Skip to main content

Use of the SHA3 One-way Hash Functions in the Cryptographic Message Syntax (CMS)
draft-ietf-lamps-cms-sha3-hash-03

Document Type Active Internet-Draft (lamps WG)
Author Russ Housley
Last updated 2024-04-19
Replaces draft-housley-lamps-cms-sha3-hash
RFC stream Internet Engineering Task Force (IETF)
Intended RFC status Proposed Standard
Formats
Reviews
Additional resources Mailing list discussion
Stream WG state Submitted to IESG for Publication
Document shepherd Tim Hollebeek
Shepherd write-up Show Last changed 2024-04-17
IESG IESG state In Last Call (ends 2024-05-03)
Action Holder
Consensus boilerplate Yes
Telechat date (None)
Responsible AD Deb Cooley
Send notices to tim.hollebeek@digicert.com
IANA IANA review state IANA - Review Needed
IANA expert review state Reviews assigned
draft-ietf-lamps-cms-sha3-hash-03
Network Working Group                                         R. Housley
Internet-Draft                                            Vigil Security
Intended status: Standards Track                           19 April 2024
Expires: 21 October 2024

  Use of the SHA3 One-way Hash Functions in the Cryptographic Message
                              Syntax (CMS)
                   draft-ietf-lamps-cms-sha3-hash-03

Abstract

   This document describes the conventions for using the one-way hash
   functions in the SHA3 family with the Cryptographic Message Syntax
   (CMS).  The SHA3 family can be used as a message digest algorithm, as
   part of a signature algorithm, as part of a message authentication
   code, or part of a key derivation function.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 21 October 2024.

Copyright Notice

   Copyright (c) 2024 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Housley                  Expires 21 October 2024                [Page 1]
Internet-Draft           Using SHA3 with the CMS              April 2024

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  ASN.1 . . . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   3
   2.  Message Digest Algorithms . . . . . . . . . . . . . . . . . .   3
   3.  Signature Algorithms  . . . . . . . . . . . . . . . . . . . .   4
     3.1.  RSASSA PKCS#1 v1.5 with SHA3  . . . . . . . . . . . . . .   4
     3.2.  ECDSA with SHA3 . . . . . . . . . . . . . . . . . . . . .   5
   4.  Message Authentication Codes using HMAC and SHA3  . . . . . .   6
   5.  Key Derivation Functions  . . . . . . . . . . . . . . . . . .   6
     5.1.  HKDF with SHA3  . . . . . . . . . . . . . . . . . . . . .   6
     5.2.  KMAC128-KDF and KMAC256-KDF . . . . . . . . . . . . . . .   7
     5.3.  KDF2 and KDF3 with SHA3 . . . . . . . . . . . . . . . . .   8
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .   8
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .   9
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .   9
   References  . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
     Normative References  . . . . . . . . . . . . . . . . . . . . .  10
     Informative References  . . . . . . . . . . . . . . . . . . . .  11
   Appendix.  ASN.1 Module . . . . . . . . . . . . . . . . . . . . .  12
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  19

1.  Introduction

   The Cryptographic Message Syntax (CMS) [RFC5652] is used to digitally
   sign, digest, authenticate, or encrypt arbitrary message contents.
   This specification describes the use of the four one-way hash
   functions in the SHA3 family (SHA3-224, SHA3-256, SHA3-384, and
   SHA3-512) [SHA3] with the CMS.  In addition, this specification
   describes the use of these four one-way hash functions with the
   RSASSA PKCS#1 version 1.5 signature algorithm [RFC8017] and the
   Elliptic Curve Digital Signature Algorithm (ECDSA) [DSS] with the CMS
   signed-data content type.

   This document should not be confused with RFC 8702 [RFC8702], which
   defines conventions for using the the SHAKE family of SHA3-based
   extensible output functions with the CMS.

1.1.  ASN.1

   CMS values are generated using ASN.1 [X.680], using the Basic
   Encoding Rules (BER) and the Distinguished Encoding Rules (DER)
   [X.690].

Housley                  Expires 21 October 2024                [Page 2]
Internet-Draft           Using SHA3 with the CMS              April 2024

1.2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

2.  Message Digest Algorithms

   One-way hash functions are also referred to as message digest
   algorithms.
   This section specifies the conventions employed by CMS
   implementations that support SHA3-224, SHA3-256, SHA3-384, and
   SHA3-512 [SHA3].

   Digest algorithm identifiers are located in the SignedData
   digestAlgorithms field, the SignerInfo digestAlgorithm field, the
   DigestedData digestAlgorithm field, and the AuthenticatedData
   digestAlgorithm field.

   Digest values are located in the DigestedData digest field and the
   Message Digest authenticated attribute.  In addition, digest values
   are input to signature algorithms.

