Skip to main content

A PCE-based Architecture for Application-based Network Operations
draft-farrkingel-pce-abno-architecture-05

The information below is for an old version of the document.
Document Type
This is an older version of an Internet-Draft that was ultimately published as RFC 7491.
Authors Daniel King , Adrian Farrel
Last updated 2013-07-15
RFC stream (None)
Formats
Reviews
Additional resources
Stream Stream state (No stream defined)
Consensus boilerplate Unknown
RFC Editor Note (None)
IESG IESG state Became RFC 7491 (Informational)
Telechat date (None)
Responsible AD (None)
Send notices to (None)
draft-farrkingel-pce-abno-architecture-05
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

                     +---------------------+
                     |       NMS/OSS       |
                     +----------+----------+
                                ^
                                |
                     +----------+----------+
                     |    ABNO Controller  |
                     |                     |
                     +---------------------+

         Figure 21:  ABNO Sends Solution to the NMS/OSS

   3. The concurrently computed solution received from the PCE is sent
      back to the NMS/OSS by the ABNO Controller. The NMS/OSS user can
      then check the candidate paths and either provision the new
      services, or save the solution for deployment in the future.

3.5 Adaptive Network Management (ANM)

   The ABNO architecture provides the capability for reactive network
   control of resources based on classification, profiling and
   prediction based on current demands and resource utilization.
   Server-layer transport network resources, such as Optical Transport
   Network (OTN) time-slicing [G.709], or the fine granularity grid of
   wavelengths with variable spectral bandwidth (flexi-grid) [G.694.1],
   can be manipulated to meet current and projected demands in a model
   called Elastic Optical Networks (EON).

   EON provides spectrum-efficient and scalable transport by
   introducing flexible granular grooming in the optical frequency
   domain. This is achieved using arbitrary contiguous
   concatenation of optical spectrum that allows creation of custom-
   sized bandwidth.  This bandwidth is defined in slots of 12,5GHz.

   Adaptive Network Management (ANM) with EON allows appropriately-
   sized optical bandwidth to be allocated to an end-to-end optical
   path.  In flexi-grid, the allocation is performed according to the
   traffic volume or following user requests, and can be achieved in a
   highly spectrum-efficient and scalable manner.  Similarly, OTN
   provides an adaptive and elastic provisioning of bandwidth on top of
   wavelength switched optical networks (WSON).

   To efficiently use optical resources, a system is required which can
   monitor network resources, and decide the optimal network
   configuration based on the status, bandwidth availability and user
   service. We call this ANM.

King & Farrel                                                  [Page 41]
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

3.5.1. ANM Trigger

   There are different reasons to trigger an adaptive network
   management process, these include:

   o  Measurement: traffic measurements can be used in order to cause
      spectrum allocations that fit the traffic needs as efficiently as
      possible.  This function may be influenced by measuring the IP
      router traffic flows, by examining traffic engineering or link
      state databases, by usage thresholds for critical links in the
      network, or by requests from external entities.  Nowadays, network
      operators have active monitoring probes in the network, which
      store their results in the OSS.  The OSS or OAM Handler components
      activate this measurement-based trigger, so the ABNO Controller
      would not be directly involved in this case.

   o  Human: operators may request ABNO to run an adaptive network
      planning process via a NMS.

   o  Periodic: adaptive network planning process can be run
      periodically to find an optimum configuration.

   An ABNO Controller would receive a request from OSS or NMS to run an
   adaptive network manager process.

3.5.2. Processing request and GCO computation

   Based on the human of periodic trigger requests described in the
   previous Section, the OSS or NMS will send a request to the ABNO
   Controller to perform EON-based GCO.  The ABNO Controller will
   select a set of services to be reoptimized and choose an objective
   function that will deliver the best use of network resources.  In
   making these choices, the ABNO Controller is guided by network-wide
   policy on the use of resources, the definition of optimization, and
   the level of perturbation to existing services that is tolerable.

   Much as in Section 3.5, this request for GCO is passed to the PCE.
   The PCE could then consider the end-to-end paths and every channel's
   optimal spectrum assignment in order to satisfy traffic demands and
   optimize the optical spectrum consumption within the network.

