Skip to main content

Requirements for Signaling Protocols
RFC 3726

Document Type RFC - Informational (April 2004)
Author Marcus Brunner
Last updated 2013-03-02
RFC stream Internet Engineering Task Force (IETF)
Formats
Additional resources Mailing list discussion
IESG Responsible AD Allison J. Mankin
Send notices to (None)
RFC 3726
5.7.4.  Replay Protection

   To prevent replay of previous signaling messages the signaling
   protocol MUST provide means to detect old i.e., already transmitted
   signaling messages.  A solution must cover issues of synchronization
   problems in the case of a restart or a crash of a participating
   network element.

5.7.5.  Hop-by-Hop Security

   Channel security between signaling entities MUST be implemented.  It
   is a well known and proven concept in Quality of Service and other
   signaling protocols to have intermediate nodes that actively
   participate in the protocol to modify the messages as it is required
   by processing rules.  Note that this requirement does not exclude
   end-to-end or network-to-network security of a signaling message.
   End-to-end security between the NSIS Initiator and the NSIS Responder
   may be used to provide protection of non-mutable data fields.
   Network-to-network security refers to the protection of messages over
   various hops but not in an end-to-end manner i.e., protected over a
   particular network.

5.7.6.  Identity Confidentiality and Network Topology Hiding

   Identity confidentiality SHOULD be supported.  It enables privacy and
   avoids profiling of entities by adversary eavesdropping the signaling
   traffic along the path.  The identity used in the process of
   authentication may also be hidden to a limited extent from a network
   to which the initiator is attached.  However the identity MUST
   provide enough information for the nodes in the access network to
   collect accounting data.

   Network topology hiding MAY be supported to prevent entities along
   the path to learn the topology of a network.  Supporting this
   property might conflict with a diagnostic capability.

5.7.7.  Denial-of-Service Attacks

   A signaling protocol SHOULD provide prevention of Denial-of-service
   attacks.  To effectively prevent denial-of-service attacks it is
   necessary that the used security and protocol mechanisms MUST have
   low computational complexity to verify a state setup request prior to
   authenticating the requesting entity.  Additionally the signaling
   protocol and the used security mechanisms SHOULD NOT require large
   resource consumption on NSIS Entities (for example main memory or
   other additional message exchanges) before a successful
   authentication is done.

Brunner                      Informational                     [Page 21]
RFC 3726          Requirements for Signaling Protocols        April 2004

5.7.8.  Confidentiality of Signaling Messages

   Based on the signaling information exchanged between nodes
   participating in the signaling protocol an adversary may learn both
   the identities and the content of the signaling messages.  Since the
   ability to listen to signaling channels is a major guide to what data
   channels are interesting ones.

   To prevent this from happening, confidentiality of the signaling
   message in a hop-by-hop manner SHOULD be provided.  Note that most
   messages must be protected on a hop-by-hop basis, since entities,
   which actively participate in the signaling protocol, must be able to
   read and eventually modify the signaling messages.

5.7.9.  Ownership of State

   When existing states have to be modified then there is a need to use
   a session identifier to uniquely identify the established state.  A
   signaling protocol MUST provide means of security protection to
   prevent adversaries from modifying state.

5.8.  Mobility

5.8.1.  Allow Efficient Service Re-Establishment After Handover

   Handover is an essential function in wireless networks.  After
   handover, the states may need to be completely or partially re-
   established due to route changes.  The re-establishment may be
   requested by the mobile node itself or triggered by the access point
   that the mobile node is attached to.  In the first case, the
   signaling MUST allow efficient re-establishment after handover.  Re-
   establishment after handover MUST be as quick as possible so that the
   mobile node does not experience service interruption or service
   degradation.  The re-establishment SHOULD be localized, and not
   require end-to-end signaling.

5.9.  Interworking with Other Protocols and Techniques

   Hooks SHOULD be provided to enable efficient interworking between
   various protocols and techniques including the following listed.

5.9.1.  MUST Interwork with IP Tunneling

   IP tunneling for various applications MUST be supported.  More
   specifically IPSec tunnels are of importance.  This mainly impacts
   the identification of flows.  When using IPSec, parts of information
   commonly used for flow identification (e.g., transport protocol
   information and ports) may not be accessible due to encryption.

Brunner                      Informational                     [Page 22]
RFC 3726          Requirements for Signaling Protocols        April 2004

5.9.2.  MUST NOT Constrain Either to IPv4 or IPv6

5.9.3.  MUST be Independent from Charging Model

   Signaling MUST NOT be constrained by charging models or the charging
   infrastructure used.

5.9.4.  SHOULD Provide Hooks for AAA Protocols

   The NSIS protocol SHOULD be developed with respect to be able to
   collect usage records from one or more network elements.

5.9.5.  SHOULD Work with Seamless Handoff Protocols

   An NSIS protocol SHOULD work with seamless handoff protocols such as
   context transfer and candidate access router (CAR) discovery.

5.9.6.  MUST Work with Traditional Routing

   NSIS assumes traditional L3 routing, which is purely based on L3
   destination addresses.  NSIS MUST work with L3 routing, in particular
   it MUST work in case of route changes.  This means state on the old
   route MUST be released and state on the new route MUST be established
   by an NSIS protocol.

