Skip to main content

DualQ Coupled AQMs for Low Latency, Low Loss and Scalable Throughput (L4S)
draft-ietf-tsvwg-aqm-dualq-coupled-15

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 9332.
Authors Koen De Schepper , Bob Briscoe , Greg White
Last updated 2021-05-23
Replaces draft-briscoe-tsvwg-aqm-dualq-coupled
RFC stream Internet Engineering Task Force (IETF)
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state WG Document
Document shepherd Wesley Eddy
Shepherd write-up Show Last changed 2020-04-21
IESG IESG state Became RFC 9332 (Experimental)
Consensus boilerplate Unknown
Telechat date (None)
Responsible AD (None)
Send notices to Wesley Eddy <wes@mti-systems.com>
draft-ietf-tsvwg-aqm-dualq-coupled-15
#x27; includes cases where a flow becomes
   temporarily unresponsive, for instance, a real-time flow that takes a
   while to adapt its rate in response to congestion, or a standard Reno
   flow that is normally responsive, but above a certain congestion
   level it will not be able to reduce its congestion window below the
   allowed minimum of 2 segments [RFC5681], effectively becoming
   unresponsive.  (Note that L4S traffic ought to remain responsive
   below a window of 2 segments (see [I-D.ietf-tsvwg-ecn-l4s-id]).

   Saturation raises the question of whether to relieve congestion by
   introducing some drop into the L4S queue or by allowing delay to grow
   in both queues (which could eventually lead to tail drop too):

   Drop on Saturation:  Saturation can be avoided by setting a maximum
      threshold for L4S ECN marking (assuming k>1) before saturation
      starts to make the flow rates of the different traffic types
      diverge.  Above that the drop probability of Classic traffic is
      applied to all packets of all traffic types.  Then experiments
      have shown that queueing delay can be kept at the target in any
      overload situation, including with unresponsive traffic, and no
      further measures are required [DualQ-Test].

De Schepper, et al.     Expires November 22, 2021              [Page 23]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   Delay on Saturation:  When L4S marking saturates, instead of
      switching to drop, the drop and marking probabilities could be
      capped.  Beyond that, delay will grow either solely in the queue
      with unresponsive traffic (if WRR is used), or in both queues (if
      time-shifted FIFO is used).  In either case, the higher delay
      ought to control temporary high congestion.  If the overload is
      more persistent, eventually the combined DualQ will overflow and
      tail drop will control congestion.

   The example implementation in Appendix A solely applies the "drop on
   saturation" policy.  The DOCSIS specification of a DualQ Coupled
   AQM [DOCSIS3.1] also implements the 'drop on saturation' policy with
   a very shallow L buffer.  However, the addition of DOCSIS per-flow
   Queue Protection [I-D.briscoe-docsis-q-protection] turns this into
   'delay on saturation' by redirecting some packets of the flow(s) most
   responsible for L queue overload into the C queue, which has a higher
   delay target.  If overload continues, this again becomes 'drop on
   saturation' as the level of drop in the C queue rises to maintain the
   target delay of the C queue.

4.1.3.  Protecting against Unresponsive ECN-Capable Traffic

   Unresponsive traffic has a greater advantage if it is also ECN-
   capable.  The advantage is undetectable at normal low levels of drop/
   marking, but it becomes significant with the higher levels of drop/
   marking typical during overload.  This is an issue whether the ECN-
   capable traffic is L4S or Classic.

   This raises the question of whether and when to switch off ECN
   marking and use solely drop instead, as required by both Section 7 of
   [RFC3168] and Section 4.2.1 of [RFC7567].

   Experiments with the DualPI2 AQM (Appendix A) have shown that
   introducing 'drop on saturation' at 100% L4S marking addresses this
   problem with unresponsive ECN as well as addressing the saturation
   problem.  It leaves only a small range of congestion levels where
   unresponsive traffic gains any advantage from using the ECN
   capability, and the advantage is hardly detectable [DualQ-Test].

5.  Acknowledgements

   Thanks to Anil Agarwal, Sowmini Varadhan's, Gabi Bracha, Nicolas
   Kuhn, Greg Skinner, Tom Henderson and David Pullen for detailed
   review comments particularly of the appendices and suggestions on how
   to make the explanations clearer.  Thanks also to Tom Henderson for
   insights on the choice of schedulers and queue delay measurement
   techniques.

De Schepper, et al.     Expires November 22, 2021              [Page 24]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   The early contributions of Koen De Schepper, Bob Briscoe, Olga
   Bondarenko and Inton Tsang were part-funded by the European Community
   under its Seventh Framework Programme through the Reducing Internet
   Transport Latency (RITE) project (ICT-317700).  Bob Briscoe's
   contribution was also part-funded by the Comcast Innovation Fund and
   the Research Council of Norway through the TimeIn project.  The views
   expressed here are solely those of the authors.

6.  Contributors

   The following contributed implementations and evaluations that
   validated and helped to improve this specification:

      Olga Albisser <olga@albisser.org> of Simula Research Lab, Norway
      (Olga Bondarenko during early drafts) implemented the prototype
      DualPI2 AQM for Linux with Koen De Schepper and conducted
      extensive evaluations as well as implementing the live performance
      visualization GUI [L4Sdemo16].

      Olivier Tilmans <olivier.tilmans@nokia-bell-labs.com> of Nokia
      Bell Labs, Belgium prepared and maintains the Linux implementation
      of DualPI2 for upstreaming.

      Shravya K.S. wrote a model for the ns-3 simulator based on the -01
      version of this Internet-Draft.  Based on this initial work, Tom
      Henderson <tomh@tomh.org> updated that earlier model and created a
      model for the DualQ variant specified as part of the Low Latency
      DOCSIS specification, as well as conducting extensive evaluations.

      Ing Jyh (Inton) Tsang of Nokia, Belgium built the End-to-End Data
      Centre to the Home broadband testbed on which DualQ Coupled AQM
      implementations were tested.

7.  References

7.1.  Normative References

   [I-D.ietf-tsvwg-ecn-l4s-id]
              Schepper, K. D. and B. Briscoe, "Explicit Congestion
              Notification (ECN) Protocol for Ultra-Low Queuing Delay
              (L4S)", draft-ietf-tsvwg-ecn-l4s-id-14 (work in progress),
              March 2021.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

De Schepper, et al.     Expires November 22, 2021              [Page 25]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   [RFC3168]  Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
              of Explicit Congestion Notification (ECN) to IP",
              RFC 3168, DOI 10.17487/RFC3168, September 2001,
              <https://www.rfc-editor.org/info/rfc3168>.

   [RFC8311]  Black, D., "Relaxing Restrictions on Explicit Congestion
              Notification (ECN) Experimentation", RFC 8311,
              DOI 10.17487/RFC8311, January 2018,
              <https://www.rfc-editor.org/info/rfc8311>.

7.2.  Informative References

   [Alizadeh-stability]
              Alizadeh, M., Javanmard, A., and B. Prabhakar, "Analysis
              of DCTCP: Stability, Convergence, and Fairness", ACM
              SIGMETRICS 2011 , June 2011,
              <https://dl.acm.org/citation.cfm?id=1993753>.

   [AQMmetrics]
              Kwon, M. and S. Fahmy, "A Comparison of Load-based and
              Queue- based Active Queue Management Algorithms", Proc.
              Int'l Soc. for Optical Engineering (SPIE) 4866:35--46 DOI:
              10.1117/12.473021, 2002,
              <https://www.cs.purdue.edu/homes/fahmy/papers/ldc.pdf>.

   [ARED01]   Floyd, S., Gummadi, R., and S. Shenker, "Adaptive RED: An
              Algorithm for Increasing the Robustness of RED's Active
              Queue Management", ACIRI Technical Report , August 2001,
              <http://www.icir.org/floyd/red.html>.

   [BBRv1]    Cardwell, N., Cheng, Y., Hassas Yeganeh, S., and V.
              Jacobson, "BBR Congestion Control", Internet Draft draft-
              cardwell-iccrg-bbr-congestion-control-00, July 2017,
              <https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-
              congestion-control-00>.

   [CoDel]    Nichols, K. and V. Jacobson, "Controlling Queue Delay",
              ACM Queue 10(5), May 2012,
              <http://queue.acm.org/issuedetail.cfm?issue=2208917>.

   [CRED_Insights]
              Briscoe, B., "Insights from Curvy RED (Random Early
              Detection)", BT Technical Report TR-TUB8-2015-003
              arXiv:1904.07339 [cs.NI], July 2015,
              <https://arxiv.org/abs/1904.07339>.

De Schepper, et al.     Expires November 22, 2021              [Page 26]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   [DCttH15]  De Schepper, K., Bondarenko, O., Briscoe, B., and I.
              Tsang, "`Data Centre to the Home': Ultra-Low Latency for
              All", RITE project Technical Report , 2015,
              <http://riteproject.eu/publications/>.