   SHA3-224, SHA3-256, SHA3-384, and SHA3-512 produce output values with
   224, 256, 384, and 512 bits, respectively.  The object identifiers
   for these four one-way hash functions are as follows:

      hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
          us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

      id-sha3-224 OBJECT IDENTIFIER ::= { hashAlgs 7 }

      id-sha3-256 OBJECT IDENTIFIER ::= { hashAlgs 8 }

      id-sha3-384 OBJECT IDENTIFIER ::= { hashAlgs 9 }

      id-sha3-512 OBJECT IDENTIFIER ::= { hashAlgs 10 }

   When using the id-sha3-224, id-sha3-s256, id-sha3-384, or id-sha3-512
   algorithm identifiers, the parameters field MUST be absent; not NULL
   but absent.

Housley                  Expires 21 October 2024                [Page 3]
Internet-Draft           Using SHA3 with the CMS              April 2024

3.  Signature Algorithms

   This section specifies the conventions employed by CMS
   implementations that support the four SHA3 one-way hash functions
   with the RSASSA PKCS#1 version 1.5 signature algorithm [RFC8017] and
   the Elliptic Curve Digital Signature Algorithm (ECDSA) [DSS] with the
   CMS signed-data content type.

   Signature algorithm identifiers are located in the SignerInfo
   signatureAlgorithm field of SignedData.  Also, signature algorithm
   identifiers are located in the SignerInfo signatureAlgorithm field of
   countersignature attributes.

   Signature values are located in the SignerInfo signature field of
   SignedData.  Also, signature values are located in the SignerInfo
   signature field of countersignature attributes.

3.1.  RSASSA PKCS#1 v1.5 with SHA3

   The RSASSA PKCS#1 v1.5 is defined in [RFC8017].  When RSASSA PKCS#1
   v1.5 is used in conjunction with one of the SHA3 one-way hash
   functions, the object identifiers are:

      OID ::= OBJECT IDENTIFIER

      sigAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
          us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 3 }

      id-rsassa-pkcs1-v1-5-with-sha3-224 OID ::= { sigAlgs 13 }

      id-rsassa-pkcs1-v1-5-with-sha3-256 OID ::= { sigAlgs 14 }

      id-rsassa-pkcs1-v1-5-with-sha3-384 OID ::= { sigAlgs 15 }

      id-rsassa-pkcs1-v1-5-with-sha3-512 OID ::= { sigAlgs 16 }

   The algorithm identifier for RSASSA PKCS#1 v1.5 subject public keys
   in certificates is specified in [RFC3279], and it is repeated here
   for convenience:

      rsaEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2)
          us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

   When the rsaEncryption, id-rsassa-pkcs1-v1-5-with-sha3-224, id-
   rsassa-pkcs1-v1-5-with-sha3-256, id-rsassa-pkcs1-v1-5-with-sha3-384,
   and id-rsassa-pkcs1-v1-5-with-sha3-512 algorithm identifier is used,
   AlgorithmIdentifier parameters field MUST contain NULL.

Housley                  Expires 21 October 2024                [Page 4]
Internet-Draft           Using SHA3 with the CMS              April 2024

   When the rsaEncryption algorithm identifier is used, the RSA public
   key, which is composed of a modulus and a public exponent, MUST be
   encoded using the RSAPublicKey type as specified in [RFC3279].  The
   output of this encoding is carried in the certificate subject public
   key.  The definition of RSAPublicKey is repeated here for
   convenience:

      RSAPublicKey ::= SEQUENCE {
         modulus INTEGER, -- n
         publicExponent INTEGER } -- e

   When signing, the RSASSA PKCS#1 v1.5 signature algorithm generates a
   single value, and that value is used directly as the signature value.

3.2.  ECDSA with SHA3

   The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in
   [DSS].  When ECDSA is used in conjunction with one of the SHA3 one-
   way hash functions, the object identifiers are:

      sigAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
          us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 3 }

      id-ecdsa-with-sha3-224 OBJECT IDENTIFIER ::= { sigAlgs 9 }

      id-ecdsa-with-sha3-256 OBJECT IDENTIFIER ::= { sigAlgs 10 }

      id-ecdsa-with-sha3-384 OBJECT IDENTIFIER ::= { sigAlgs 11 }

      id-ecdsa-with-sha3-512 OBJECT IDENTIFIER ::= { sigAlgs 12 }

   When using the id-ecdsa-with-sha3-224, id-ecdsa-with-sha3-256, id-
   ecdsa-with-sha3-384, and id-ecdsa-with-sha3-512 algorithm
   identifiers, the parameters field MUST be absent; not NULL but
   absent.

   The conventions for ECDSA public keys is as specified in [RFC5480].
   The ECParameters associated with the ECDSA public key in the signers
   certificate SHALL apply to the verification of the signature.