   Networks, which do non-traditional routing, should not break NSIS
   signaling.  NSIS MAY work for some of these situations.
   Particularly, combinations of NSIS unaware nodes and routing other
   then traditional one causes some problems.  Non-traditional routing
   includes, for example, routing decisions based on port numbers, other
   IP header fields than the destination address, or splitting traffic
   based on header hash values.  These routing environments result in
   the signaling path being potentially different than the data path.

5.10.  Operational

5.10.1.  Ability to Assign Transport Quality to Signaling Messages

   The NSIS architecture SHOULD allow the network operator to assign the
   NSIS protocol messages a certain transport quality.  As signaling
   opens up the possibility of denial-of-service attacks, this
   requirement gives the network operator a means, but also the
   obligation, to trade-off between signaling latency and the impact
   (from the signaling messages) on devices within the network.  From
   protocol design this requirement states that the protocol messages
   SHOULD be detectable, at least where the control and assignment of
   the messages priority is done.

Brunner                      Informational                     [Page 23]
RFC 3726          Requirements for Signaling Protocols        April 2004

   Furthermore, the protocol design must take into account reliability
   concerns.  Communication reliability is seen as part of the quality
   assigned to signaling messages.  So procedures MUST be defined for
   how an NSIS signaling system behaves if some kind of request it sent
   stays unanswered.  The basic transport protocol to be used between
   adjacent NSIS Entities MAY ensure message integrity and reliable
   transport.

5.10.2.  Graceful Fail Over

   Any unit participating in NSIS signaling MUST NOT cause further
   damage to other systems involved in NSIS signaling when it has to go
   out of service.

5.10.3.  Graceful Handling of NSIS Entity Problems

   NSIS entities SHOULD be able to detect a malfunctioning peer.  It may
   notify the NSIS Initiator or another NSIS entity involved in the
   signaling process.  The NSIS peer may handle the problem itself e.g.,
   switching to a backup NSIS entity.  In the latter case note that
   synchronization of state between the primary and the backup entity is
   needed.

6.  Security Considerations

   Section 5.7 of this document provides security related requirements
   of a signaling protocol.

7.  Acknowledgments

   Quite a number of people have been involved in the discussion of the
   document, adding some ideas, requirements, etc.  We list them without
   a guarantee on completeness: Changpeng Fan (Siemens), Krishna Paul
   (NEC), Maurizio Molina (NEC), Mirko Schramm (Siemens), Andreas
   Schrader (NEC), Hannes Hartenstein (NEC), Ralf Schmitz (NEC), Juergen
   Quittek (NEC), Morihisa Momona (NEC), Holger Karl (Technical
   University Berlin), Xiaoming Fu (Technical University Berlin), Hans-
   Peter Schwefel (Siemens), Mathias Rautenberg (Siemens), Christoph
   Niedermeier (Siemens), Andreas Kassler (University of Ulm), Ilya
   Freytsis.

   Some text and/or ideas for text, requirements, scenarios have been
   taken from an Internet Draft written by the following authors: David
   Partain (Ericsson), Anders Bergsten (Telia Research), Marc Greis
   (Nokia), Georgios Karagiannis (Ericsson), Jukka Manner (University of
   Helsinki), Ping Pan (Juniper), Vlora Rexhepi (Ericsson), Lars
   Westberg (Ericsson), Haihong Zheng (Nokia).  Some of those have
   actively contributed new text to this document as well.

Brunner                      Informational                     [Page 24]
RFC 3726          Requirements for Signaling Protocols        April 2004

   Another Internet Draft impacting this document has been written by
   Sven Van den Bosch, Maarten Buchli, and Danny Goderis (all Alcatel).
   These people contributed also new text.

   Thanks also to Kwok Ho Chan (Nortel) for text changes.  And finally
   thanks Alison Mankin for the thorough AD review and thanks to Harald
   Tveit Alvestrand and Steve Bellovin for the IESG review comments.

Brunner                      Informational                     [Page 25]
RFC 3726          Requirements for Signaling Protocols        April 2004

8.  Appendix: Scenarios/Use Cases

   In the following we describe scenarios, which are important to cover,
   and which allow us to discuss various requirements.  Some regard this
   as use cases to be covered defining the use of a signaling protocol.
   In general, these scenarios consider the specific case of signaling
   for QoS (resource reservation), although many of the issues carry
   over directly to other signaling types.

8.1.  Terminal Mobility

   The scenario we are looking at is the case where a mobile terminal
   (MT) changes from one access point to another access point.  The
   access points are located in separate QoS domains.  We assume Mobile
   IP to handle mobility on the network layer in this scenario and
   consider the various extensions (i.e., IETF proposals) to Mobile IP,
   in order to provide 'fast handover' for roaming Mobile Terminals.
   The goal to be achieved lies in providing, keeping, and adapting the
   requested QoS for the ongoing IP sessions in case of handover.
   Furthermore, the negotiation of QoS parameters with the new domain
   via the old connection might be needed, in order to support the
   different 'fast handover' proposals within the IETF.