   [DOCSIS3.1]
              CableLabs, "MAC and Upper Layer Protocols Interface
              (MULPI) Specification, CM-SP-MULPIv3.1", Data-Over-Cable
              Service Interface Specifications DOCSIS(R) 3.1 Version i17
              or later, January 2019, <https://specification-
              search.cablelabs.com/CM-SP-MULPIv3.1>.

   [DualPI2Linux]
              Albisser, O., De Schepper, K., Briscoe, B., Tilmans, O.,
              and H. Steen, "DUALPI2 - Low Latency, Low Loss and
              Scalable (L4S) AQM", Proc. Linux Netdev 0x13 , March 2019,
              <https://www.netdevconf.org/0x13/session.html?talk-
              DUALPI2-AQM>.

   [DualQ-Test]
              Steen, H., "Destruction Testing: Ultra-Low Delay using
              Dual Queue Coupled Active Queue Management", Masters
              Thesis, Dept of Informatics, Uni Oslo , May 2017.

   [I-D.briscoe-docsis-q-protection]
              Briscoe, B. and G. White, "Queue Protection to Preserve
              Low Latency", draft-briscoe-docsis-q-protection-00 (work
              in progress), July 2019.

   [I-D.briscoe-tsvwg-l4s-diffserv]
              Briscoe, B., "Interactions between Low Latency, Low Loss,
              Scalable Throughput (L4S) and Differentiated Services",
              draft-briscoe-tsvwg-l4s-diffserv-02 (work in progress),
              November 2018.

   [I-D.cardwell-iccrg-bbr-congestion-control]
              Cardwell, N., Cheng, Y., Yeganeh, S. H., and V. Jacobson,
              "BBR Congestion Control", draft-cardwell-iccrg-bbr-
              congestion-control-00 (work in progress), July 2017.

   [I-D.ietf-tsvwg-l4s-arch]
              Briscoe, B., Schepper, K. D., Bagnulo, M., and G. White,
              "Low Latency, Low Loss, Scalable Throughput (L4S) Internet
              Service: Architecture", draft-ietf-tsvwg-l4s-arch-08 (work
              in progress), November 2020.

De Schepper, et al.     Expires November 22, 2021              [Page 27]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   [I-D.ietf-tsvwg-nqb]
              White, G. and T. Fossati, "A Non-Queue-Building Per-Hop
              Behavior (NQB PHB) for Differentiated Services", draft-
              ietf-tsvwg-nqb-05 (work in progress), March 2021.

   [L4Sdemo16]
              Bondarenko, O., De Schepper, K., Tsang, I., and B.
              Briscoe, "Ultra-Low Delay for All: Live Experience, Live
              Analysis", Proc. MMSYS'16 pp33:1--33:4, May 2016,
              <http://dl.acm.org/citation.cfm?doid=2910017.2910633
              (videos of demos:
              https://riteproject.eu/dctth/#1511dispatchwg )>.

   [LLD]      White, G., Sundaresan, K., and B. Briscoe, "Low Latency
              DOCSIS: Technology Overview", CableLabs White Paper ,
              February 2019, <https://cablela.bs/low-latency-docsis-
              technology-overview-february-2019>.

   [Mathis09]
              Mathis, M., "Relentless Congestion Control", PFLDNeT'09 ,
              May 2009, <http://www.hpcc.jp/pfldnet2009/
              Program_files/1569198525.pdf>.

   [MEDF]     Menth, M., Schmid, M., Heiss, H., and T. Reim, "MEDF - a
              simple scheduling algorithm for two real-time transport
              service classes with application in the UTRAN", Proc. IEEE
              Conference on Computer Communications (INFOCOM'03) Vol.2
              pp.1116-1122, March 2003.

   [PI2]      De Schepper, K., Bondarenko, O., Briscoe, B., and I.
              Tsang, "PI2: A Linearized AQM for both Classic and
              Scalable TCP", ACM CoNEXT'16 , December 2016,
              <https://riteproject.files.wordpress.com/2015/10/
              pi2_conext.pdf>.

   [PragueLinux]
              Briscoe, B., De Schepper, K., Albisser, O., Misund, J.,
              Tilmans, O., Kuehlewind, M., and A. Ahmed, "Implementing
              the `TCP Prague' Requirements for Low Latency Low Loss
              Scalable Throughput (L4S)", Proc. Linux Netdev 0x13 ,
              March 2019, <https://www.netdevconf.org/0x13/
              session.html?talk-tcp-prague-l4s>.

   [RFC0970]  Nagle, J., "On Packet Switches With Infinite Storage",
              RFC 970, DOI 10.17487/RFC0970, December 1985,
              <https://www.rfc-editor.org/info/rfc970>.

De Schepper, et al.     Expires November 22, 2021              [Page 28]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   [RFC2309]  Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering,
              S., Estrin, D., Floyd, S., Jacobson, V., Minshall, G.,
              Partridge, C., Peterson, L., Ramakrishnan, K., Shenker,
              S., Wroclawski, J., and L. Zhang, "Recommendations on
              Queue Management and Congestion Avoidance in the
              Internet", RFC 2309, DOI 10.17487/RFC2309, April 1998,
              <https://www.rfc-editor.org/info/rfc2309>.

   [RFC3246]  Davie, B., Charny, A., Bennet, J., Benson, K., Le Boudec,
              J., Courtney, W., Davari, S., Firoiu, V., and D.
              Stiliadis, "An Expedited Forwarding PHB (Per-Hop
              Behavior)", RFC 3246, DOI 10.17487/RFC3246, March 2002,
              <https://www.rfc-editor.org/info/rfc3246>.

   [RFC3649]  Floyd, S., "HighSpeed TCP for Large Congestion Windows",
              RFC 3649, DOI 10.17487/RFC3649, December 2003,
              <https://www.rfc-editor.org/info/rfc3649>.

   [RFC5033]  Floyd, S. and M. Allman, "Specifying New Congestion
              Control Algorithms", BCP 133, RFC 5033,
              DOI 10.17487/RFC5033, August 2007,
              <https://www.rfc-editor.org/info/rfc5033>.

   [RFC5348]  Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
              Friendly Rate Control (TFRC): Protocol Specification",
              RFC 5348, DOI 10.17487/RFC5348, September 2008,
              <https://www.rfc-editor.org/info/rfc5348>.

   [RFC5681]  Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
              Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
              <https://www.rfc-editor.org/info/rfc5681>.

   [RFC5706]  Harrington, D., "Guidelines for Considering Operations and
              Management of New Protocols and Protocol Extensions",
              RFC 5706, DOI 10.17487/RFC5706, November 2009,
              <https://www.rfc-editor.org/info/rfc5706>.

   [RFC7567]  Baker, F., Ed. and G. Fairhurst, Ed., "IETF
              Recommendations Regarding Active Queue Management",
              BCP 197, RFC 7567, DOI 10.17487/RFC7567, July 2015,
              <https://www.rfc-editor.org/info/rfc7567>.

   [RFC8033]  Pan, R., Natarajan, P., Baker, F., and G. White,
              "Proportional Integral Controller Enhanced (PIE): A
              Lightweight Control Scheme to Address the Bufferbloat
              Problem", RFC 8033, DOI 10.17487/RFC8033, February 2017,
              <https://www.rfc-editor.org/info/rfc8033>.

De Schepper, et al.     Expires November 22, 2021              [Page 29]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   [RFC8034]  White, G. and R. Pan, "Active Queue Management (AQM) Based
              on Proportional Integral Controller Enhanced PIE) for
              Data-Over-Cable Service Interface Specifications (DOCSIS)
              Cable Modems", RFC 8034, DOI 10.17487/RFC8034, February
              2017, <https://www.rfc-editor.org/info/rfc8034>.

   [RFC8257]  Bensley, S., Thaler, D., Balasubramanian, P., Eggert, L.,
              and G. Judd, "Data Center TCP (DCTCP): TCP Congestion
              Control for Data Centers", RFC 8257, DOI 10.17487/RFC8257,
              October 2017, <https://www.rfc-editor.org/info/rfc8257>.

   [RFC8290]  Hoeiland-Joergensen, T., McKenney, P., Taht, D., Gettys,
              J., and E. Dumazet, "The Flow Queue CoDel Packet Scheduler
              and Active Queue Management Algorithm", RFC 8290,
              DOI 10.17487/RFC8290, January 2018,
              <https://www.rfc-editor.org/info/rfc8290>.

   [RFC8298]  Johansson, I. and Z. Sarker, "Self-Clocked Rate Adaptation
              for Multimedia", RFC 8298, DOI 10.17487/RFC8298, December
              2017, <https://www.rfc-editor.org/info/rfc8298>.