   The PCE will operate on the TED, but is likely to also be stateful so
   that it knows which LSPs correspond to which waveband allocations on
   which links in the network.  Once PCE arrives at an answer, it
   returns a set of potential paths to the ABNO Controller which passes
   them on to the NMS or OSS to supervise/select the subsequent path
   set-up/modification process.

King & Farrel                                                  [Page 42]
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

   This exchange is shown in Figure 22.  Note that the figure does not
   show the interactions used by the OSS/NMS for establishing or
   modifying LSPs in the network.

                     +---------------------------+
                     |        OSS or NMS         |
                     +-----------+---+-----------+
                                 |   ^
                                 V   |
           +------+   +----------+---+----------+
           |Policy+->-+     ABNO Controller     |
           |Agent |   |                         |
           +------+   +----------+---+----------+
                                 |   ^
                                 V   |
                           +-----+---+----+
                           +      PCE     |
                           +--------------+

        Figure 22: Adaptive Network Management with human intervention

3.5.3.  Automated Provisioning Process

   Although most of network operations are supervised by the operator,
   there are some actions, which may not require supervision, like a
   simple modification of a modulation format in a  Bit rate variable
   transponder (BVT) (to increase the optical spectrum efficiency or
   reduce energy consumption).  In this processes, where human
   intervention is not required, PCE sends provisioning manager new
   configuration to configure the network elements.

King & Farrel                                                  [Page 43]
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

                     +------------------------+
                     |       OSS or NMS       |
                     +-----------+------------+
                                 |
                                 V
           +------+   +----------+------------+
           |Policy+->-+     ABNO Controller   |
           |Agent |   |                       |
           +------+   +----------+------------+
                                 |
                                 V
                          +------+------+
                          +     PCE     |
                          +------+------+
                                 |
                                 V
                 +----------------------------------+
                 |       Provisioning Manager       |
                 +----------------------------------+

      Figure 23: Adaptive Network Management without human intervention

3.6 Pseudowire Operations and Management

   Pseudowires in an MPLS network [RFC3985] operate as a form of layered
   network over the connectivity provided by the MPLS network.  The
   pseudowires are carried by LSPs operating as transport tunnels, and
   planning is necessary to determine how those tunnels are placed in
   the network and which tunnels are used by any pseudowire.

   This section considers four use cases: multi-segment pseudowires,
   path-diverse pseudowires, path-diverse multi-segment pseudowires, and
   pseudowire segment protection.  Section 3.6.4 describes the
   applicability of the ABNO architecture to these four use cases.

3.6.1 Multi-Segment Pseudowires

   [RFC5254] described the architecture for multi-segment pseudowires.
   An end-to-end service, as shown in Figure 24, can consist of a
   series of stitched segments shown on the figure as AC, PW1, PW2, PW3,
   and AC.  Each pseudowire segment is stitched at a 'stitching PE' (S-
   PE): for example, PW1 is stitched to PW2 at S-PE1.  Each access
   circuit (AC) is stitched to a pseudowire segment at a 'terminating
   PE' (T-PE): for example, PW1 is stitched to the AC at T-PE1.

   Each pseudowire segment is carried across the MPLS network in an LSP
   operating as a transport tunnel: for example, PW1 is carried in LSP1.
   The LSPs between PEs may traverse different MPLS networks with the

King & Farrel                                                  [Page 44]
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

   PEs as border nodes, or the PEs may lie within the same network such
   such that the LSPs each only span part of the network.

             -----         -----         -----         -----
    ---     |T-PE1|  LSP1 |S-PE1|  LSP2 |S-PE3|  LSP3 |T-PE2|    +---+
   |   | AC |     |=======|     |=======|     |=======|     | AC |   |
   |CE1|----|........PW1........|..PW2........|..PW3........|----|CE2|
   |   |    |     |=======|     |=======|     |=======|     |    |   |
    ---     |     |       |     |       |     |       |     |    +---+
             -----         -----         -----         -----

                Figure 24 : Multi-Segment Pseudowire

   While the topology shown in Figure 24 is easy to navigate, the
   reality of a deployed network can be considerably more complex.  The
   topology in Figure 25 shows a small mesh of PEs.  The links between
   the PEs are not physical links but represent the potential of MPLS
   LSPs between the PEs.