   The entities involved in this scenario include a mobile terminal,
   access points, an access network manager, and communication partners
   of the MT (the other end(s) of the communication association).  From
   a technical point of view, terminal mobility means changing the
   access point of a mobile terminal (MT).  However, technologies might
   change in various directions (access technology, QoS technology,
   administrative domain).  If the access points are within one specific
   QoS technology (independent of access technology) we call this
   intra-QoS technology handoff.  In the case of an inter-QoS technology
   handoff, one changes from e.g., a DiffServ to an IntServ domain,
   however still using the same access technology.  Finally, if the
   access points are using different access technologies we call it
   inter-technology hand-off.

   The following issues are of special importance in this scenario:

   1) Handoff decision

   -  The QoS management requests handoff.  The QoS management can
      decide to change the access point, since the traffic conditions of
      the new access point are better supporting the QoS requirements.
      The metric may be different (optimized towards a single or a
      group/class of users).  Note that the MT or the network (see
      below) might trigger the handoff.

Brunner                      Informational                     [Page 26]
RFC 3726          Requirements for Signaling Protocols        April 2004

   -  The mobility management forces handoff.  This can have several
      reasons.  The operator optimizes his network, admission is no
      longer granted (e.g., emptied prepaid condition).  Or another
      example is when the MT is reaching the focus of another base
      station.  However, this might be detected via measurements of QoS
      on the physical layer and is therefore out of scope of QoS
      signaling in IP.  Note again that the MT or the network (see
      below) might trigger the handoff.

   -  This scenario shows that local decisions might not be enough.  The
      rest of the path to the other end of the communication needs to be
      considered as well.  Hand-off decisions in a QoS domain do not
      only depend on the local resource availability, e.g., the wireless
      part, but involve the rest of the path as well.  Additionally,
      decomposition of an end-to-end signaling might be needed, in order
      to change only parts of it.

   2) Trigger sources

   -  Mobile terminal: If the end-system QoS management identifies
      another (better-suited) access point, it will request the handoff
      from the terminal itself.  This will be especially likely in the
      case that two different provider networks are involved.  Another
      important example is when the current access point bearer
      disappears (e.g., removing the Ethernet cable).  In this case, the
      NSIS Initiator is basically located on the mobile terminal.

   -  Network (access network manager): Sometimes, the handoff trigger
      will be issued from the network management to optimize the overall
      load situation.  Most likely this will result in changing the
      base-station of a single providers network.  Most likely the NSIS
      Initiator is located on a system within the network.

   3) Integration with other protocols

   -  Interworking with other protocol must be considered in one or the
      other form.  E.g., it might be worth combining QoS signaling
      between different QoS domains with mobility signaling at hand-
      over.

   4) Handover rates

   In mobile networks, the admission control process has to cope with
   far more admission requests than call setups alone would generate.
   For example, in the GSM (Global System for Mobile communications)
   case, mobility usually generates an average of one to two handovers

Brunner                      Informational                     [Page 27]
RFC 3726          Requirements for Signaling Protocols        April 2004

   per call.  For third generation networks (such as UMTS), where it is
   necessary to keep radio links to several cells simultaneously
   (macro-diversity), the handover rate is significantly higher.

   5) Fast state installation

   Handover can also cause packet losses.  This happens when the
   processing of an admission request causes a delayed handover to the
   new base station.  In this situation, some packets might be
   discarded, and the overall speech quality might be degraded
   significantly.  Moreover, a delay in handover may cause degradation
   for other users.  In the worst-case scenario, a delay in handover may
   cause the connection to be dropped if the handover occurred due to
   bad air link quality.  Therefore, it is critical that QoS signaling
   in connection with handover be carried out very quickly.

   6) Call blocking in case of overload

   Furthermore, when the network is overloaded, it is preferable to keep
   states for previously established flows while blocking new requests.
   Therefore, the resource reservation requests in connection with
   handover should be given higher priority than new requests for
   resource reservation.

8.2.  Wireless Networks

   In this scenario, the user is using the packet services of a wireless
   system (such as the 3rd generation wireless system 3GPP/UMTS,
   3GPP2/cdma2000).  The region between the End Host and the Edge Node
   (Edge Router) connecting the wireless network to another QoS domain
   is considered to be a single QoS domain.

   The issues in such an environment regarding QoS include:

   1) The wireless networks provide their own QoS technology with
      specialized parameters to coordinate the QoS provided by both the
      radio access and wired access networks.  Provisioning of QoS
      technologies within a wireless network can be described mainly in
      terms of calling bearer classes, service options, and service
      instances.  These QoS technologies need to be invoked with
      suitable parameters when higher layers trigger a request for QoS.
      Therefore these involve mapping of the requested higher layer QoS
      parameters onto specific bearer classes or service instances.  The
      request for allocation of resources might be triggered by
      signaling at the IP level that passes across the wireless system,
      and possibly other QoS domains.  Typically, wireless network
      specific messages are invoked to setup the underlying bearer

Brunner                      Informational                     [Page 28]
RFC 3726          Requirements for Signaling Protocols        April 2004

      classes or service instances in parallel with the IP layer QoS
      negotiation, to allocate resources within the radio access
      network.