   [RFC8312]  Rhee, I., Xu, L., Ha, S., Zimmermann, A., Eggert, L., and
              R. Scheffenegger, "CUBIC for Fast Long-Distance Networks",
              RFC 8312, DOI 10.17487/RFC8312, February 2018,
              <https://www.rfc-editor.org/info/rfc8312>.

   [SigQ-Dyn]
              Briscoe, B., "Rapid Signalling of Queue Dynamics",
              Technical Report TR-BB-2017-001 arXiv:1904.07044 [cs.NI],
              September 2017, <https://arxiv.org/abs/1904.07044>.

Appendix A.  Example DualQ Coupled PI2 Algorithm

   As a first concrete example, the pseudocode below gives the DualPI2
   algorithm.  DualPI2 follows the structure of the DualQ Coupled AQM
   framework in Figure 1.  A simple ramp function (configured in units
   of queuing time) with unsmoothed ECN marking is used for the Native
   L4S AQM.  The ramp can also be configured as a step function.  The
   PI2 algorithm [PI2] is used for the Classic AQM.  PI2 is an improved
   variant of the PIE AQM [RFC8033].

   The pseudocode will be introduced in two passes.  The first pass
   explains the core concepts, deferring handling of overload to the
   second pass.  To aid comparison, line numbers are kept in step
   between the two passes by using letter suffixes where the longer code
   needs extra lines.

De Schepper, et al.     Expires November 22, 2021              [Page 30]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   All variables are assumed to be floating point in their basic units
   (size in bytes, time in seconds, rates in bytes/second, alpha and
   beta in Hz, and probabilities from 0 to 1.  Constants expressed in k
   (kilo), M (mega), G (giga), u (micro), m (milli) , %, ... are assumed
   to be converted to their appropriate multiple or fraction to
   represent the basic units.  A real implementation that wants to use
   integer values needs to handle appropriate scaling factors and allow
   accordingly appropriate resolution of its integer types (including
   temporary internal values during calculations).

   A full open source implementation for Linux is available at:
   https://github.com/L4STeam/sch_dualpi2_upstream and explained in
   [DualPI2Linux].  The specification of the DualQ Coupled AQM for
   DOCSIS cable modems and CMTSs is available in [DOCSIS3.1] and
   explained in [LLD].

A.1.  Pass #1: Core Concepts

   The pseudocode manipulates three main structures of variables: the
   packet (pkt), the L4S queue (lq) and the Classic queue (cq).  The
   pseudocode consists of the following six functions:

   o  The initialization function dualpi2_params_init(...) (Figure 2)
      that sets parameter defaults (the API for setting non-default
      values is omitted for brevity)

   o  The enqueue function dualpi2_enqueue(lq, cq, pkt) (Figure 3)

   o  The dequeue function dualpi2_dequeue(lq, cq, pkt) (Figure 4)

   o  The recurrence function recur(q, likelihood) for de-randomized ECN
      marking (shown at the end of Figure 4).

   o  The L4S AQM function laqm(qdelay) (Figure 5) used to calculate the
      ECN-marking probability for the L4S queue

   o  The base AQM function that implements the PI algorithm
      dualpi2_update(lq, cq) (Figure 6) used to regularly update the
      base probability (p'), which is squared for the Classic AQM as
      well as being coupled across to the L4S queue.

   It also uses the following functions that are not shown in full here:

   o  scheduler(), which selects between the head packets of the two
      queues; the choice of scheduler technology is discussed later;

   o  cq.len() or lq.len() returns the current length (aka. backlog) of
      the relevant queue in bytes;

De Schepper, et al.     Expires November 22, 2021              [Page 31]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   o  cq.time() or lq.time() returns the current queuing delay
      (aka. sojourn time or service time) of the relevant queue in units
      of time (see Note a);

   o  mark(pkt) and drop(pkt) for ECN-marking and dropping a packet;

   In experiments so far (building on experiments with PIE) on broadband
   access links ranging from 4 Mb/s to 200 Mb/s with base RTTs from 5 ms
   to 100 ms, DualPI2 achieves good results with the default parameters
   in Figure 2.  The parameters are categorised by whether they relate
   to the Base PI2 AQM, the L4S AQM or the framework coupling them
   together.  Constants and variables derived from these parameters are
   also included at the end of each category.  Each parameter is
   explained as it is encountered in the walk-through of the pseudocode
   below.

   1:  dualpi2_params_init(...) {         % Set input parameter defaults
   2:    % DualQ Coupled framework parameters
   5:    limit = MAX_LINK_RATE * 250 ms               % Dual buffer size
   3:    k = 2                                         % Coupling factor
   4:    % NOT SHOWN % scheduler-dependent weight or equival't parameter
   6:
   7:    % PI2 AQM parameters
   8:    RTT_max = 100 ms                      % Worst case RTT expected
   9:    RTT_typ = 15 ms                                   % Typical RTT
   11:   % PI2 constants derived from above PI2 parameters
   10:   p_Cmax = min(1/k^2, 1)             % Max Classic drop/mark prob
   12:   target = RTT_typ            % PI AQM Classic queue delay target
   13:   Tupdate = min(RTT_typ, RTT_max/3)        % PI sampling interval
   14:   alpha = 0.1 * Tupdate / RTT_max^2      % PI integral gain in Hz
   15:   beta = 0.3 / RTT_max               % PI proportional gain in Hz
   16:
   17:   % L4S ramp AQM parameters
   18:   minTh = 800 us        % L4S min marking threshold in time units
   19:   range = 400 us                % Range of L4S ramp in time units
   20:   Th_len = 2 * MTU           % Min L4S marking threshold in bytes
   21:   % L4S constants incl. those derived from other parameters
   22:   p_Lmax = 1                               % Max L4S marking prob
   23:   floor = Th_len / MIN_LINK_RATE
   24:   if (minTh < floor) {
   25:     % Shift ramp so minTh >= serialization time of 2 MTU
   26:     minTh = floor
   27:   }
   28:   maxTh = minTh+range   % L4S max marking threshold in time units
   29: }

       Figure 2: Example Header Pseudocode for DualQ Coupled PI2 AQM

De Schepper, et al.     Expires November 22, 2021              [Page 32]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   The overall goal of the code is to maintain the base probability (p',
   p-prime as in Section 2.4), which is an internal variable from which
   the marking and dropping probabilities for L4S and Classic traffic
   (p_L and p_C) are derived, with p_L in turn being derived from p_CL.
   The probabilities p_CL and p_C are derived in lines 4 and 5 of the
   dualpi2_update() function (Figure 6) then used in the
   dualpi2_dequeue() function where p_L is also derived from p_CL at
   line 6 (Figure 4).  The code walk-through below builds up to
   explaining that part of the code eventually, but it starts from
   packet arrival.

   1:  dualpi2_enqueue(lq, cq, pkt) { % Test limit and classify lq or cq
   2:    if ( lq.len() + cq.len() + MTU > limit)
   3:      drop(pkt)                     % drop packet if buffer is full
   4:    timestamp(pkt)                  % attach arrival time to packet
   5:    % Packet classifier
   6:    if ( ecn(pkt) modulo 2 == 1 )         % ECN bits = ECT(1) or CE
   7:      lq.enqueue(pkt)
   8:    else                             % ECN bits = not-ECT or ECT(0)
   9:      cq.enqueue(pkt)
   10: }

      Figure 3: Example Enqueue Pseudocode for DualQ Coupled PI2 AQM

De Schepper, et al.     Expires November 22, 2021              [Page 33]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   1:  dualpi2_dequeue(lq, cq, pkt) {     % Couples L4S & Classic queues
   2:    while ( lq.len() + cq.len() > 0 ) {
   3:      if ( scheduler() == lq ) {
   4:        lq.dequeue(pkt)                      % Scheduler chooses lq
   5:        p'_L = laqm(lq.time())                     % Native L4S AQM
   6:        p_L = max(p'_L, p_CL)                  % Combining function
   7:        if ( recur(lq, p_L) )                      % Linear marking
   8:          mark(pkt)
   9:      } else {
   10:       cq.dequeue(pkt)                      % Scheduler chooses cq
   11:       if ( recur(cq, p_C) ) {            % probability p_C = p'^2
   12:         if ( ecn(pkt) == 0 ) {           % if ECN field = not-ECT
   13:           drop(pkt)                                % squared drop
   14:           continue        % continue to the top of the while loop
   15:         }
   16:         mark(pkt)                                  % squared mark
   17:       }
   18:     }
   19:     return(pkt)                      % return the packet and stop
   20:   }
   21:   return(NULL)                             % no packet to dequeue
   22: }

   23: recur(q, likelihood) {   % Returns TRUE with a certain likelihood
   24:   q.count += likelihood
   25:   if (q.count > 1) {
   26:     q.count -= 1
   27:     return TRUE
   28:   }
   29:   return FALSE
   30: }

      Figure 4: Example Dequeue Pseudocode for DualQ Coupled PI2 AQM

   When packets arrive, first a common queue limit is checked as shown
   in line 2 of the enqueuing pseudocode in Figure 3.  This assumes a
   shared buffer for the two queues (Note b discusses the merits of
   separate buffers).  In order to avoid any bias against larger
   packets, 1 MTU of space is always allowed and the limit is
   deliberately tested before enqueue.