   When signing, the ECDSA algorithm generates two values.  These values
   are commonly referred to as r and s.  To easily transfer these two
   values as one signature, they MUST be ASN.1 encoded using the ECDSA-
   Sig-Value defined in [RFC3279] and repeated here for convenience:

      ECDSA-Sig-Value ::= SEQUENCE {
          r  INTEGER,
          s  INTEGER }

Housley                  Expires 21 October 2024                [Page 5]
Internet-Draft           Using SHA3 with the CMS              April 2024

4.  Message Authentication Codes using HMAC and SHA3

   This section specifies the conventions employed by CMS
   implementations that support the HMAC [RFC2104] with SHA3 message
   authentication code (MAC).

   MAC algorithm identifiers are located in the AuthenticatedData
   macAlgorithm field.

   MAC values are located in the AuthenticatedData mac field.

   When HMAC is used in conjunction with one of the SHA3 one-way hash
   functions, the object identifiers are:

      hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
          us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

      id-hmacWithSHA3-224 OBJECT IDENTIFIER ::= { hashAlgs 13 }

      id-hmacWithSHA3-256 OBJECT IDENTIFIER ::= { hashAlgs 14 }

      id-hmacWithSHA3-384 OBJECT IDENTIFIER ::= { hashAlgs 15 }

      id-hmacWithSHA3-512 OBJECT IDENTIFIER ::= { hashAlgs 16 }

   When the id-hmacWithSHA3-224, id-hmacWithSHA3-256, id-
   hmacWithSHA3-384, and id-hmacWithSHA3-512 algorithm identifier is
   used, the parameters field MUST be absent; not NULL but absent.

5.  Key Derivation Functions

   The CMS KEMRecipientInfo structure [I-D.ietf-lamps-cms-kemri] is one
   place where algorithm identifiers for key-derivation functions are
   needed.

5.1.  HKDF with SHA3

   This section assigns four algorithm identifiers that can be employed
   by CMS implementations that support the HMAC-based Extract-and-Expand
   Key Derivation Function (HKDF) [RFC5869] with the SHA3 family of hash
   functions.

   When HKDF is used in conjunction with one of the SHA3 one-way hash
   functions, the object identifiers are:

Housley                  Expires 21 October 2024                [Page 6]
Internet-Draft           Using SHA3 with the CMS              April 2024

      id-alg OBJECT IDENTIFIER ::= { iso(1) member-body(2)
          us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 3 }

      id-alg-hkdf-with-sha3-224 OBJECT IDENTIFIER ::= { id-alg TBD1 }

      id-alg-hkdf-with-sha3-256 OBJECT IDENTIFIER ::= { id-alg TBD2 }

      id-alg-hkdf-with-sha3-384 OBJECT IDENTIFIER ::= { id-alg TBD3 }

      id-alg-hkdf-with-sha3-512 OBJECT IDENTIFIER ::= { id-alg TBD4 }

   When id-alg-hkdf-with-sha3-224, id-alg-hkdf-with-sha3-256, id-alg-
   hkdf-with-sha3-384, or id-alg-hkdf-with-sha3-512 is used in an
   algorithm identifier, the parameters field MUST be absent; not NULL
   but absent.

5.2.  KMAC128-KDF and KMAC256-KDF

   This section specifies the conventions employed by CMS
   implementations that employ either the KMAC128 or KMAC256 as a key
   derivation function as defined in Section 4.4 of
   [NIST.SP.800-108r1-upd1].

   KMAC128 and KMAC256 are specified in [NIST.SP.800-185].  The use of
   KMAC128 and KMAC256 as a key derivation function are defined as:

      KMAC128-KDF is KMAC128(K, X, L, S).

      KMAC256-KDF is KMAC256(K, X, L, S).

   The parameters are:

      K  the input key-derivation key.  The length of K MUST be less
         than 2^2040.

      X  the context, which contains the ASN.1 DER encoding of
         CMSORIforKEMOtherInfo when the KDF is used with
         [I-D.ietf-lamps-cms-kemri].

      L  the output length, in bits.  L MUST be greater than or equal to
         0, and L MUST be less than 2^2040.

      S  the optional customization label, such as "KDF" (0x4B4446).
         The length of S MUST be less than 2^2040.

   When KMAC128-KDF or KMAC256-KDF is used, the object identifiers are:

Housley                  Expires 21 October 2024                [Page 7]
Internet-Draft           Using SHA3 with the CMS              April 2024

      hashAlgs OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16)
          us(840) organization(1) gov(101) csor(3) nistAlgorithm(4) 2 }

      id-kmac128 OBJECT IDENTIFIER ::= { hashAlgs 21 }

      id-kmac256 OBJECT IDENTIFIER ::= { hashAlgs 22 }

   When the id-kmac128 or id-kmac256 is used as part of an algorithm
   identifier, the parameters field MUST be absent if no customization
   label is used for S.  If any other value is used for S, then
   parameters field MUST be present and contain the value of S, encoded
   as Customization.