   2) The IP signaling messages are initiated by the NSIS initiator and
      interpreted by the NSIS Forwarder.  The most efficient placement
      of the NSIS Initiator and NSIS Forwarder has not been determined
      in wireless networks, but a few potential scenarios can be
      envisioned. The NSIS Initiator could be located at the End Host
      (e.g., 3G User equipment (UE)), the Access Gateway or at a node
      that is not directly on the data path, such as a Policy Decision
      Function.  The Access Gateway could act as a proxy NSIS Initiator
      on behalf of the End Host.  The Policy Decision Function that
      controls per-flow/aggregate resources with respect to the session
      within its QoS domain (e.g., the 3G wireless network) may act as a
      proxy NSIS Initiator for the end host or the Access Gateway.
      Depending on the placement of the NSIS Initiator, the NSIS
      Forwarder may be located at an appropriate point in the wireless
      network.

   3) The need for re-negotiation of resources in a new wireless domain
      due to host mobility.  In this case the NSIS Initiator and the
      NSIS Forwarder should detect mobility events and autonomously
      trigger re-negotiation of resources.

8.3.  An Example Scenario for 3G Wireless Networks

   The following example is a pure hypothetical scenario, where an NSIS
   signaling protocol might be used in a 3G environment.  We do not
   impose in any way, how a potential integration might be done.  Terms
   from the 3GPP architecture are used (P-CSCF, IMS, expanded below) in
   order to give specificity, but in a hypothetical design, one that
   reflects neither development nor review by 3GPP.  The example should
   help in the design of a NSIS signaling protocol such that it could be
   used in various environments.

   The 3G wireless access scenario is shown in Figure 1.  The Proxy-Call
   State Control Function (P-CSCF) is the outbound SIP proxy (only used
   in IP Multimedia Subsystems (IMS)).  The Access Gateway is the egress
   router of the 3G wireless domain and it connects the radio access
   network to the Edge Router (ER) of the backbone IP network.  The
   Policy Decision Function (PDF) is an entity responsible for
   controlling bearer level resource allocations/de-allocations in
   relation to session level services e.g., SIP.  The Policy Decision
   Function may also control the Access Gateway to open and close the
   gates and to configure per-flow policies, i.e., to authorize or
   forbid user traffic.  The P-CSCF (only used in IMS) and the Access
   Gateway communicate with the Policy Decision Function, for network

Brunner                      Informational                     [Page 29]
RFC 3726          Requirements for Signaling Protocols        April 2004

   resource allocation/de-allocation decisions.  The User Equipment (UE)
   or the Mobile Station (MS) consists of a Mobile Terminal (MT) and
   Terminal Equipment (TE), e.g., a laptop.

                     +--------+
          +--------->| P-CSCF |---------> SIP signaling
         /           +--------+
        / SIP            |
       |                 |
       |              +-----+            +----------------+
       |              | PDF |<---------->| NSIS Forwarder |<--->
       |              +-----+            +----------------+
       |                 |                  ^
       |                 |                  |
       |                 |                  |
       |                 |COPS              |
       |                 |                  |
   +------+          +---------+            |
   | UE/MS|----------| Access  |<-----------+     +----+
   +------+          | Gateway |------------------| ER |
                     +---------+                  +----+

            Figure 1: 3G wireless access scenario

   The PDF has all the required QoS information for per-flow or
   aggregate admission control in 3G wireless networks.  It receives
   resource allocation/de-allocation requests from the P-CSCF and/or
   Access Gateway etc. and responds with policy decisions.  Hence the
   PDF may be a candidate entity to host the functionality of the NSIS
   Initiator, initiating the NSIS QoS signaling towards the backbone IP
   network.  On the other hand, the UE/MS may act as the NSIS Initiator
   or the Access Gateway may act as a Proxy NSIS Initiator on behalf of
   the UE/MS.  In the former case, the P-CSCF/PDF has to do the mapping
   from codec types and media descriptors (derived from SIP/SDP
   signaling) to IP traffic descriptor.  In the latter case, the UE/MS
   may use any appropriate QoS signaling mechanism as the NSIS
   Initiator.  If the Access Gateway is acting as the Proxy NSIS
   initiator on behalf of the UE/MS, then it may have to do the mapping
   of parameters from radio access specific QoS to IP QoS traffic
   parameters before forwarding the request to the NSIS Forwarder.

   The NSIS Forwarder is currently not part of the standard 3G wireless
   architecture.  However, to achieve end-to-end QoS a NSIS Forwarder is
   needed such that the NSIS Initiators can request a QoS connection to
   the IP network.  As in the previous example, the NSIS Forwarder could
   manage a set of pre-provisioned resources in the IP network, i.e.,
   bandwidth pipes, and the NSIS Forwarder perform per-flow admission
   control into these pipes.  In this way, a connection can be made

Brunner                      Informational                     [Page 30]
RFC 3726          Requirements for Signaling Protocols        April 2004

   between two 3G wireless access networks, and hence, end-to-end QoS
   can be achieved.  In this case the NSIS Initiator and NSIS Forwarder
   are clearly two separate logical entities.  The Access Gateway or/and
   the Edge Router in Fig.1 may contain the NSIS Forwarder
   functionality, depending upon the placement of the NSIS Initiator as
   discussed in scenario 2 in section 8.2.  This use case clearly
   illustrates the need for an NSIS QoS signaling protocol between NSIS
   Initiator and NSIS Forwarder.  An important application of such a
   protocol may be its use in the end-to-end establishment of a
   connection with specific QoS characteristics between a mobile host
   and another party (e.g., end host or content server).