   If limit is not exceeded, the packet is timestamped in line 4.  This
   assumes that queue delay is measured using the sojourn time technique
   (see Note a for alternatives).

   At lines 5-9, the packet is classified and enqueued to the Classic or
   L4S queue dependent on the least significant bit of the ECN field in
   the IP header (line 6).  Packets with a codepoint having an LSB of 0

De Schepper, et al.     Expires November 22, 2021              [Page 34]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   (Not-ECT and ECT(0)) will be enqueued in the Classic queue.
   Otherwise, ECT(1) and CE packets will be enqueued in the L4S queue.
   Optional additional packet classification flexibility is omitted for
   brevity (see [I-D.ietf-tsvwg-ecn-l4s-id]).

   The dequeue pseudocode (Figure 4) is repeatedly called whenever the
   lower layer is ready to forward a packet.  It schedules one packet
   for dequeuing (or zero if the queue is empty) then returns control to
   the caller, so that it does not block while that packet is being
   forwarded.  While making this dequeue decision, it also makes the
   necessary AQM decisions on dropping or marking.  The alternative of
   applying the AQMs at enqueue would shift some processing from the
   critical time when each packet is dequeued.  However, it would also
   add a whole queue of delay to the control signals, making the control
   loop sloppier (for a typical RTT it would double the Classic queue's
   feedback delay).

   All the dequeue code is contained within a large while loop so that
   if it decides to drop a packet, it will continue until it selects a
   packet to schedule.  Line 3 of the dequeue pseudocode is where the
   scheduler chooses between the L4S queue (lq) and the Classic queue
   (cq).  Detailed implementation of the scheduler is not shown (see
   discussion later).

   o  If an L4S packet is scheduled, in lines 7 and 8 the packet is ECN-
      marked with likelihood p_L.  The recur() function at the end of
      Figure 4 is used, which is preferred over random marking because
      it avoids delay due to randomization when interpreting congestion
      signals, but it still desynchronizes the saw-teeth of the flows.
      Line 6 calculates p_L as the maximum of the coupled L4S
      probability p_CL and the probability from the native L4S AQM p'_L.
      This implements the max() function shown in Figure 1 to couple the
      outputs of the two AQMs together.  Of the two probabilities input
      to p_L in line 6:

      *  p'_L is calculated per packet in line 5 by the laqm() function
         (see Figure 5),

      *  Whereas p_CL is maintained by the dualpi2_update() function
         which runs every Tupdate (Tupdate is set in line 13 of
         Figure 2.  It defaults to 16 ms in the reference Linux
         implementation because it has to be rounded to a multiple of 4
         ms).

   o  If a Classic packet is scheduled, lines 10 to 17 drop or mark the
      packet with probability p_C.

De Schepper, et al.     Expires November 22, 2021              [Page 35]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   The Native L4S AQM algorithm (Figure 5) is a ramp function, similar
   to the RED algorithm, but simplified as follows:

   o  The extent of the ramp is defined in units of queuing delay, not
      bytes, so that configuration remains invariant as the queue
      departure rate varies.

   o  It uses instantaneous queueing delay, which avoids the complexity
      of smoothing, but also avoids embedding a worst-case RTT of
      smoothing delay in the network (see Section 2.1).

   o  The ramp rises linearly directly from 0 to 1, not to an
      intermediate value of p'_L as RED would, because there is no need
      to keep ECN marking probability low.

   o  Marking does not have to be randomized.  Determinism is used
      instead of randomness; to reduce the delay necessary to smooth out
      the noise of randomness from the signal.

   The ramp function requires two configuration parameters, the minimum
   threshold (minTh) and the width of the ramp (range), both in units of
   queuing time), as shown in lines 18 & 19 of the initialization
   function in Figure 2.  The ramp function can be configured as a step
   (see Note c).

   Although the DCTCP paper [Alizadeh-stability] recommends an ECN
   marking threshold of 0.17*RTT_typ, it also shows that the threshold
   can be much shallower with hardly any worse under-utilization of the
   link (because the amplitude of DCTCP's sawteeth is so small).  Based
   on extensive experiments, for the public Internet the default minimum
   ECN marking threshold in Figure 2 is considered a good compromise,
   even though it is significantly smaller fraction of RTT_typ.

   A minimum marking threshold parameter (Th_len) in transmission units
   (default 2 MTU) is also necessary to ensure that the ramp does not
   trigger excessive marking on slow links.  The code in lines 24-27 of
   the initialization function (Figure 2) converts 2 MTU into time units
   and shifts the ramp so that the min threshold is no shallower than
   this floor.

De Schepper, et al.     Expires November 22, 2021              [Page 36]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   1:  laqm(qdelay) {               % Returns native L4S AQM probability
   2:    if (qdelay >= maxTh)
   3:      return 1
   4:    else if (qdelay > minTh)
   5:      return (qdelay - minTh)/range  % Divide could use a bit-shift
   6:    else
   7:      return 0
   8:  }

            Figure 5: Example Pseudocode for the Native L4S AQM

   1:  dualpi2_update(lq, cq) {                % Update p' every Tupdate
   2:    curq = cq.time()  % use queuing time of first-in Classic packet
   3:    p' = p' + alpha * (curq - target) + beta * (curq - prevq)
   4:    p_CL = k * p'  % Coupled L4S prob = base prob * coupling factor
   5:    p_C = p'^2                       % Classic prob = (base prob)^2
   6:    prevq = curq
   7:  }

   (Clamping p' within the range [0,1] omitted for clarity - see text)

     Figure 6: Example PI-Update Pseudocode for DualQ Coupled PI2 AQM

   The coupled marking probability, p_CL depends on the base probability
   (p'), which is kept up to date by the core PI algorithm in Figure 6
   executed every Tupdate.

   Note that p' solely depends on the queuing time in the Classic queue.
   In line 2, the current queuing delay (curq) is evaluated from how
   long the head packet was in the Classic queue (cq).  The function
   cq.time() (not shown) subtracts the time stamped at enqueue from the
   current time (see Note a) and implicitly takes the current queuing
   delay as 0 if the queue is empty.

   The algorithm centres on line 3, which is a classical Proportional-
   Integral (PI) controller that alters p' dependent on: a) the error
   between the current queuing delay (curq) and the target queuing delay
   ('target' - see [RFC8033]); and b) the change in queuing delay since
   the last sample.  The name 'PI' represents the fact that the second
   factor (how fast the queue is growing) is _P_roportional to load
   while the first is the _I_ntegral of the load (so it removes any
   standing queue in excess of the target).

   The two 'gain factors' in line 3, alpha and beta, respectively weight
   how strongly each of these elements ((a) and (b)) alters p'.  They
   are in units of 'per second of delay' or Hz, because they transform
   differences in queueing delay into changes in probability (assuming
   probability has a value from 0 to 1).

De Schepper, et al.     Expires November 22, 2021              [Page 37]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   alpha and beta determine how much p' ought to change after each
   update interval (Tupdate).  For smaller Tupdate, p' should change by
   the same amount per second, but in finer more frequent steps.  So
   alpha depends on Tupdate (see line 14 of the initialization function
   in Figure 2).  It is best to update p' as frequently as possible, but
   Tupdate will probably be constrained by hardware performance.  As
   shown in line 13, the update interval should be at least as frequent
   as once per the RTT of a typical flow (RTT_typ) as long as it does
   not exceed roughly RTT_max/3.  For link rates from 4 - 200 Mb/s, a
   target RTT of 15ms and a maximum RTT of 100ms, it has been verified
   through extensive testing that Tupdate=16ms (as recommended in
   [RFC8033]) is sufficient.

   The choice of alpha and beta also determines the AQM's stable
   operating range.  The AQM ought to change p' as fast as possible in
   response to changes in load without over-compensating and therefore
   causing oscillations in the queue.  Therefore, the values of alpha
   and beta also depend on the RTT of the expected worst-case flow
   (RTT_max).