      Customization ::= OCTET STRING

5.3.  KDF2 and KDF3 with SHA3

   This section specifies the conventions employed by CMS
   implementations that employ either the KDF2 or KDF3 functions defined
   in [ANS-X9.44].  The CMS KEMRecipientInfo structure
   [I-D.ietf-lamps-cms-kemri] is one place where algorithm identifiers
   for key-derivation functions are needed.

   When KDF2 and KDF3 are used, they are identified by the id-kdf-kdf2
   and id-kdf-kdf3 object identifiers, respectively.  The algorithm
   identifier parameters carries an algorithm identifier to indicate
   which hash function is being employed.  To support SHA3, an algorithm
   identifier from Section 2 is carried in the parameter.

      x9-44 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
          tc68(133) country(16) x9(840) x9Standards(9) x9-44(44) }

      x9-44-components OBJECT IDENTIFIER ::= { x9-44 components(1) }

      id-kdf-kdf2 OBJECT IDENTIFIER ::= { x9-44-components kdf2(1) }

      id-kdf-kdf3 OBJECT IDENTIFIER ::= { x9-44-components kdf3(2) }

6.  Security Considerations

   Implementations must protect the signer's private key.  Compromise of
   the signer's private key permits masquerade.

   When more than two parties share the same message-authentication key,
   data origin authentication is not provided.  Any party that knows the
   message-authentication key can compute a valid MAC, therefore the
   content could originate from any one of the parties.

Housley                  Expires 21 October 2024                [Page 8]
Internet-Draft           Using SHA3 with the CMS              April 2024

   Implementations must randomly generate message-authentication keys
   and one-time values, such as the k value when generating a ECDSA
   signature.  In addition, the generation of public/private key pairs
   relies on a random numbers.  The use of inadequate pseudo-random
   number generators (PRNGs) to generate cryptographic values can result
   in little or no security.  An attacker may find it much easier to
   reproduce the PRNG environment that produced the keys, searching the
   resulting small set of possibilities, rather than brute force
   searching the whole key space.  The generation of quality random
   numbers is difficult.  RFC 4086 [RFC4086] offers important guidance
   in this area, and Appendix 3 of FIPS Pub 186-4 [DSS] provides some
   PRNG techniques.

   Implementers should be aware that cryptographic algorithms become
   weaker with time.  As new cryptanalysis techniques are developed and
   computing performance improves, the work factor to break a particular
   cryptographic algorithm will reduce.  Therefore, cryptographic
   algorithm implementations should be modular allowing new algorithms
   to be readily inserted.  That is, implementers should be prepared to
   regularly update the set of algorithms in their implementations.

7.  IANA Considerations

   IANA is asked to assign one object identifier for the ASN.1 module in
   Appendix "Appendix.  ASN.1 Module" in the "SMI Security for S/MIME
   Module Identifiers (1.2.840.113549.1.9.16.0)" registry [IANA-MOD]:

      id-mod-sha3-oids-2023 OBJECT IDENTIFIER ::= {
         iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
         pkcs-9(9) smime(16) mod(0) TBD0 }

   IANA is asked to assign four object identifiers for the HKDF using
   SHA3 algorithm identifiers in the "SMI Security for S/MIME Algorithms
   (1.2.840.113549.1.9.16.3)" registry [IANA-ALG]:

      id-alg-hkdf-with-sha3-224 OBJECT IDENTIFIER ::= { id-alg TBD1 }

      id-alg-hkdf-with-sha3-256 OBJECT IDENTIFIER ::= { id-alg TBD2 }

      id-alg-hkdf-with-sha3-384 OBJECT IDENTIFIER ::= { id-alg TBD3 }

      id-alg-hkdf-with-sha3-512 OBJECT IDENTIFIER ::= { id-alg TBD4 }

Acknowledgements

   Thanks to Daniel Van Geest and Sean Turner for their careful review
   and thoughtful comments.

Housley                  Expires 21 October 2024                [Page 9]
Internet-Draft           Using SHA3 with the CMS              April 2024

   Thanks to Sara Kerman, Quynh Dang, and David Cooper for getting the
   object identifiers assigned for KMAC128 and KMAC256.

References

Normative References

   [ANS-X9.44]
              American National Standards Institute, "Public Key
              Cryptography for the Financial Services Industry -- Key
              Establishment Using Integer Factorization Cryptography",
              American National Standard X9.44, 2007.

   [DSS]      National Institute of Standards and Technology, "Digital
              Signature Standard (DSS) version 4", FIPS PUB 186-4, July
              2013, <https://nvlpubs.nist.gov/nistpubs/FIPS/
              NIST.FIPS.186-4.pdf>.

   [NIST.SP.800-108r1-upd1]
              National Institute of Standards and Technology,
              "Recommendation for key derivation using pseudorandom
              functions", DOI 10.6028/NIST.SP.800-108r1-upd1, 2 February
              2024,
              <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
              NIST.SP.800-108r1-upd1.pdf>.