   When establishing the end-to-end service between CE1 and CE2, some
   choice must be made about which PEs to use.  In other words, a path
   computation must be made to determine the pseudowire segment 'hops',
   and then the necessary LSP tunnels must be established to carry the
   pseudowire segments that will be stitched together.

   Of course, each LSP may itself require a path computation decision to
   route it through the MPLS network between PEs.

   The choice of path for the multi-segment pseudowire will depend on
   such issues as:
   - MPLS connectivity
   - MPLS bandwidth availability
   - pseudowire stitching capability and capacity at PEs
   - policy and confidentiality considerations for use of PEs.

                                  -----
                                 |S-PE5|
                                 /-----\
    ---      -----         -----/       \-----         -----      ---
   |CE1|----|T-PE1|-------|S-PE1|-------|S-PE3|-------|T-PE2|----|CE2|
    ---      -----\        -----\        -----        /-----      ---
                   \         |   -------   |         /
                    \      -----        \-----      /
                     -----|S-PE2|-------|S-PE4|-----
                           -----         -----

             Figure 25 : Multi-Segment Pseudowire Network Topology

King & Farrel                                                  [Page 45]
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

3.6.2 Path-Diverse Pseudowires

   The connectivity service provided by a pseudowire may need to be
   resilient to failure.  In many cases, this function is provided by
   provisioning a pair of pseudowires carried by path-diverse LSPs
   across the network as shown in Figure 26 (the terminology is
   inherited directly from [RFC3985]).  Clearly, in this case, the
   challenge is to keep the two LSPs (LSP1 and LSP2) disjoint within the
   MPLS network.  This problem is not different from the normal MPLS
   path-diversity problem.

                 -------                         -------
                |  PE1  |          LSP1         |  PE2  |
           AC   |       |=======================|       |   AC
            ----...................PW1...................----
    --- -  /    |       |=======================|       |    \  -----
   |     |/     |       |                       |       |     \|     |
   | CE1 +      |       |      MPLS Network     |       |      + CE2 |
   |     |\     |       |                       |       |     /|     |
    --- -  \    |       |=======================|       |    /  -----
            ----...................PW2...................----
           AC   |       |=======================|       |   AC
                |       |          LSP2         |       |
                 -------                         -------

                 Figure 26 : Path-Diverse Pseudowires

   The path-diverse pseudowire is developed in Figure 27 by the "dual-
   homing" of each CE through more than one PE.  The requirement for LSP
   path diversity is exactly the same, but it is complicated by the LSPs
   having distinct end points.  In this case, the head-end router (e.g.,
   PE1) cannot be relied upon to maintain the path diversity through the
   signaling protocol because it is aware of the path of the only one of
   the LSPs.  Thus some form of coordinated path computation approach is
   needed.

King & Farrel                                                  [Page 46]
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

                 -------                         -------
                |  PE1  |          LSP1         |  PE2  |
            AC  |       |=======================|       |  AC
             ---...................PW1...................---
            /   |       |=======================|       |   \
    -----  /    |       |                       |       |    \  -----
   |     |/      -------                         -------      \|     |
   | CE1 +                     MPLS Network                    + CE2 |
   |     |\      -------                         -------      /|     |
    -----  \    |  PE3  |                       |  PE4  |    /  -----
            \   |       |=======================|       |   /
             ---...................PW2...................---
            AC  |       |=======================|       |  AC
                |       |          LSP2         |       |
                 -------                         -------

            Figure 27 : Path-Diverse Pseudowires With Disjoint PEs

3.6.3 Path-Diverse Multi-Segment Pseudowires

   Figure 28 shows how the services in the previous two sections may be
   combined to offer end-to-end diverse paths in a multi-segment
   environment.  To offer end-to-end resilience to failure, two entirely
   diverse, end-to-end multi-segment pseudowires may be needed.