   Recommended derivations of the gain constants alpha and beta can be
   approximated for Reno over a PI2 AQM as: alpha = 0.1 * Tupdate /
   RTT_max^2; beta = 0.3 / RTT_max, as shown in lines 14 & 15 of
   Figure 2.  These are derived from the stability analysis in [PI2].
   For the default values of Tupdate=16 ms and RTT_max = 100 ms, they
   result in alpha = 0.16; beta = 3.2 (discrepancies are due to
   rounding).  These defaults have been verified with a wide range of
   link rates, target delays and a range of traffic models with mixed
   and similar RTTs, short and long flows, etc.

   In corner cases, p' can overflow the range [0,1] so the resulting
   value of p' has to be bounded (omitted from the pseudocode).  Then,
   as already explained, the coupled and Classic probabilities are
   derived from the new p' in lines 4 and 5 of Figure 6 as p_CL = k*p'
   and p_C = p'^2.

   Because the coupled L4S marking probability (p_CL) is factored up by
   k, the dynamic gain parameters alpha and beta are also inherently
   factored up by k for the L4S queue.  So, the effective gain factor
   for the L4S queue is k*alpha (with defaults alpha = 0.16 Hz and k=2,
   effective L4S alpha = 0.32 Hz).

   Unlike in PIE [RFC8033], alpha and beta do not need to be tuned every
   Tupdate dependent on p'.  Instead, in PI2, alpha and beta are
   independent of p' because the squaring applied to Classic traffic
   tunes them inherently.  This is explained in [PI2], which also
   explains why this more principled approach removes the need for most
   of the heuristics that had to be added to PIE.

De Schepper, et al.     Expires November 22, 2021              [Page 38]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   Nonetheless, an implementer might wish to add selected heuristics to
   either AQM.  For instance the Linux reference DualPI2 implementation
   includes the following:

   o  Prior to enqueuing an L4S packet, if the L queue contains <2
      packets, the packet is flagged to suppress any native L4S AQM
      marking at dequeue (which depends on sojourn time);

   o  Classic and coupled marking or dropping (i.e. based on p_C and
      p_CL from the PI controller) is only applied to a packet if the
      respective queue length in bytes is > 2 MTU (prior to enqueuing
      the packet or after dequeuing it, depending on whether the AQM is
      configured to be applied at enqueue or dequeue);

   o  In the WRR scheduler, the 'credit' indicating which queue should
      transmit is only changed if there are packets in both queues
      (i.e. if there is actual resource contention).  This means that a
      properly paced L flow might never be delayed by the WRR.  The WRR
      credit is reset in favour of the L queue when the link is idle.

   An implementer might also wish to add other heuristics, e.g. burst
   protection [RFC8033] or enhanced burst protection [RFC8034].

   Notes:

   a.  The drain rate of the queue can vary if it is scheduled relative
       to other queues, or to cater for fluctuations in a wireless
       medium.  To auto-adjust to changes in drain rate, the queue needs
       to be measured in time, not bytes or packets [AQMmetrics],
       [CoDel].  Queuing delay could be measured directly by storing a
       per-packet time-stamp as each packet is enqueued, and subtracting
       this from the system time when the packet is dequeued.  If time-
       stamping is not easy to introduce with certain hardware, queuing
       delay could be predicted indirectly by dividing the size of the
       queue by the predicted departure rate, which might be known
       precisely for some link technologies (see for example [RFC8034]).

   b.  Line 2 of the dualpi2_enqueue() function (Figure 3) assumes an
       implementation where lq and cq share common buffer memory.  An
       alternative implementation could use separate buffers for each
       queue, in which case the arriving packet would have to be
       classified first to determine which buffer to check for available
       space.  The choice is a trade off; a shared buffer can use less
       memory whereas separate buffers isolate the L4S queue from tail-
       drop due to large bursts of Classic traffic (e.g. a Classic Reno
       TCP during slow-start over a long RTT).

De Schepper, et al.     Expires November 22, 2021              [Page 39]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   c.  There has been some concern that using the step function of DCTCP
       for the Native L4S AQM requires end-systems to smooth the signal
       for an unnecessarily large number of round trips to ensure
       sufficient fidelity.  A ramp is no worse than a step in initial
       experiments with existing DCTCP.  Therefore, it is recommended
       that a ramp is configured in place of a step, which will allow
       congestion control algorithms to investigate faster smoothing
       algorithms.

       A ramp is more general that a step, because an operator can
       effectively turn the ramp into a step function, as used by DCTCP,
       by setting the range to zero.  There will not be a divide by zero
       problem at line 5 of Figure 5 because, if minTh is equal to
       maxTh, the condition for this ramp calculation cannot arise.

A.2.  Pass #2: Overload Details

   Figure 7 repeats the dequeue function of Figure 4, but with overload
   details added.  Similarly Figure 8 repeats the core PI algorithm of
   Figure 6 with overload details added.  The initialization, enqueue,
   L4S AQM and recur functions are unchanged.

   In line 10 of the initialization function (Figure 2), the maximum
   Classic drop probability p_Cmax = min(1/k^2, 1) or 1/4 for the
   default coupling factor k=2. p_Cmax is the point at which it is
   deemed that the Classic queue has become persistently overloaded, so
   it switches to using drop, even for ECN-capable packets.  ECT packets
   that are not dropped can still be ECN-marked.

   In practice, 25% has been found to be a good threshold to preserve
   fairness between ECN capable and non ECN capable traffic.  This
   protects the queues against both temporary overload from responsive
   flows and more persistent overload from any unresponsive traffic that
   falsely claims to be responsive to ECN.

   When the Classic ECN marking probability reaches the p_Cmax threshold
   (1/k^2), the marking probability coupled to the L4S queue, p_CL will
   always be 100% for any k (by equation (1) in Section 2).  So, for
   readability, the constant p_Lmax is defined as 1 in line 22 of the
   initialization function (Figure 2).  This is intended to ensure that
   the L4S queue starts to introduce dropping once ECN-marking saturates
   at 100% and can rise no further.  The 'Prague L4S'
   requirements [I-D.ietf-tsvwg-ecn-l4s-id] state that, when an L4S
   congestion control detects a drop, it falls back to a response that
   coexists with 'Classic' Reno congestion control.  So it is correct
   that, when the L4S queue drops packets, it drops them proportional to
   p'^2, as if they are Classic packets.

De Schepper, et al.     Expires November 22, 2021              [Page 40]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   Both these switch-overs are triggered by the tests for overload
   introduced in lines 4b and 12b of the dequeue function (Figure 7).
   Lines 8c to 8g drop L4S packets with probability p'^2.  Lines 8h to
   8i mark the remaining packets with probability p_CL.  Given p_Lmax =
   1, all remaining packets will be marked because, to have reached the
   else block at line 8b, p_CL >= 1.

   Lines 2c to 2d in the core PI algorithm (Figure 8) deal with overload
   of the L4S queue when there is no Classic traffic.  This is
   necessary, because the core PI algorithm maintains the appropriate
   drop probability to regulate overload, but it depends on the length
   of the Classic queue.  If there is no Classic queue the naive PI
   update function in Figure 6 would drop nothing, even if the L4S queue
   were overloaded - so tail drop would have to take over (lines 2 and 3
   of Figure 3).

   Instead, the test at line 2a of the full PI update function in
   Figure 8 keeps delay on target using drop.  If the test at line 2a of
   Figure 8 finds that the Classic queue is empty, line 2d measures the
   current queue delay using the L4S queue instead.  While the L4S queue
   is not overloaded, its delay will always be tiny compared to the
   target Classic queue delay.  So p_CL will be driven to zero, and the
   L4S queue will naturally be governed solely by p'_L from the native
   L4S AQM (lines 5 and 6 of the dequeue algorithm in Figure 7).  But,
   if unresponsive L4S source(s) cause overload, the DualQ transitions
   smoothly to L4S marking based on the PI algorithm.  If overload
   increases further, it naturally transitions from marking to dropping
   by the switch-over mechanism already described.