   [NIST.SP.800-185]
              National Institute of Standards and Technology, "SHA-3
              Derived Functions: cSHAKE, KMAC, TupleHash and
              ParallelHash", DOI 10.6028/NIST.SP.800-185, December 2016,
              <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
              NIST.SP.800-185.pdf>.

   [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
              Hashing for Message Authentication", RFC 2104,
              DOI 10.17487/RFC2104, February 1997,
              <https://www.rfc-editor.org/rfc/rfc2104>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/rfc/rfc2119>.

   [RFC3279]  Bassham, L., Polk, W., and R. Housley, "Algorithms and
              Identifiers for the Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 3279, DOI 10.17487/RFC3279, April
              2002, <https://www.rfc-editor.org/rfc/rfc3279>.

Housley                  Expires 21 October 2024               [Page 10]
Internet-Draft           Using SHA3 with the CMS              April 2024

   [RFC5480]  Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
              "Elliptic Curve Cryptography Subject Public Key
              Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
              <https://www.rfc-editor.org/rfc/rfc5480>.

   [RFC5652]  Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
              RFC 5652, DOI 10.17487/RFC5652, September 2009,
              <https://www.rfc-editor.org/rfc/rfc5652>.

   [RFC5869]  Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
              Key Derivation Function (HKDF)", RFC 5869,
              DOI 10.17487/RFC5869, May 2010,
              <https://www.rfc-editor.org/rfc/rfc5869>.

   [RFC5912]  Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
              Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,
              DOI 10.17487/RFC5912, June 2010,
              <https://www.rfc-editor.org/rfc/rfc5912>.

   [RFC8017]  Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
              "PKCS #1: RSA Cryptography Specifications Version 2.2",
              RFC 8017, DOI 10.17487/RFC8017, November 2016,
              <https://www.rfc-editor.org/rfc/rfc8017>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

   [SHA3]     National Institute of Standards and Technology, "SHA-3
              Standard: Permutation-Based Hash and Extendable-Output
              Functions", FIPS PUB 202, August 2015,
              <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf>.

   [X.680]    ITU-T, "Information technology -- Abstract Syntax Notation
              One (ASN.1): Specification of basic notation", ITU-T
              Recommendation X.680, ISO/IEC 8824-1:2021, February 2021,
              <https://www.itu.int/rec/T-REC-X.680>.

   [X.690]    ITU-T, "Information technology -- ASN.1 encoding rules:
              Specification of Basic Encoding Rules (BER), Canonical
              Encoding Rules (CER) and Distinguished Encoding Rules
              (DER)", ITU-T Recommendation X.690, ISO/IEC 8825-1:2021,
              February 2021, <https://www.itu.int/rec/T-REC-X.680>.

Informative References

Housley                  Expires 21 October 2024               [Page 11]
Internet-Draft           Using SHA3 with the CMS              April 2024

   [I-D.ietf-lamps-cms-kemri]
              Housley, R., Gray, J., and T. Okubo, "Using Key
              Encapsulation Mechanism (KEM) Algorithms in the
              Cryptographic Message Syntax (CMS)", Work in Progress,
              Internet-Draft, draft-ietf-lamps-cms-kemri-08, 6 February
              2024, <https://datatracker.ietf.org/doc/html/draft-ietf-
              lamps-cms-kemri-08>.

   [IANA-ALG] IANA, "SMI Security for for S/MIME Algorithms
              (1.2.840.113549.1.9.16.3)", n.d.,
              <https://www.iana.org/assignments/smi-numbers/>.

   [IANA-MOD] IANA, "SMI Security for S/MIME Module Identifier
              (1.2.840.113549.1.9.16.0)", n.d.,
              <https://www.iana.org/assignments/smi-numbers/>.

   [RFC4086]  Eastlake 3rd, D., Schiller, J., and S. Crocker,
              "Randomness Requirements for Security", BCP 106, RFC 4086,
              DOI 10.17487/RFC4086, June 2005,
              <https://www.rfc-editor.org/rfc/rfc4086>.

   [RFC8702]  Kampanakis, P. and Q. Dang, "Use of the SHAKE One-Way Hash
              Functions in the Cryptographic Message Syntax (CMS)",
              RFC 8702, DOI 10.17487/RFC8702, January 2020,
              <https://www.rfc-editor.org/rfc/rfc8702>.

Appendix.  ASN.1 Module

   This section contains the ASN.1 module for the algorithm identifiers
   using SHA3 family of hash functions [SHA3].  This module imports
   types from other ASN.1 modules that are defined in [RFC5912].