                                  -----                -----
                                 |S-PE5|--------------|T-PE4|
                                 /-----\               ----- \
             -----         -----/       \-----         -----  \ ---
            |T-PE1|-------|S-PE1|-------|S-PE3|-------|T-PE2|--|CE2|
      ---  / -----\        -----\        -----        /-----    ---
     |CE1|<        -------   |   -------   |         /
      ---  \ -----        \-----        \-----      /
            |T-PE3|-------|S-PE2|-------|S-PE4|-----
             -----         -----         -----

      Figure 28 : Path-Diverse Multi-Segment Pseudowire Network Topology

   Just as in any diverse-path computation, the selection of the first
   path needs to be made with awareness of the fact that a second,
   fully-diverse path is also needed.  If a sequential computation was
   applied to the topology in Figure 28, the first path CE1,T-PE1,S-PE1,
   S-PE3,T-PE2,CE2 would make it impossible to find a second path that
   was fully diverse from the first.

   But the problem is complicated by the multi-layer nature of the
   network.  It is not enough that the PEs are chosen to diverse because
   the LSP tunnels between them might share links within the MPLS

King & Farrel                                                  [Page 47]
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

   network.  Thus, a multi-layer planning solution is needed to achieve
   the desired level of service.

3.6.4 Pseudowire Segment Protection

   An alternative to the end-to-end pseudowire protection service
   described in Section 3.6.3 can be achieved by protecting individual
   pseudowire segments or PEs.  For example, in Figure 28, the
   pseudowire between S-PE1 and S-PE5 may be protected by a pair of
   stitched segments running between S-PE1 and S-PE5, and between S-PE5
   and S-PE3.  This is shown in detail in Figure 29.

             -------              -------              -------
            | S-PE1 |    LSP1    | S-PE5 |    LSP3    | S-PE3 |
            |       |============|       |============|       |
            |   .........PW1..................PW3..........   | Outgoing
   Incoming |  :    |============|       |============|    :  | segment
   segment  |  :    |             -------             |    :..........
    ...........:    |                                 |    :  |
            |  :    |                                 |    :  |
            |  :    |=================================|    :  |
            |   .........PW2...............................   |
            |       |=================================|       |
            |       |    LSP2                         |       |
             -------                                   -------

   Figure 29 : Fragment of a Segment-Protected Multi-Segment Pseudowire

   The determination of pseudowire protection segments requires
   coordination and planning, and just as in Section 3.6.5, this
   planning must be cognizant of the paths taken by LSPs through the
   underlying MPLS networks.

3.6.5 Applicability of ABNO to Pseudowires

   The ABNO architecture lends itself well to the planning and control
   pseudowires in the use cases described above.  The user or
   application needs a single point at which it requests services: the
   ABNO Controller.  The ANBO Controller can ask a PCE to draw on the
   topology of pseudowire stiching-capable PEs as well as additional
   information regarding PE capabilities, such as load on PEs and
   administrative policies, and the PCE can use a series of TEDs or
   other PCEs for the underlying MPLS networks to determine the paths of
   the LSP tunnels.  Then a number of different provisioning systems can
   be used to instantiate the LSPs and provision the pseudowires under
   the control of the Provisioning Manager.  The ABNO Controller will
   use the I2RS Client to instruct the network devices about what

King & Farrel                                                  [Page 48]
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

   traffic should be placed on which pseudowires, and in conjunction
   with the OAM Handler can ensure that failure events are handled
   correctly, that service quality levels are appropriate, and that
   service protection levels are maintained.

3.7 Other Potential Use Cases

   This section serves as a place-holder for other potential use cases
   that might get documented in a future revision of this document.

3.7.1 Grooming and Regrooming

   This use case could cover the following scenarios:

   - Nested LSPs
   - Packet Classification (IP flows into LSPs at edge routers)
   - Bucket Stuffing
   - IP Flows into ECMP Hash Bucket

3.7.2 Bandwidth Scheduling

   Bandwidth Scheduling consist of configuring LSPs based on a given
   time schedule. This can be used to support maintenance or
   operational schedules or to adjust network capacity based on
   traffic pattern detection.