De Schepper, et al.     Expires November 22, 2021              [Page 41]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   1:  dualpi2_dequeue(lq, cq, pkt) {     % Couples L4S & Classic queues
   2:    while ( lq.len() + cq.len() > 0 ) {
   3:      if ( scheduler() == lq ) {
   4a:       lq.dequeue(pkt)                             % L4S scheduled
   4b:       if ( p_CL < p_Lmax ) {      % Check for overload saturation
   5:          p'_L = laqm(lq.time())                   % Native L4S AQM
   6:          p_L = max(p'_L, p_CL)                % Combining function
   7:          if ( recur(lq, p_L) )                    % Linear marking
   8a:           mark(pkt)
   8b:       } else {                              % overload saturation
   8c:         if ( recur(lq, p_C) ) {          % probability p_C = p'^2
   8e:           drop(pkt)      % revert to Classic drop due to overload
   8f:           continue        % continue to the top of the while loop
   8g:         }
   8h:         if ( recur(lq, p_CL) )        % probability p_CL = k * p'
   8i:           mark(pkt)         % linear marking of remaining packets
   8j:       }
   9:      } else {
   10:       cq.dequeue(pkt)                         % Classic scheduled
   11:       if ( recur(cq, p_C) ) {            % probability p_C = p'^2
   12a:        if ( (ecn(pkt) == 0)                % ECN field = not-ECT
   12b:             OR (p_C >= p_Cmax) ) {       % Overload disables ECN
   13:           drop(pkt)                     % squared drop, redo loop
   14:           continue        % continue to the top of the while loop
   15:         }
   16:         mark(pkt)                                  % squared mark
   17:       }
   18:     }
   19:     return(pkt)                      % return the packet and stop
   20:   }
   21:   return(NULL)                             % no packet to dequeue
   22: }

      Figure 7: Example Dequeue Pseudocode for DualQ Coupled PI2 AQM
                         (Including Overload Code)

De Schepper, et al.     Expires November 22, 2021              [Page 42]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   1:  dualpi2_update(lq, cq) {                % Update p' every Tupdate
   2a:   if ( cq.len() > 0 )
   2b:     curq = cq.time() %use queuing time of first-in Classic packet
   2c:   else                                      % Classic queue empty
   2d:     curq = lq.time()    % use queuing time of first-in L4S packet
   3:    p' = p' + alpha * (curq - target) + beta * (curq - prevq)
   4:    p_CL = p' * k  % Coupled L4S prob = base prob * coupling factor
   5:    p_C = p'^2                       % Classic prob = (base prob)^2
   6:    prevq = curq
   7:  }

     Figure 8: Example PI-Update Pseudocode for DualQ Coupled PI2 AQM
                         (Including Overload Code)

   The choice of scheduler technology is critical to overload protection
   (see Section 4.1).

   o  A well-understood weighted scheduler such as weighted round robin
      (WRR) is recommended.  As long as the scheduler weight for Classic
      is small (e.g. 1/16), its exact value is unimportant because it
      does not normally determine capacity shares.  The weight is only
      important to prevent unresponsive L4S traffic starving Classic
      traffic.  This is because capacity sharing between the queues is
      normally determined by the coupled congestion signal, which
      overrides the scheduler, by making L4S sources leave roughly equal
      per-flow capacity available for Classic flows.

   o  Alternatively, a time-shifted FIFO (TS-FIFO) could be used.  It
      works by selecting the head packet that has waited the longest,
      biased against the Classic traffic by a time-shift of tshift.  To
      implement time-shifted FIFO, the scheduler() function in line 3 of
      the dequeue code would simply be implemented as the scheduler()
      function at the bottom of Figure 10 in Appendix B.  For the public
      Internet a good value for tshift is 50ms.  For private networks
      with smaller diameter, about 4*target would be reasonable.  TS-
      FIFO is a very simple scheduler, but complexity might need to be
      added to address some deficiencies (which is why it is not
      recommended over WRR):

      *  TS-FIFO does not fully isolate latency in the L4S queue from
         uncontrolled bursts in the Classic queue;

      *  TS-FIFO is only appropriate if time-stamping of packets is
         feasible;

      *  Even if time-stamping is supported, the sojourn time of the
         head packet is always stale.  For instance, if a burst arrives
         at an empty queue, the sojourn time will only measure the delay

De Schepper, et al.     Expires November 22, 2021              [Page 43]
Internet-Draft             DualQ Coupled AQMs                   May 2021

         of the burst once the burst is over, even though the queue knew
         about it from the start.  At the cost of more operations and
         more storage, a 'scaled sojourn time' metric of queue delay can
         be used, which is the sojourn time of a packet scaled by the
         ratio of the queue sizes when the packet departed and
         arrived [SigQ-Dyn].

   o  A strict priority scheduler would be inappropriate, because it
      would starve Classic if L4S was overloaded.

Appendix B.  Example DualQ Coupled Curvy RED Algorithm

   As another example of a DualQ Coupled AQM algorithm, the pseudocode
   below gives the Curvy RED based algorithm.  Although the AQM was
   designed to be efficient in integer arithmetic, to aid understanding
   it is first given using floating point arithmetic (Figure 10).  Then,
   one possible optimization for integer arithmetic is given, also in
   pseudocode (Figure 11).  To aid comparison, the line numbers are kept
   in step between the two by using letter suffixes where the longer
   code needs extra lines.

B.1.  Curvy RED in Pseudocode

   The pseudocode manipulates three main structures of variables: the
   packet (pkt), the L4S queue (lq) and the Classic queue (cq) and
   consists of the following five functions:

   o  The initialization function cred_params_init(...) (Figure 2) that
      sets parameter defaults (the API for setting non-default values is
      omitted for brevity);

   o  The dequeue function cred_dequeue(lq, cq, pkt) (Figure 4);

   o  The scheduling function scheduler(), which selects between the
      head packets of the two queues.

   It also uses the following functions that are either shown elsewhere,
   or not shown in full here:

   o  The enqueue function, which is identical to that used for DualPI2,
      dualpi2_enqueue(lq, cq, pkt) in Figure 3;

   o  mark(pkt) and drop(pkt) for ECN-marking and dropping a packet;

   o  cq.len() or lq.len() returns the current length (aka. backlog) of
      the relevant queue in bytes;

De Schepper, et al.     Expires November 22, 2021              [Page 44]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   o  cq.time() or lq.time() returns the current queuing delay
      (aka. sojourn time or service time) of the relevant queue in units
      of time (see Note a in Appendix A.1).

   Because Curvy RED was evaluated before DualPI2, certain improvements
   introduced for DualPI2 were not evaluated for Curvy RED.  In the
   pseudocode below, the straightforward improvements have been added on
   the assumption they will provide similar benefits, but that has not
   been proven experimentally.  They are: i) a conditional priority
   scheduler instead of strict priority ii) a time-based threshold for
   the native L4S AQM; iii) ECN support for the Classic AQM.  A recent
   evaluation has proved that a minimum ECN-marking threshold (minTh)
   greatly improves performance, so this is also included in the
   pseudocode.

   Overload protection has not been added to the Curvy RED pseudocode
   below so as not to detract from the main features.  It would be added
   in exactly the same way as in Appendix A.2 for the DualPI2
   pseudocode.  The native L4S AQM uses a step threshold, but a ramp
   like that described for DualPI2 could be used instead.  The scheduler
   uses the simple TS-FIFO algorithm, but it could be replaced with WRR.

   The Curvy RED algorithm has not been maintained or evaluated to the
   same degree as the DualPI2 algorithm.  In initial experiments on
   broadband access links ranging from 4 Mb/s to 200 Mb/s with base RTTs
   from 5 ms to 100 ms, Curvy RED achieved good results with the default
   parameters in Figure 9.

   The parameters are categorised by whether they relate to the Classic
   AQM, the L4S AQM or the framework coupling them together.  Constants
   and variables derived from these parameters are also included at the
   end of each category.  These are the raw input parameters for the
   algorithm.  A configuration front-end could accept more meaningful
   parameters (e.g. RTT_max and RTT_typ) and convert them into these raw
   parameters, as has been done for DualPI2 in Appendix A.  Where
   necessary, parameters are explained further in the walk-through of
   the pseudocode below.

De Schepper, et al.     Expires November 22, 2021              [Page 45]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   1:  cred_params_init(...) {            % Set input parameter defaults
   2:    % DualQ Coupled framework parameters
   3:    limit = MAX_LINK_RATE * 250 ms               % Dual buffer size
   4:    k' = 1                        % Coupling factor as a power of 2
   5:    tshift = 50 ms                % Time shift of TS-FIFO scheduler
   6:    % Constants derived from Classic AQM parameters
   7:    k = 2^k'                    % Coupling factor from Equation (1)
   6:
   7:    % Classic AQM parameters
   8:    g_C = 5            % EWMA smoothing parameter as a power of 1/2
   9:    S_C = -1          % Classic ramp scaling factor as a power of 2
   10:   minTh = 500 ms    % No Classic drop/mark below this queue delay
   11:   % Constants derived from Classic AQM parameters
   12:   gamma = 2^(-g_C)                     % EWMA smoothing parameter
   13:   range_C = 2^S_C                         % Range of Classic ramp
   14:
   15:   % L4S AQM parameters
   16:   T = 1 ms             % Queue delay threshold for native L4S AQM
   17:   % Constants derived from above parameters
   18:   S_L = S_C - k'        % L4S ramp scaling factor as a power of 2
   19:   range_L = 2^S_L                             % Range of L4S ramp
   20: }