8.4.  Wired Part of Wireless Network

   A wireless network, seen from a QoS domain perspective, usually
   consists of three parts: a wireless interface part (the "radio
   interface"), a wired part of the wireless network (i.e., Radio Access
   Network) and the backbone of the wireless network, as shown in Figure
   2.  Note that this figure should not be seen as an architectural
   overview of wireless networks but rather as showing the conceptual
   QoS domains in a wireless network.

   In this scenario, a mobile host can roam and perform a handover
   procedure between base stations/access routers.  In this scenario the
   NSIS QoS protocol can be applied between a base station and the
   gateway (GW).  In this case a GW can also be considered as a local
   handover anchor point.  Furthermore, in this scenario the NSIS QoS
   protocol can also be applied either between two GWs, or between two
   edge routers (ER).

Brunner                      Informational                     [Page 31]
RFC 3726          Requirements for Signaling Protocols        April 2004

                          |--|
                          |GW|
   |--|                   |--|
   |MH|---                 .
   |--|  / |-------|       .
        /--|base   | |--|  .
           |station|-|ER|...
           |-------| |--|  . |--| back- |--|  |---|              |----|
                           ..|ER|.......|ER|..|BGW|.."Internet"..|host|
        -- |-------| |--|  . |--| bone  |--|  |---|              |----|
   |--| \  |base   |-|ER|...     .
   |MH|  \ |station| |--|        .
   |--|--- |-------|             .          MH  = mobile host
                              |--|          ER  = edge router
      <---->                  |GW|          GW  = gateway
     Wireless link            |--|          BGW = border gateway
                                            ... = interior nodes
            <------------------->
       Wired part of wireless network

   <---------------------------------------->
                Wireless Network

      Figure 2. QoS architecture of wired part of wireless network

   Each of these parts of the wireless network impose different issues
   to be solved on the QoS signaling solution being used:

   1) Wireless interface: The solution for the air interface link has to
      ensure flexibility and spectrum efficient transmission of IP
      packets.  However, this link layer QoS can be solved in the same
      way as any other last hop problem by allowing a host to request
      the proper QoS profile.

   2) Wired part of the wireless network:  This is the part of the
      network that is closest to the base stations/access routers.  It
      is an IP network although some parts logically perform tunneling
      of the end user data.  In cellular networks, the wired part of the
      wireless network is denoted as a radio access network.

      This part of the wireless network has different requirements for
      signaling protocol characteristics when compared to traditional IP
      networks:

      -  The network must support mobility.  Many wireless networks are
         able to provide a combination of soft and hard handover
         procedures.  When handover occurs, reservations need to be
         established on new paths.  The establishment time has to be as

Brunner                      Informational                     [Page 32]
RFC 3726          Requirements for Signaling Protocols        April 2004

         short as possible since long establishment times for s degrade
         the performance of the wireless network.  Moreover, for maximal
         utilization of the radio spectrum, frequent handover operations
         are required.

      -  These links are typically rather bandwidth-limited.

      -  The wired transmission in such a network contains a relatively
         high volume of expensive leased lines.  Overprovisioning might
         therefore be prohibitively expensive.

      -  The radio base stations are spread over a wide geographical
         area and are in general situated a large distance from the
         backbone.

   3) Backbone of the wireless network: the requirements imposed by this
      network are similar to the requirements imposed by other types of
      backbone networks.

   Due to these very different characteristics and requirements, often
   contradictory, different QoS signaling solutions might be needed in
   each of the three network parts.

8.5.  Session Mobility

   In this scenario, a session is moved from one end-system to another.
   Ongoing sessions are kept and QoS parameters need to be adapted,
   since it is very likely that the new device provides different
   capabilities.  Note that it is open which entity initiates the move,
   which implies that the NSIS Initiator might be triggered by different
   entities.

   User mobility (i.e., a user changing the device and therefore moving
   the sessions to the new device) is considered to be a special case
   within the session mobility scenario.

   Note that this scenario is different from terminal mobility.  The
   terminal (end-system) has not moved to a different access point.
   Both terminals are still connected to an IP network at their original
   points.

   The issues include:

   1) Keeping the QoS guarantees negotiated implies that the end-
      point(s) of communication are changed without changing the s.

   2) The trigger of the session move might be the user or any other
      party involved in the session.

Brunner                      Informational                     [Page 33]
RFC 3726          Requirements for Signaling Protocols        April 2004

8.6.  QoS Reservation/Negotiation from Access to Core Network

   The scenario includes the signaling between access networks and core
   networks in order to setup and change reservations together with
   potential negotiation.