   <CODE BEGINS>
      SHA3-OIDs-2023
        { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
          smime(16) modules(0) id-mod-sha3-oids-2023(TBD0) }

      DEFINITIONS IMPLICIT TAGS ::=
      BEGIN

      EXPORTS ALL;

      IMPORTS

        AlgorithmIdentifier{}, DIGEST-ALGORITHM, SIGNATURE-ALGORITHM,
        KEY-DERIVATION, MAC-ALGORITHM
        FROM AlgorithmInformation-2009  -- [RFC5912]
          { iso(1) identified-organization(3) dod(6) internet(1)

Housley                  Expires 21 October 2024               [Page 12]
Internet-Draft           Using SHA3 with the CMS              April 2024

            security(5) mechanisms(5) pkix(7) id-mod(0)
            id-mod-algorithmInformation-02(58) }

       mda-sha1, pk-rsa, pk-ec, ECDSA-Sig-Value
       FROM PKIXAlgs-2009  -- [RFC5912]
         { iso(1) identified-organization(3) dod(6) internet(1)
           security(5) mechanisms(5) pkix(7) id-mod(0)
           id-mod-pkix1-algorithms2008-02(56) }

       mda-sha224, mda-sha256, mda-sha384, mda-sha512
       FROM PKIX1-PSS-OAEP-Algorithms-2009  -- [RFC5912]
         { iso(1) identified-organization(3) dod(6) internet(1)
           security(5) mechanisms(5) pkix(7) id-mod(0)
           id-mod-pkix1-rsa-pkalgs-02(54) } ;

      --
      -- Alias
      --

      OID ::= OBJECT IDENTIFIER

      --
      -- Object Identifier Arcs
      --

      nistAlgorithm OID ::= { joint-iso-itu-t(2) country(16)
          us(840) organization(1) gov(101) csor(3) 4 }

      hashAlgs OID ::= { nistAlgorithm 2 }

      sigAlgs OID ::= { nistAlgorithm 3 }

      x9-44 OID ::= { iso(1) identified-organization(3) tc68(133)
          country(16) x9(840) x9Standards(9) x9-44(44) }

      x9-44-components OID ::= { x9-44 components(1) }

      id-alg OID ::= { iso(1) member-body(2) us(840)
          rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) 3 }

      --
      -- Message Digest Algorithms
      --

      id-sha3-224 OID ::= { hashAlgs 7 }

Housley                  Expires 21 October 2024               [Page 13]
Internet-Draft           Using SHA3 with the CMS              April 2024

      id-sha3-256 OID ::= { hashAlgs 8 }

      id-sha3-384 OID ::= { hashAlgs 9 }

      id-sha3-512 OID ::= { hashAlgs 10 }

      mda-sha3-224 DIGEST-ALGORITHM ::= {
          IDENTIFIER id-sha3-224
          PARAMS ARE absent }

      mda-sha3-256 DIGEST-ALGORITHM ::= {
          IDENTIFIER id-sha3-256
          PARAMS ARE absent }

      mda-sha3-384 DIGEST-ALGORITHM ::= {
          IDENTIFIER id-sha3-384
          PARAMS ARE absent }

      mda-sha3-512 DIGEST-ALGORITHM ::= {
          IDENTIFIER id-sha3-512
          PARAMS ARE absent }

      HashAlgorithm ::= AlgorithmIdentifier{ DIGEST-ALGORITHM,
                            { HashAlgorithms } }

      HashAlgorithms DIGEST-ALGORITHM ::=  {
          mda-sha3-224 |
          mda-sha3-256 |
          mda-sha3-384 |
          mda-sha3-512,
          ... }

      --
      -- Signature Algorithms
      --

      id-rsassa-pkcs1-v1-5-with-sha3-224 OID ::= { sigAlgs 13 }

      id-rsassa-pkcs1-v1-5-with-sha3-256 OID ::= { sigAlgs 14 }

      id-rsassa-pkcs1-v1-5-with-sha3-384 OID ::= { sigAlgs 15 }

      id-rsassa-pkcs1-v1-5-with-sha3-512 OID ::= { sigAlgs 16 }

      id-ecdsa-with-sha3-224 OID ::= { sigAlgs 9 }

      id-ecdsa-with-sha3-256 OID ::= { sigAlgs 10 }

Housley                  Expires 21 October 2024               [Page 14]
Internet-Draft           Using SHA3 with the CMS              April 2024

      id-ecdsa-with-sha3-384 OID ::= { sigAlgs 11 }

      id-ecdsa-with-sha3-512 OID ::= { sigAlgs 12 }

      sa-rsaWithSHA3-224 SIGNATURE-ALGORITHM ::= {
          IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-224
          PARAMS TYPE NULL ARE required
          HASHES { mda-sha3-224 }
          PUBLIC-KEYS { pk-rsa }
          SMIME-CAPS {IDENTIFIED BY
              id-rsassa-pkcs1-v1-5-with-sha3-224 } }