   The ABNO framework provides the components to enable bandwidth
   scheduling solutions.

3.7.3 ALTO Server

   A use case describing the ALTO server is needed.]

4. Survivability and Redundancy within the ABNO Architecture

   [Editor's note: this section to be written with consideration of how
    the ABNO system survives the failure of individual components.]

5. Security Consideration

   [Editor's note: this section to be written.]

6. Manageability Considerations

   [Editor's note: this section to be written.]

King & Farrel                                                  [Page 49]
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

7. IANA Considerations

   This document makes no requests for IANA action.

8. Acknowledgements

   Thanks for discussions and review are due to Ken Gray, Jan Medved,
   Nitin Bahadur, Diego Caviglia, Joel Halpern, Brian Field, Ori
   Gerstel, Daniele Ceccarelli, Diego Caviglia Cyril Margaria, and
   Jonathan Hardwick.

   This work was supported in part by the FP-7 IDEALIST project under
   grant agreement number 317999.

9. References

9.1. Informative References

   [I-D.atlas-i2rs-architecture]
             Ward, D., Halpern, J., and S. Hares, An Architecture for
             the Interface to the Routing System",
             draft-atlas-i2rs-architecture, work in progress.

   [I-D.atlas-i2rs-problem-statement]
             Atlas, A., Nadeau, T., and D. Ward, "Interface to the
             Routing System Problem Statement",
             draft-atlas-i2rs-problem-statement, work in progress.

   [I-D.boucadair-connectivity-provisioning-profile]
             Boucadair, M., Jacquenet, c., and N. Wang, "IP/MPLS
             Connectivity Provisioning Profile",
             draft-boucadair-connectivity-provisioning-profile, work in
             progress.

   [I-D.crabbe-pce-pce-initiated-lsp]
             Crabbe, E., Minei, I., Sivabalan, S., and Varga, R., "PCEP
             Extensions for PCE-initiated LSP Setup in a Stateful PCE
             Model", draft-crabbe-pce-pce-initiated-lsp, work in
             progress.

   [I-D.ietf-alto-protocol]
             Alimi, R., Penno, R., and Yang, Y., "ALTO Protocol",
             draft-ietf-alto-protocol, work in progress.

King & Farrel                                                  [Page 50]
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

   [I-D.ietf-idr-ls-distribution]
             Gredler, H., Medved, J., Previdi, S., Farrel, A., and
             Ray, S., "North-Bound Distribution of Link-State and TE
             Information using BGP", draft-ietf-idr-ls-distribution,
             work in progress.

   [I-D.ietf-netmod-routing-cfg]
             Lhotka, L., "A YANG Data Model for Routing Management",
             draft-ietf-netmod-routing-cfg, work in progress.

   [I-D.ietf-pce-stateful-pce]
             Crabbe, E., Medved, J., Minei, I., and R. Varga, "PCEP
             Extensions for Stateful PCE", draft-ietf-pce-stateful-pce,
             work in progress.

   [ONF]     Open Networking Foundation, "OpenFlow Switch Specification
             Version 1.1.0 Implemented (Wire Protocol 0x02)", February
             2011.

   [RFC2748] Durham, D., Ed., Boyle, J., Cohen, R., Herzog, S., Rajan,
             R., and A. Sastry, "The COPS (Common Open Policy Service)
             Protocol", RFC 2748, January 2000.

   [RFC2753] Yavatkar, R., Pendarakis, D. and R. Guerin, "A
             Framework for Policy-based Admission Control", RFC2753,
             January 2000.

   [RFC3209] D. Awduche et al., "RSVP-TE: Extensions to RSVP for LSP
             Tunnels", RFC 3209, December 2001.

   [RFC3292] Doria, A., Hellstrand, F., Sundell, K., and Worster, T.,
             "General Switch Management Protocol (GSMP) V3", RFC 3292,
             June 2002.