   The issues to be solved in this scenario are different from previous
   ones.

   1) The entity of reservation is most likely an aggregate.

   2) The time scales of states might be different (long living states
      of aggregates, less often re-negotiation).

   3) The specification of the traffic (amount of traffic), a particular
      QoS is guaranteed for, needs to be changed.  E.g., in case
      additional flows are added to the aggregate, the traffic
      specification of the flow needs to be added if it is not already
      included in the aggregates specification.

   4) The flow specification is more complex including network addresses
      and sets of different address for the source as well as for the
      destination of the flow.

8.7.  QoS Reservation/Negotiation Over Administrative Boundaries

   Signaling between two or more core networks to provide QoS is handled
   in this scenario.  This might also include access to core signaling
   over administrative boundaries.  Compared to the previous one it adds
   the case, where the two networks are not in the same administrative
   domain.  Basically, it is the inter-domain/inter-provider signaling
   which is handled in here.

   The domain boundary is the critical issue to be resolved.  Which of
   various flavors of issues a QoS signaling protocol has to be
   concerned with.

   1) Competing administrations: Normally, only basic information should
      be exchanged, if the signaling is between competing
      administrations.  Specifically information about core network
      internals (e.g., topology, technology, etc.) should not be
      exchanged.  Some information exchange about the "access points" of
      the core networks (which is topology information as well) may be
      required, to be exchanged, because it is needed for proper
      signaling.

   2) Additionally, as in scenario 4, signaling most likely is based on
      aggregates, with all the issues raise there.

Brunner                      Informational                     [Page 34]
RFC 3726          Requirements for Signaling Protocols        April 2004

   3) Authorization: It is critical that the NSIS Initiator is
      authorized to perform a QoS path setup.

   4) Accountability: It is important to notice that signaling might be
      used as an entity to charge money for, therefore the
      interoperation with accounting needs to be available.

8.8.  QoS Signaling Between PSTN Gateways and Backbone Routers

   A PSTN gateway (i.e., host) requires information from the network
   regarding its ability to transport voice traffic across the network.
   The voice quality will suffer due to packet loss, latency and jitter.
   Signaling is used to identify and admit a flow for which these
   impairments are minimized.  In addition, the disposition of the
   signaling request is used to allow the PSTN GW to make a call routing
   decision before the call is actually accepted and delivered to the
   final destination.

   PSTN gateways may handle thousands of calls simultaneously and there
   may be hundreds of PSTN gateways in a single provider network.  These
   numbers are likely to increase as the size of the network increases.
   The point being that scalability is a major issue.

   There are several ways that a PSTN gateway can acquire assurances
   that a network can carry its traffic across the network.  These
   include:

   1. Over-provisioning a high availability network.

   2. Handling admission control through some policy server that has a
      global view of the network and its resources.

   3. Per PSTN GW pair admission control.

   4. Per call admission control (where a call is defined as the 5-tuple
      used to carry a single RTP flow).

   Item 1 requires no signaling at all and is therefore outside the
   scope of this working group.

   Item 2 is really a better informed version of 1, but it is also
   outside the scope of this working group as it relies on a particular
   telephony signaling protocol rather than a packet admission control
   protocol.

   Item 3 is initially attractive, as it appears to have reasonable
   scaling properties, however, its scaling properties only are
   effective in cases where there are relatively few PSTN GWs.  In the

Brunner                      Informational                     [Page 35]
RFC 3726          Requirements for Signaling Protocols        April 2004

   more general case where a PSTN GW reduces to a single IP phone
   sitting behind some access network, the opportunities for aggregation
   are reduced and the problem reduces to item 4.

   Item 4 is the most general case.  However, it has the most difficult
   scaling problems.  The objective here is to place the requirements on
   Item 4 such that a scalable per-flow admission control protocol or
   protocol suite may be developed.

   The case where per-flow signaling extends to individual IP end-points
   allows the inclusion of IP phones on cable, DSL, wireless or other
   access networks in this scenario.

   Call Scenario

   A PSTN GW signals end-to-end for some 5-tuple defined flow a
   bandwidth and QoS requirement.  Note that the 5-tuple might include
   masking/wildcarding.  The access network admits this flow according
   to its local policy and the specific details of the access
   technology.

   At the edge router (i.e., border node), the flow is admitted, again
   with an optional authentication process, possibly involving an
   external policy server.  Note that the relationship between the PSTN
   GW and the policy server and the routers and the policy server is
   outside the scope of NSIS.  The edge router then admits the flow into
   the core of the network, possibly using some aggregation technique.

   At the interior nodes, the NSIS host-to-host signaling should either
   be ignored or invisible as the Edge router performed the admission
   control decision to some aggregate.

   At the inter-provider router (i.e., border node), again the NSIS
   host-to-host signaling should either be ignored or invisible, as the
   Edge router has performed an admission control decision about an
   aggregate across a carrier network.

8.9.  PSTN Trunking Gateway

   One of the use cases for the NSIS signaling protocol is the scenario
   of interconnecting PSTN gateways with an IP network that supports
   QoS.