      sa-rsaWithSHA3-256 SIGNATURE-ALGORITHM ::= {
          IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-256
          PARAMS TYPE NULL ARE required
          HASHES { mda-sha3-256 }
          PUBLIC-KEYS { pk-rsa }
          SMIME-CAPS {IDENTIFIED BY
              id-rsassa-pkcs1-v1-5-with-sha3-256 } }

      sa-rsaWithSHA3-384 SIGNATURE-ALGORITHM ::= {
          IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-384
          PARAMS TYPE NULL ARE required
          HASHES { mda-sha3-384 }
          PUBLIC-KEYS { pk-rsa }
          SMIME-CAPS {IDENTIFIED BY
              id-rsassa-pkcs1-v1-5-with-sha3-384 } }

      sa-rsaWithSHA3-512 SIGNATURE-ALGORITHM ::= {
          IDENTIFIER id-rsassa-pkcs1-v1-5-with-sha3-512
          PARAMS TYPE NULL ARE required
          HASHES { mda-sha3-512 }
          PUBLIC-KEYS { pk-rsa }
          SMIME-CAPS {IDENTIFIED BY
              id-rsassa-pkcs1-v1-5-with-sha3-512 } }

      sa-ecdsaWithSHA3-224 SIGNATURE-ALGORITHM ::= {
          IDENTIFIER id-ecdsa-with-sha3-224
          VALUE ECDSA-Sig-Value
          PARAMS ARE absent
          HASHES { mda-sha3-224 }
          PUBLIC-KEYS { pk-ec }
          SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-224 } }

      sa-ecdsaWithSHA3-256 SIGNATURE-ALGORITHM ::= {
          IDENTIFIER id-ecdsa-with-sha3-256
          VALUE ECDSA-Sig-Value
          PARAMS ARE absent

Housley                  Expires 21 October 2024               [Page 15]
Internet-Draft           Using SHA3 with the CMS              April 2024

          HASHES { mda-sha3-256 }
          PUBLIC-KEYS { pk-ec }
          SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-256 } }

      sa-ecdsaWithSHA3-384 SIGNATURE-ALGORITHM ::= {
          IDENTIFIER id-ecdsa-with-sha3-384
          VALUE ECDSA-Sig-Value
          PARAMS ARE absent
          HASHES { mda-sha3-384 }
          PUBLIC-KEYS { pk-ec }
          SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-384 } }

      sa-ecdsaWithSHA3-512 SIGNATURE-ALGORITHM ::= {
          IDENTIFIER id-ecdsa-with-sha3-512
          VALUE ECDSA-Sig-Value
          PARAMS ARE absent
          HASHES { mda-sha3-512 }
          PUBLIC-KEYS { pk-ec }
          SMIME-CAPS {IDENTIFIED BY id-ecdsa-with-sha3-512 } }

      SignatureAlg ::= AlgorithmIdentifier{ SIGNATURE-ALGORITHM,
                            { SignatureAlgs } }

      SignatureAlgs SIGNATURE-ALGORITHM ::= {
          sa-rsaWithSHA3-224 |
          sa-rsaWithSHA3-256 |
          sa-rsaWithSHA3-384 |
          sa-rsaWithSHA3-512 |
          sa-ecdsaWithSHA3-224 |
          sa-ecdsaWithSHA3-256 |
          sa-ecdsaWithSHA3-384 |
          sa-ecdsaWithSHA3-512,
          ... }

      --
      -- Message Authentication Codes
      --

      id-hmacWithSHA3-224 OID ::= { hashAlgs 13 }

      id-hmacWithSHA3-256 OID ::= { hashAlgs 14 }

      id-hmacWithSHA3-384 OID ::= { hashAlgs 15 }

      id-hmacWithSHA3-512 OID ::= { hashAlgs 16 }

      maca-hmacWithSHA3-224 MAC-ALGORITHM ::= {

Housley                  Expires 21 October 2024               [Page 16]
Internet-Draft           Using SHA3 with the CMS              April 2024

          IDENTIFIER id-hmacWithSHA3-224
          PARAMS ARE absent
          IS-KEYED-MAC TRUE
          SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-224 } }

      maca-hmacWithSHA3-256 MAC-ALGORITHM ::= {
          IDENTIFIER id-hmacWithSHA3-256
          PARAMS ARE absent
          IS-KEYED-MAC TRUE
          SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-256 } }

      maca-hmacWithSHA3-384 MAC-ALGORITHM ::= {
          IDENTIFIER id-hmacWithSHA3-384
          PARAMS ARE absent
          IS-KEYED-MAC TRUE
          SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-384 } }

      maca-hmacWithSHA3-512 MAC-ALGORITHM ::= {
          IDENTIFIER id-hmacWithSHA3-512
          PARAMS ARE absent
          IS-KEYED-MAC TRUE
          SMIME-CAPS {IDENTIFIED BY id-hmacWithSHA3-512 } }