   [RFC3412] Case, J., Harrington, D., Preshun, R., and Wijnen, B.,
             "Message Processing and Dispatching for the Simple Network
             Management Protocol (SNMP)", RFC 3412, December 2002.

   [RFC3473] L. Berger et al., "Generalized Multi-Protocol Label
             Switching (GMPLS) Signaling Resource ReserVation Protocol-
             Traffic Engineering (RSVP-TE) Extensions", RFC 3473,
             January 2003.

   [RFC3630] Katz, D., Kmpella, K., and Yeung, D., "Traffic Engineering
             (TE) Extensions to OSPF Version 2", RFC 3630, September
             2003.

King & Farrel                                                  [Page 51]
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

   [RFC3746] Yang, L., Dantu, R., Anderson, T., and Gopal, R.,
             "Forwarding and Control Element Separation (ForCES)
             Framework", RFC 3746, April 2004.

   [RFC3985] Bryant, S., Ed., and P. Pate, Ed., "Pseudo Wire Emulation
             Edge-to-Edge (PWE3) Architecture", RFC 3985, March 2005.

   [RFC4655] Farrel, A., Vasseur, J.-P., and Ash, J., "A Path
             Computation Element (PCE)-Based Architecture", RFC 4655,
             August 2006.

   [RFC5101] B. Claise, "Specification of the IP Flow Information Export
             (IPFIX) Protocol for the Exchange of IP Traffic Flow
             Information", RFC 5101, January 2008.

   [RFC5150] Ayyangar, A., Kompella, K., Vasseur, JP. and Farrel, A.,
             "Label Switched Path Stitching with Generalized
             Multiprotocol Label Switching Traffic Engineering (GMPLS
             TE)", RFC 5150, February 2008.

   [RFC5212] Shiomoto, K., Papadimitriou, D., Le Roux, JL., Vigoureux,
             M., and Brungard, D., "Requirements for GMPLS-Based Multi-
             Region and Multi-Layer Networks (MRN/MLN)", RFC 5212, July
             2008.

   [RFC5254] Bitar, N., Bocci, M. and L. Martini, "Requirements for
             Multi-Segment Pseudowire Emulation Edge-to-Edge (PWE3)",
             RFC 5254, October 2008

   [RFC5305] Li, T. and H. Smit, "IS-IS Extensions for Traffic
             Engineering", RFC 5305, October 2008.

   [RFC5394] Bryskin, I., Papadimitriou, D., Berger, L. and Ash, J.,
             "Policy-Enabled Path Computation Framework", RFC 5394,
             December 2008.

   [RFC5424] R. Gerhards, "The Syslog Protocol", RFC 5424, March 2009.

   [RFC5440] Vasseur, JP. and Le Roux, JL., "Path Computation Element
             (PCE) Communication Protocol (PCEP)", RFC 5440, March 2009.

   [RFC5520] Bradford, R., Vasseur, JP., and Farrel, A., "Preserving
             Topology Confidentiality in Inter-Domain Path Computation
             Using a Path-Key-Based Mechanism", RC 5520, April 2009.

King & Farrel                                                  [Page 52]
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

   [RFC5557] Lee, Y., Le Roux, JL., King, D., and Oki, E., "Path
             Computation Element Communication Protocol (PCEP)
             Requirements and Protocol Extensions in Support of Global
             Concurrent Optimization", RFC 5557, July 2009.

   [RFC5623] Oki, E., Takeda, T., Le Roux, JL., and Farrel, A.,
             "Framework for PCE-Based Inter-Layer MPLS and GMPLS Traffic
             Engineering", RFC 5623, September 2009.

   [RFC5693] Seedorf, J., and Burger, E., "Application-Layer Traffic
             Optimization (ALTO) Problem Statement", RFC 5693, October
             2009.

   [RFC5810] A. Doria, et al., "Forwarding and Control Element
             Separation (ForCES) Protocol Specification", RFC 5810,
             March 2010.

   [RFC6007] I. Nishioka. and D. King., "Use of the Synchronization
             VECtor (SVEC) List for Synchronized Dependent Path
             Computations", RFC 6007, September 2010.

   [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
             Network Configuration Protocol (NETCONF)", RFC 6020,
             October 2010.