Brunner                      Informational                     [Page 36]
RFC 3726          Requirements for Signaling Protocols        April 2004

   Four different scenarios are considered here.

   1. In-band QoS signaling is used.  In this case the Media Gateway
      (MG) will be acting as the NSIS Initiator and the Edge Router (ER)
      will be the NSIS Forwarder.  Hence, the ER should do admission
      control (into pre-provisioned traffic trunks) for the individual
      traffic flows.  This scenario is not further considered here.

   2. Out-of-band signaling in a single domain, the NSIS forwarder is
      integrated in the Media Gateway Controller (MGC).  In this case no
      NSIS protocol is required.

   3. Out-of-band signaling in a single domain, the NSIS forwarder is a
      separate box.  In this case NSIS signaling is used between the MGC
      and the NSIS Forwarder.

   4. Out-of-band signaling between multiple domains, the NSIS Forwarder
      (which may be integrated in the MGC) triggers the NSIS Forwarder
      of the next domain.

   When the out-of-band QoS signaling is used the Media Gateway
   Controller (MGC) will be acting as the NSIS Initiator.

   In the second scenario the voice provider manages a set of traffic
   trunks that are leased from a network provider.  The MGC does the
   admission control in this case.  Since the NSIS Forwarder acts both
   as a NSIS Initiator and a NSIS Forwarder, no NSIS signaling is
   required.  This scenario is shown in Figure 3.

    +-------------+    ISUP/SIGTRAN     +-----+              +-----+
    | SS7 network |---------------------| MGC |--------------| SS7 |
    +-------------+             +-------+-----+---------+    +-----+
          :                    /           :             \
          :                   /            :              \
          :                  /    +--------:----------+    \
          :          MEGACO /    /         :           \    \
          :                /    /       +-----+         \    \
          :               /    /        | NMS |          \    \
          :              /     |        +-----+          |     \
          :              :     |                         |     :
   +--------------+  +----+    |   bandwidth pipe (SLS)  |  +----+
   | PSTN network |--| MG |--|ER|======================|ER|-| MG |--
   +--------------+  +----+     \                       /   +----+
                                 \     QoS network     /
                                  +-------------------+

                Figure 3: PSTN trunking gateway scenario

Brunner                      Informational                     [Page 37]
RFC 3726          Requirements for Signaling Protocols        April 2004

   In the third scenario, the voice provider does not lease traffic
   trunks in the network.  Another entity may lease traffic trunks and
   may use a NSIS Forwarder to do per-flow admission control.  In this
   case the NSIS signaling is used between the MGC and the NSIS
   Forwarder, which is a separate box here.  Hence, the MGC acts only as
   a NSIS Initiator.  This scenario is depicted in Figure 4.

    +-------------+    ISUP/SIGTRAN     +-----+              +-----+
    | SS7 network |---------------------| MGC |--------------| SS7 |
    +-------------+             +-------+-----+---------+    +-----+
          :                    /           :             \
          :                   /         +-----+           \
          :                  /          | NF  |            \
          :                 /           +-----+             \
          :                /               :                 \
          :               /       +--------:----------+       \
          :       MEGACO :       /         :           \       :
          :              :      /       +-----+         \      :
          :              :     /        | NMS |          \     :
          :              :     |        +-----+          |     :
          :              :     |                         |     :
   +--------------+  +----+    |   bandwidth pipe (SLS)  |  +----+
   | PSTN network |--| MG |--|ER|======================|ER|-| MG |--
   +--------------+  +----+     \                       /   +----+
                                 \     QoS network     /
                                  +-------------------+

               Figure 4: PSTN trunking gateway scenario

   In the fourth scenario multiple transport domains are involved.  In
   the originating network either the MGC may have an overview on the
   resources of the overlay network or a separate NSIS Forwarder will
   have the overview.  Hence, depending on this either the MGC or the
   NSIS Forwarder of the originating domain will contact the NSIS
   Forwarder of the next domain.  The MGC always acts as a NSIS
   Initiator and may also be acting as a NSIS Forwarder in the first
   domain.

8.10.  An Application Requests End-to-End QoS Path from the Network

   This is actually the conceptually simplest case.  A multimedia
   application requests a guaranteed service from an IP network.  We
   assume here that the application is somehow able to specify the
   network service.  The characteristics here are that many hosts might
   do it, but that the requested service is low capacity (bounded by the
   access line).  Note that there is an issue of scaling in the number
   of applications requesting this service in the core of the network.

Brunner                      Informational                     [Page 38]
RFC 3726          Requirements for Signaling Protocols        April 2004

8.11.  QOS for Virtual Private Networks

   In a Virtual Private Network (VPN), a variety of tunnels might be
   used between its edges.  These tunnels could be for example, IPSec,
   GRE, and IP-IP.  One of the most significant issues in VPNs is
   related to how a flow is identified and what quality a flow gets.  A
   flow identification might consist among others of the transport
   protocol port numbers.  In an IP-Sec tunnel this will be problematic
   since the transport protocol information is encrypted.

   There are two types of L3 VPNs, distinguished by where the endpoints
   of the tunnels exist.  The endpoints of the tunnels may either be on
   the customer (CPE) or the provider equipment or provider edge (PE).