    Figure 9: Example Header Pseudocode for DualQ Coupled Curvy RED AQM

De Schepper, et al.     Expires November 22, 2021              [Page 46]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   1:  cred_dequeue(lq, cq, pkt) {       % Couples L4S & Classic queues
   2:    while ( lq.len() + cq.len() > 0 ) {
   3:      if ( scheduler() == lq ) {
   4:        lq.dequeue(pkt)                            % L4S scheduled
   5a:       p_CL = (Q_C - minTh) / range_L
   5b:       if (  ( lq.time() > T )
   5c:          OR ( p_CL > maxrand(U) ) )
   6:          mark(pkt)
   7:      } else {
   8:        cq.dequeue(pkt)                        % Classic scheduled
   9a:       Q_C = gamma * cq.time() + (1-gamma) * Q_C % Classic Q EWMA
   10a:      sqrt_p_C = (Q_C - minTh) / range_C
   10b:      if ( sqrt_p_C > maxrand(2*U) ) {
   11:         if ( (ecn(pkt) == 0)  {            % ECN field = not-ECT
   12:           drop(pkt)                    % Squared drop, redo loop
   13:           continue       % continue to the top of the while loop
   14:         }
   15:         mark(pkt)
   16:       }
   17:     }
   18:     return(pkt)                % return the packet and stop here
   19:   }
   20:   return(NULL)                            % no packet to dequeue
   21: }

   22: maxrand(u) {                % return the max of u random numbers
   23:   maxr=0
   24:   while (u-- > 0)
   25:     maxr = max(maxr, rand())                   % 0 <= rand() < 1
   26:   return(maxr)
   27: }

   28: scheduler() {
   29:   if ( lq.time() + tshift >= cq.time() )
   30:     return lq;
   31:   else
   32:     return cq;
   33: }

   Figure 10: Example Dequeue Pseudocode for DualQ Coupled Curvy RED AQM

   The dequeue pseudocode (Figure 10) is repeatedly called whenever the
   lower layer is ready to forward a packet.  It schedules one packet
   for dequeuing (or zero if the queue is empty) then returns control to
   the caller, so that it does not block while that packet is being
   forwarded.  While making this dequeue decision, it also makes the
   necessary AQM decisions on dropping or marking.  The alternative of
   applying the AQMs at enqueue would shift some processing from the

De Schepper, et al.     Expires November 22, 2021              [Page 47]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   critical time when each packet is dequeued.  However, it would also
   add a whole queue of delay to the control signals, making the control
   loop very sloppy.

   The code is written assuming the AQMs are applied on dequeue (Note
   1).  All the dequeue code is contained within a large while loop so
   that if it decides to drop a packet, it will continue until it
   selects a packet to schedule.  If both queues are empty, the routine
   returns NULL at line 20.  Line 3 of the dequeue pseudocode is where
   the conditional priority scheduler chooses between the L4S queue (lq)
   and the Classic queue (cq).  The time-shifted FIFO scheduler is shown
   at lines 28-33, which would be suitable if simplicity is paramount
   (see Note 2).

   Within each queue, the decision whether to forward, drop or mark is
   taken as follows (to simplify the explanation, it is assumed that
   U=1):

   L4S:  If the test at line 3 determines there is an L4S packet to
      dequeue, the tests at lines 5b and 5c determine whether to mark
      it.  The first is a simple test of whether the L4S queue delay
      (lq.time()) is greater than a step threshold T (Note 3).  The
      second test is similar to the random ECN marking in RED, but with
      the following differences: i) marking depends on queuing time, not
      bytes, in order to scale for any link rate without being
      reconfigured; ii) marking of the L4S queue depends on a logical OR
      of two tests; one against its own queuing time and one against the
      queuing time of the _other_ (Classic) queue; iii) the tests are
      against the instantaneous queuing time of the L4S queue, but a
      smoothed average of the other (Classic) queue; iv) the queue is
      compared with the maximum of U random numbers (but if U=1, this is
      the same as the single random number used in RED).

      Specifically, in line 5a the coupled marking probability p_CL is
      set to the amount by which the averaged Classic queueing delay Q_C
      exceeds the minimum queuing delay threshold (minTh) all divided by
      the L4S scaling parameter range_L. range_L represents the queuing
      delay (in seconds) added to minTh at which marking probability
      would hit 100%. Then in line 5c (if U=1) the result is compared
      with a uniformly distributed random number between 0 and 1, which
      ensures that, over range_L, marking probability will linearly
      increase with queueing time.

   Classic:  If the scheduler at line 3 chooses to dequeue a Classic
      packet and jumps to line 7, the test at line 10b determines
      whether to drop or mark it.  But before that, line 9a updates Q_C,
      which is an exponentially weighted moving average (Note 4) of the
      queuing time of the Classic queue, where cq.time() is the current

De Schepper, et al.     Expires November 22, 2021              [Page 48]
Internet-Draft             DualQ Coupled AQMs                   May 2021

      instantaneous queueing time of the packet at the head of the
      Classic queue (zero if empty) and gamma is the EWMA constant
      (default 1/32, see line 12 of the initialization function).

      Lines 10a and 10b implement the Classic AQM.  In line 10a the
      averaged queuing time Q_C is divided by the Classic scaling
      parameter range_C, in the same way that queuing time was scaled
      for L4S marking.  This scaled queuing time will be squared to
      compute Classic drop probability so, before it is squared, it is
      effectively the square root of the drop probability, hence it is
      given the variable name sqrt_p_C.  The squaring is done by
      comparing it with the maximum out of two random numbers (assuming
      U=1).  Comparing it with the maximum out of two is the same as the
      logical `AND' of two tests, which ensures drop probability rises
      with the square of queuing time.

   The AQM functions in each queue (lines 5c & 10b) are two cases of a
   new generalization of RED called Curvy RED, motivated as follows.
   When the performance of this AQM was compared with FQ-CoDel and PIE,
   their goal of holding queuing delay to a fixed target seemed
   misguided [CRED_Insights].  As the number of flows increases, if the
   AQM does not allow host congestion controllers to increase queuing
   delay, it has to introduce abnormally high levels of loss.  Then loss
   rather than queuing becomes the dominant cause of delay for short
   flows, due to timeouts and tail losses.

   Curvy RED constrains delay with a softened target that allows some
   increase in delay as load increases.  This is achieved by increasing
   drop probability on a convex curve relative to queue growth (the
   square curve in the Classic queue, if U=1).  Like RED, the curve hugs
   the zero axis while the queue is shallow.  Then, as load increases,
   it introduces a growing barrier to higher delay.  But, unlike RED, it
   requires only two parameters, not three.  The disadvantage of Curvy
   RED (compared to a PI controller for example) is that it is not
   adapted to a wide range of RTTs.  Curvy RED can be used as is when
   the RTT range to be supported is limited, otherwise an adaptation
   mechanism is required.

   From our limited experiments with Curvy RED so far, recommended
   values of these parameters are: S_C = -1; g_C = 5; T = 5 * MTU at the
   link rate (about 1ms at 60Mb/s) for the range of base RTTs typical on
   the public Internet.  [CRED_Insights] explains why these parameters
   are applicable whatever rate link this AQM implementation is deployed
   on and how the parameters would need to be adjusted for a scenario
   with a different range of RTTs (e.g. a data centre).  The setting of
   k depends on policy (see Section 2.5 and Appendix C.2 respectively
   for its recommended setting and guidance on alternatives).

De Schepper, et al.     Expires November 22, 2021              [Page 49]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   There is also a cUrviness parameter, U, which is a small positive
   integer.  It is likely to take the same hard-coded value for all
   implementations, once experiments have determined a good value.  Only
   U=1 has been used in experiments so far, but results might be even
   better with U=2 or higher.

   Notes:

   1.  The alternative of applying the AQMs at enqueue would shift some
       processing from the critical time when each packet is dequeued.
       However, it would also add a whole queue of delay to the control
       signals, making the control loop sloppier (for a typical RTT it
       would double the Classic queue's feedback delay).  On a platform
       where packet timestamping is feasible, e.g. Linux, it is also
       easiest to apply the AQMs at dequeue because that is where
       queuing time is also measured.

   2.  WRR better isolates the L4S queue from large delay bursts in the
       Classic queue, but it is slightly less simple than TS-FIFO.  If
       WRR were used, a low default Classic weight (e.g. 1/16) would
       need to be configured in place of the time shift in line 5 of the
       initialization function (Figure 9).

   3.  A step function is shown for simplicity.  A ramp function (see
       Figure 5 and the discussion around it in Appendix A.1) is
       recommended, because it is more general than a step and has the
       potential to enable L4S congestion controls to converge more
       rapidly.

   4.  An EWMA is only one possible way to filter bursts; other more
       adaptive smoothing methods could be valid and it might be
       appropriate to decrease the EWMA faster than it increases,
       e.g. by using the minimum of the smoothed and instantaneous queue
       delays, min(Q_C, qc.time()).