      MACAlgorithm ::= AlgorithmIdentifier{ MAC-ALGORITHM,
                          { MACAlgorithms } }

      MACAlgorithms MAC-ALGORITHM ::= {
          maca-hmacWithSHA3-224 |
          maca-hmacWithSHA3-256 |
          maca-hmacWithSHA3-384 |
          maca-hmacWithSHA3-512,
          ... }

      --
      -- Key Derivation Algorithms
      --

      id-alg-hkdf-with-sha3-224 OID ::= { id-alg TBD1 }

      id-alg-hkdf-with-sha3-256 OID ::= { id-alg TBD2 }

      id-alg-hkdf-with-sha3-384 OID ::= { id-alg TBD3 }

      id-alg-hkdf-with-sha3-512 OID ::= { id-alg TBD4 }

      id-kmac128 OID ::= { hashAlgs 21 }

Housley                  Expires 21 October 2024               [Page 17]
Internet-Draft           Using SHA3 with the CMS              April 2024

      id-kmac256  OID ::= { hashAlgs 22 }

      id-kdf-kdf2 OID ::= { x9-44-components kdf2(1) }

      id-kdf-kdf3 OID ::= { x9-44-components kdf3(2) }

      kda-hkdf-with-sha3-224 KEY-DERIVATION ::= {
          IDENTIFIER id-alg-hkdf-with-sha3-224
          PARAMS ARE absent
          -- No S/MIME caps defined -- }

      kda-hkdf-with-sha3-256 KEY-DERIVATION ::= {
          IDENTIFIER id-alg-hkdf-with-sha3-256
          PARAMS ARE absent
          -- No S/MIME caps defined -- }

      kda-hkdf-with-sha3-384 KEY-DERIVATION ::= {
          IDENTIFIER id-alg-hkdf-with-sha3-384
          PARAMS ARE absent
          -- No S/MIME caps defined -- }

      kda-hkdf-with-sha3-512 KEY-DERIVATION ::= {
          IDENTIFIER id-alg-hkdf-with-sha3-512
          PARAMS ARE absent
          -- No S/MIME caps defined -- }

      kda-kmac128 KEY-DERIVATION ::= {
          IDENTIFIER id-kmac128
          PARAMS TYPE Customization ARE optional
          -- PARAMS are absent when Customization is ''H --
          -- No S/MIME caps defined -- }

      kda-kmac256 KEY-DERIVATION ::= {
          IDENTIFIER id-kmac256
          PARAMS TYPE Customization ARE optional
          -- PARAMS are absent when Customization is ''H --
          -- No S/MIME caps defined -- }

      kda-kdf2 KEY-DERIVATION ::= {
          IDENTIFIER id-kdf-kdf2
          PARAMS TYPE KDF2-HashFunction ARE required
          -- No S/MIME caps defined -- }

      kda-kdf3 KEY-DERIVATION ::= {
          IDENTIFIER id-kdf-kdf3
          PARAMS TYPE KDF3-HashFunction ARE required
          -- No S/MIME caps defined -- }

Housley                  Expires 21 October 2024               [Page 18]
Internet-Draft           Using SHA3 with the CMS              April 2024

      Customization ::= OCTET STRING

      KDF2-HashFunction ::= AlgorithmIdentifier { DIGEST-ALGORITHM,
                                { KDF2-HashFunctions } }

      KDF2-HashFunctions DIGEST-ALGORITHM ::= {
         X9-HashFunctions,
         ... }

      KDF3-HashFunction ::= AlgorithmIdentifier { DIGEST-ALGORITHM,
                                { KDF3-HashFunctions } }

      KDF3-HashFunctions DIGEST-ALGORITHM ::= {
         X9-HashFunctions,
         ... }

      X9-HashFunctions DIGEST-ALGORITHM ::= {
          mda-sha1 |
          mda-sha224 |
          mda-sha256 |
          mda-sha384 |
          mda-sha512 |
          mda-sha3-224 |
          mda-sha3-256 |
          mda-sha3-384 |
          mda-sha3-512,
          ... }

      KeyDerivationFunction ::=  AlgorithmIdentifier{ KEY-DERIVATION,
                                     { KeyDevAlgs } }

      KeyDevAlgs KEY-DERIVATION ::= {
          kda-hkdf-with-sha3-224 |
          kda-hkdf-with-sha3-256 |
          kda-hkdf-with-sha3-384 |
          kda-hkdf-with-sha3-512 |
          kda-kmac128 |
          kda-kmac256 |
          kda-kdf2 |
          kda-kdf3,
          ... }

      END
   <CODE ENDS>

Author's Address

Housley                  Expires 21 October 2024               [Page 19]
Internet-Draft           Using SHA3 with the CMS              April 2024

   Russ Housley
   Vigil Security, LLC
   Herndon, VA
   United States of America
   Email: housley@vigilsec.com

Housley                  Expires 21 October 2024               [Page 20]