   [RFC6107] Shiomoto, K. and A. Farrel, "Procedures for Dynamically
             Signaled Hierarchical Label Switched Paths", RFC 6107,
             February 2011.

   [RFC6120] P. Saint-Andre, "Extensible Messaging and Presence Protocol
             (XMPP): Core", RFC 6120, March 2011.

   [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and Bierman,
             A., "Network Configuration Protocol (NETCONF)", RFC 6241,
             June 2011.

   [RFC6707] Niven-Jenkins, B., Le Faucheur, F., and Bitar, N., "Content
             Distribution Network Interconnection (CDNI) Problem
             Statement", RFC 6707, September 2012.

   [RFC6805] King, D. and Farrel, A., "The Application of the Path
             Computation Element Architecture to the Determination of a
             Sequence of Domains in MPLS and GMPLS", RFC 6805, November
             2012.

   [TL1]     Telcorida, "Operations Application Messages - Language For
             Operations Application", GR-831, November 1996.

King & Farrel                                                  [Page 53]
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

   [G.694.2] ITU-T Recommendation G.694.2, "Spectral grids for WDM
             applications: CWDM wavelength grid", December 2003.

   [G.709]   ITU-T, "Interface for the Optical Transport Network
             (OTN)", G.709 Recommendation, October 2009.

10. Contributors' Addresses

   Quintin Zhao
   Huawei Technology
   125 Nagog Technology Park
   Acton, MA  01719
   US
   Email: qzhao@huawei.com

   Victor Lopez Alvarez
   Telefonica I+D
   Email: vlopez@tid.es

   Ramon Casellas
   CTTC
   Email: ramon.casellas@cttc.es

   Yuji Kamite
   NTT Communications Corporation
   Email: y.kamite@ntt.com

   Yosuke Tanaka
   NTT Communications Corporation
   Email: yosuke.tanaka@ntt.com

   Ina Minei
   Juniper Networks
   ina@juniper.net

11. Authors' Addresses

   Daniel King
   Old Dog Consulting
   Email: daniel@olddog.co.uk

   Adrian Farrel
   Juniper Networks
   Email: adrian@olddog.co.uk

King & Farrel                                                  [Page 54]
draft-farrkingel-pce-abno-architecture-05.txt                  July 2013

Appendix A.  Undefined Interfaces

   This Appendix provides a brief list of interfaces that are not yet
   defined at the time of writing.  Interfaces where there is a choice
   of existing protocols are not listed.

   - An interface for adding additional information to the Treaffic
     Engineering Database is described in Section 2.3.2.3.  No protocol
     is currently identified for this interface, but candidates include:

     - The protocol developed or adopted to satisfy the requirements of
       I2RS [I-D.atlas-i2rs-architecture]

     - Netconf [RFC6241]

   - The protocol or protocols to be used by the Interface to the
     Routing System described in Section 2.3.2.8 have yet to be
     determined.  The I2RS working group will make this decision after
     use cases and protocol requirements have been agreed.  Various
     candidate protocols have been identified although none appears to
     be suitable without some extensions to the currently-specified
     protocol elements.  The list of protocols supplied here is
     illustrative and not intended to constrain the work of the I2RS
     working group.  The order of the list is not significant.

     - OpenFlow [ONF]

     - Netconf [RFC6241]

     - ForCES [RFC3746]

   - As described in Section 2.3.2.10, the Virtual Network Topology
     Manager needs an interface that can be used by a PCE or the ABNO
     Controller to inform it that a client layer needs more virtual
     topology.   It is possible that the protocol identified for use
     with I2RS will satisfy this requirement.

   - The north-bound interface from the ABNO Controller is used by the
     NMS, OSS, and Application Service Coordinator to request services
     in the network in support of applications as described in Section
     2.3.2.11.

     - It is possible that the protocol selected or designed to satisfy
       I2RS.

     - A potential approach for this tyoe of interface is described in
       [I-D.boucadair-connectivity-provisioning-profile] for a simple
       use case.

King & Farrel                                                  [Page 55]