B.2.  Efficient Implementation of Curvy RED

   Although code optimization depends on the platform, the following
   notes explain where the design of Curvy RED was particularly
   motivated by efficient implementation.

   The Classic AQM at line 10b calls maxrand(2*U), which gives twice as
   much curviness as the call to maxrand(U) in the marking function at
   line 5c.  This is the trick that implements the square rule in
   equation (1) (Section 2.1).  This is based on the fact that, given a
   number X from 1 to 6, the probability that two dice throws will both
   be less than X is the square of the probability that one throw will
   be less than X.  So, when U=1, the L4S marking function is linear and

De Schepper, et al.     Expires November 22, 2021              [Page 50]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   the Classic dropping function is squared.  If U=2, L4S would be a
   square function and Classic would be quartic.  And so on.

   The maxrand(u) function in lines 16-21 simply generates u random
   numbers and returns the maximum.  Typically, maxrand(u) could be run
   in parallel out of band.  For instance, if U=1, the Classic queue
   would require the maximum of two random numbers.  So, instead of
   calling maxrand(2*U) in-band, the maximum of every pair of values
   from a pseudorandom number generator could be generated out-of-band,
   and held in a buffer ready for the Classic queue to consume.

   1:  cred_dequeue(lq, cq, pkt) {       % Couples L4S & Classic queues
   2:    while ( lq.len() + cq.len() > 0 ) {
   3:      if ( scheduler() == lq ) {
   4:        lq.dequeue(pkt)                            % L4S scheduled
   5:        if ((lq.time() > T) OR (Q_C >> (S_L-2) > maxrand(U)))
   6:          mark(pkt)
   7:      } else {
   8:        cq.dequeue(pkt)                        % Classic scheduled
   9:        Q_C += (qc.ns() - Q_C) >> g_C             % Classic Q EWMA
   10:       if ( (Q_C >> (S_C-2) ) > maxrand(2*U) ) {
   11:         if ( (ecn(pkt) == 0)  {            % ECN field = not-ECT
   12:           drop(pkt)                    % Squared drop, redo loop
   13:           continue       % continue to the top of the while loop
   14:         }
   15:         mark(pkt)
   16:       }
   17:     }
   18:     return(pkt)                % return the packet and stop here
   19:   }
   20:   return(NULL)                            % no packet to dequeue
   21: }

   Figure 11: Optimised Example Dequeue Pseudocode for Coupled DualQ AQM
                         using Integer Arithmetic

   The two ranges, range_L and range_C are expressed as powers of 2 so
   that division can be implemented as a right bit-shift (>>) in lines 5
   and 10 of the integer variant of the pseudocode (Figure 11).

   For the integer variant of the pseudocode, an integer version of the
   rand() function used at line 25 of the maxrand(function) in Figure 10
   would be arranged to return an integer in the range 0 <= maxrand() <
   2^32 (not shown).  This would scale up all the floating point
   probabilities in the range [0,1] by 2^32.

   Queuing delays are also scaled up by 2^32, but in two stages: i) In
   line 9 queuing time qc.ns() is returned in integer nanoseconds,

De Schepper, et al.     Expires November 22, 2021              [Page 51]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   making the value about 2^30 times larger than when the units were
   seconds, ii) then in lines 5 and 10 an adjustment of -2 to the right
   bit-shift multiplies the result by 2^2, to complete the scaling by
   2^32.

   In line 8 of the initialization function, the EWMA constant gamma is
   represented as an integer power of 2, g_C, so that in line 9 of the
   integer code the division needed to weight the moving average can be
   implemented by a right bit-shift (>> g_C).

Appendix C.  Choice of Coupling Factor, k

C.1.  RTT-Dependence

   Where Classic flows compete for the same capacity, their relative
   flow rates depend not only on the congestion probability, but also on
   their end-to-end RTT (= base RTT + queue delay).  The rates of
   competing Reno [RFC5681] flows are roughly inversely proportional to
   their RTTs.  Cubic exhibits similar RTT-dependence when in Reno-
   compatibility mode, but is less RTT-dependent otherwise.

   Until the early experiments with the DualQ Coupled AQM, the
   importance of the reasonably large Classic queue in mitigating RTT-
   dependence had not been appreciated.  Appendix A.1.6 of
   [I-D.ietf-tsvwg-ecn-l4s-id] uses numerical examples to explain why
   bloated buffers had concealed the RTT-dependence of Classic
   congestion controls before that time.  Then it explains why, the more
   that queuing delays have reduced, the more that RTT-dependence has
   surfaced as a potential starvation problem for long RTT flows.

   Given that congestion control on end-systems is voluntary, there is
   no reason why it has to be voluntarily RTT-dependent.  Therefore
   [I-D.ietf-tsvwg-ecn-l4s-id] requires L4S congestion controls to be
   significantly less RTT-dependent than the standard Reno congestion
   control [RFC5681].  Following this approach means there is no need
   for network devices to address RTT-dependence, although there would
   be no harm if they did, which per-flow queuing inherently does.

   At the time of writing, the range of approaches to RTT-dependence in
   L4S congestion controls has not settled.  Therefore, the guidance on
   the choice of the coupling factor in Appendix C.2 is given against
   DCTCP [RFC8257], which has well-understood RTT-dependence.  The
   guidance is given for various RTT ratios, so that it can be adapted
   to future circumstances.

De Schepper, et al.     Expires November 22, 2021              [Page 52]
Internet-Draft             DualQ Coupled AQMs                   May 2021

C.2.  Guidance on Controlling Throughput Equivalence

                     +---------------+------+-------+
                     | RTT_C / RTT_L | Reno | Cubic |
                     +---------------+------+-------+
                     |             1 | k'=1 | k'=0  |
                     |             2 | k'=2 | k'=1  |
                     |             3 | k'=2 | k'=2  |
                     |             4 | k'=3 | k'=2  |
                     |             5 | k'=3 | k'=3  |
                     +---------------+------+-------+

    Table 1: Value of k' for which DCTCP throughput is roughly the same
               as Reno or Cubic, for some example RTT ratios

   In the above appendices that give example DualQ Coupled algorithms,
   to aid efficient implementation, a coupling factor that is an integer
   power of 2 is always used. k' is always used to denote the power. k'
   is related to the coupling factor k in Equation (1) (Section 2.1) by
   k=2^k'.

   To determine the appropriate coupling factor policy, the operator
   first has to judge whether it wants DCTCP flows to have roughly equal
   throughput with Reno or with Cubic (because, even in its Reno-
   compatibility mode, Cubic is about 1.4 times more aggressive than
   Reno).  Then the operator needs to decide at what ratio of RTTs it
   wants DCTCP and Classic flows to have roughly equal throughput.  For
   example choosing k'=0 (equivalent to k=1) will make DCTCP throughput
   roughly the same as Cubic, _if their RTTs are the same_.

   However, even if the base RTTs are the same, the actual RTTs are
   unlikely to be the same, because Classic (Cubic or Reno) traffic
   needs roughly a typical base round trip of queue to avoid under-
   utilization and excess drop.  Whereas L4S (DCTCP) does not.  The
   operator might still choose this policy if it judges that DCTCP
   throughput should be rewarded for keeping its own queue short.

   On the other hand, the operator will choose one of the higher values
   for k', if it wants to slow DCTCP down to roughly the same throughput
   as Classic flows, to compensate for Classic flows slowing themselves
   down by causing themselves extra queuing delay.

   The values for k' in the table are derived from the formulae below,
   which were developed in [DCttH15]:

       2^k' = 1.64 (RTT_reno / RTT_dc)                  (5)
       2^k' = 1.19 (RTT_cubic / RTT_dc )                (6)

De Schepper, et al.     Expires November 22, 2021              [Page 53]
Internet-Draft             DualQ Coupled AQMs                   May 2021

   For localized traffic from a particular ISP's data centre, using the
   measured RTTs, it was calculated that a value of k'=3 (equivalent to
   k=8) would achieve throughput equivalence, and experiments verified
   the formula very closely.

   For a typical mix of RTTs from local data centres and across the
   general Internet, a value of k'=1 (equivalent to k=2) is recommended
   as a good workable compromise.

Authors' Addresses

   Koen De Schepper
   Nokia Bell Labs
   Antwerp
   Belgium

   Email: koen.de_schepper@nokia.com
   URI:   https://www.bell-labs.com/usr/koen.de_schepper

   Bob Briscoe (editor)
   Independent
   UK

   Email: ietf@bobbriscoe.net
   URI:   http://bobbriscoe.net/

   Greg White
   CableLabs
   Louisville, CO
   US

   Email: G.White@CableLabs.com

De Schepper, et al.     Expires November 22, 2021              [Page 54]