   Virtual Private networks are also likely to request bandwidth or
   other type of service in addition to the premium services the PSTN GW
   are likely to use.

8.11.1.  Tunnel End Points at the Customer Premises

   When the endpoints are the CPE, the CPE may want to signal across the
   public IP network for a particular amount of bandwidth and QoS for
   the tunnel aggregate.  Such signaling may be useful when a customer
   wants to vary their network cost with demand, rather than paying a
   flat rate.  Such signaling exists between the two CPE routers.
   Intermediate access and edge routers perform the same exact call
   admission control, authentication and aggregation functions performed
   by the corresponding routers in the PSTN GW scenario with the
   exception that the endpoints are the CPE tunnel endpoints rather than
   PSTN GWs and the 5-tuple used to describe the RTP flow is replaced
   with the corresponding flow spec to uniquely identify the tunnels.
   Tunnels may be of any variety (e.g., IP-Sec, GRE, IP-IP).

   In such a scenario, NSIS would actually allow partly for customer
   managed VPNs, which means a customer can setup VPNs by subsequent
   NSIS signaling to various end-point.  Plus the tunnel end-points are
   not necessarily bound to an application.  The customer administrator
   might be the one triggering NSIS signaling.

8.11.2.  Tunnel End Points at the Provider Premises

   In the case were the tunnel end-points exist on the provider edge,
   requests for bandwidth may be signaled either per flow, where a flow
   is defined from a customers address space, or between customer sites.

   In the case of per flow signaling, the PE router must map the
   bandwidth request to the tunnel carrying traffic to the destination
   specified in the flow spec.  Such a tunnel is a member of an

Brunner                      Informational                     [Page 39]
RFC 3726          Requirements for Signaling Protocols        April 2004

   aggregate to which the flow must be admitted.  In this case, the
   operation of admission control is very similar to the case of the
   PSTN GW with the additional level of indirection imposed by the VPN
   tunnel.  Therefore, authentication, accounting and policing may be
   required on the PE router.

   In the case of per site signaling, a site would need to be
   identified.  This may be accomplished by specifying the network
   serviced at that site through an IP prefix.  In this case, the
   admission control function is performed on the aggregate to the PE
   router connected to the site in question.

9.  References

9.1.  Normative References

   [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

9.2.  Informative References

   [RSVP]     Braden, R., Ed., Zhang, L., Berson, S., Herzog, S. and S.
              Jamin, "Resource Protocol (RSVP) -- Version 1 Functional
              Specification", RFC 2205, September 1997.

   [RFC3234]  Carpenter, B. and S. Brim, "Middleboxes: Taxonomy and
              Issues", RFC 3234, February 2002.

Brunner                      Informational                     [Page 40]
RFC 3726          Requirements for Signaling Protocols        April 2004

10.  Authors' Addresses

   Marcus Brunner (Editor)
   NEC Europe Ltd.
   Network Laboratories
   Kurfuersten-Anlage 36
   D-69115 Heidelberg
   Germany

   EMail: brunner@netlab.nec.de

   Robert Hancock
   Roke Manor Research Ltd
   Romsey, Hants, SO51 0ZN
   United Kingdom

   EMail: robert.hancock@roke.co.uk

   Eleanor Hepworth
   Roke Manor Research Ltd
   Romsey, Hants, SO51 0ZN
   United Kingdom

   EMail: eleanor.hepworth@roke.co.uk

   Cornelia Kappler
   Siemens AG
   Berlin 13623
   Germany

   EMail: cornelia.kappler@siemens.com

   Hannes Tschofenig
   Siemens AG
   Otto-Hahn-Ring 6
   81739 Munchen
   Germany

   EMail: Hannes.Tschofenig@mchp.siemens.de

Brunner                      Informational                     [Page 41]
RFC 3726          Requirements for Signaling Protocols        April 2004

11.  Full Copyright Statement

   Copyright (C) The Internet Society (2004).  This document is subject
   to the rights, licenses and restrictions contained in BCP 78 and
   except as set forth therein, the authors retain all their rights.

   This document and the information contained herein are provided on an
   "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
   OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
   ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
   INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
   INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
   WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

   The IETF takes no position regarding the validity or scope of any
   Intellectual Property Rights or other rights that might be claimed to
   pertain to the implementation or use of the technology described in
   this document or the extent to which any license under such rights
   might or might not be available; nor does it represent that it has
   made any independent effort to identify any such rights.  Information
   on the procedures with respect to rights in RFC documents can be
   found in BCP 78 and BCP 79.

   Copies of IPR disclosures made to the IETF Secretariat and any
   assurances of licenses to be made available, or the result of an
   attempt made to obtain a general license or permission for the use of
   such proprietary rights by implementers or users of this
   specification can be obtained from the IETF on-line IPR repository at
   http://www.ietf.org/ipr.

   The IETF invites any interested party to bring to its attention any
   copyrights, patents or patent applications, or other proprietary
   rights that may cover technology that may be required to implement
   this standard.  Please address the information to the IETF at ietf-
   ipr@ietf.org.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.

Brunner                      Informational                     [Page 42]