overall architecture that allows
users to gain access to such high bandwidth.
Gigabit Working Group [Page 1]
RFC 1077 November 1988
1. Introduction and Summary
1.1. Background
The computer communications world is evolving toward both high-
bandwidth capability and high-bandwidth requirements. The recent
workshop conducted under the auspices of the FCCSET Committee on High
Performance Computing [1] identified a number of areas where
extremely high-bandwidth networking is required to support the
scientific research community. These areas range from remote
graphical visualization of supercomputer results through the movement
of high rate sensor data from space to the ground-based scientific
investigator. Similar requirements exist for other applications,
such as military command and control (C2) where there is a need to
quickly access and act on data obtained from real-time sensors. The
workshop identified requirements for switched high-bandwidth service
in excess of 300 Mbit/s to a single user, and the need to support
service in the range of a Mbit/s on a low-duty-cycle basis to
millions of researchers. When added to the needs of the military and
commercial users, the aggregate requirement for communications
service adds up to many billions of bits per second. The results of
this workshop were incorporated into a report by the FCCSET [2].
Fortunately, technology is also moving rapidly. Even today, the
installed base of fiber optics communications allows us to consider
aggregate bandwidths in the range of Gbit/s and beyond to limited
geographical regions. Estimates arrived at in the workshop lead one
to believe that there will be available raw bandwidth approaching
terabits per second.
The critical question to be addressed is how this raw bandwidth can
be used to satisfy the requirements identified in the workshop: 1)
provide bandwidth on the order of several Gbit/s to individual users,
and 2) provide modest bandwidth on the order of several Mbit/s to a
large number of users in a cost-effective manner through the
aggregation of their traffic.
Through its research funding, the Defense Advanced Research Projects
Agency (DARPA) has played a central role in the development of
packet-oriented communications, which has been of tremendous benefit
to the U.S. military in terms of survivability and interoperability.
DARPA-funded research has resulted in the ARPANET, the first packet-
switched network; the SATNET, MATNET and Wideband Network, which
demonstrated the efficient utilization of shared-access satellite
channels for communications between geographically diverse sites;
Gigabit Working Group [Page 2]
RFC 1077 November 1988
packet radio networks for mobile tactical environments; the Internet
and TCP/IP protocols for interconnection and interoperability between
heterogeneous networks and computer systems; the development of
electronic mail; and many advances in the areas of network security,
privacy, authentication and access control for distributed computing
environments. Recognizing DARPA's past accomplishments and its
desire to continue to take a leading role in addressing these issues,
this document provides a recommendation for research topics in
gigabit networking. It is meant to be an organized compendium of the
Show full document text