Handling Large Certificates and Long Certificate Chains in TLS-based EAP Methods
draft-ietf-emu-eaptlscert-05

Document Type Active Internet-Draft (emu WG)
Authors Mohit Sethi  , John Preuß Mattsson  , Sean Turner 
Last updated 2020-10-14 (latest revision 2020-06-15)
Replaces draft-ms-emu-eaptlscert
Stream IETF
Intended RFC status Informational
Formats plain text xml pdf htmlized (tools) htmlized bibtex
Reviews
Stream WG state Submitted to IESG for Publication (wg milestone: Nov 2019 - WG last call on oper... )
Document shepherd Joseph Salowey
Shepherd write-up Show (last changed 2020-08-26)
IESG IESG state In Last Call (ends 2020-10-28)
Consensus Boilerplate Yes
Telechat date
Responsible AD Roman Danyliw
Send notices to Joseph Salowey <joe@salowey.net>
IANA IANA review state IANA - Review Needed
Network Working Group                                           M. Sethi
Internet-Draft                                               J. Mattsson
Intended status: Informational                                  Ericsson
Expires: December 17, 2020                                     S. Turner
                                                                   sn3rd
                                                           June 15, 2020

        Handling Large Certificates and Long Certificate Chains
                        in TLS-based EAP Methods
                      draft-ietf-emu-eaptlscert-05

Abstract

   EAP-TLS and other TLS-based EAP methods are widely deployed and used
   for network access authentication.  Large certificates and long
   certificate chains combined with authenticators that drop an EAP
   session after only 40 - 50 round-trips is a major deployment problem.
   This document looks at the this problem in detail and describes the
   potential solutions available.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on December 17, 2020.

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect

Sethi, et al.           Expires December 17, 2020               [Page 1]
Internet-Draft    Certificates in TLS-based EAP Methods        June 2020

   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Experience with Deployments . . . . . . . . . . . . . . . . .   4
   4.  Handling of Large Certificates and Long Certificate Chains  .   5
     4.1.  Updating Certificates and Certificate Chains  . . . . . .   5
       4.1.1.  Guidelines for Certificates . . . . . . . . . . . . .   5
       4.1.2.  Pre-distributing and Omitting CA certificates . . . .   6
       4.1.3.  Using Fewer Intermediate Certificates . . . . . . . .   7
     4.2.  Updating TLS and EAP-TLS Code . . . . . . . . . . . . . .   7
       4.2.1.  URLs for Client Certificates  . . . . . . . . . . . .   7
       4.2.2.  Caching Certificates  . . . . . . . . . . . . . . . .   7
       4.2.3.  Compressing Certificates  . . . . . . . . . . . . . .   8
       4.2.4.  Compact TLS 1.3 . . . . . . . . . . . . . . . . . . .   8
       4.2.5.  Suppressing Intermediate Certificates . . . . . . . .   9
       4.2.6.  Raw Public Keys . . . . . . . . . . . . . . . . . . .   9
       4.2.7.  New Certificate Types and Compression Algorithms  . .   9
     4.3.  Updating Authenticators . . . . . . . . . . . . . . . . .   9
   5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  10
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  10
   7.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  10
     7.1.  Normative References  . . . . . . . . . . . . . . . . . .  10
     7.2.  Informative References  . . . . . . . . . . . . . . . . .  11
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  13
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  13

1.  Introduction

   The Extensible Authentication Protocol (EAP), defined in [RFC3748],
   provides a standard mechanism for support of multiple authentication
   methods.  EAP-Transport Layer Security (EAP-TLS) [RFC5216]
   [I-D.ietf-emu-eap-tls13] relies on TLS [RFC8446] to provide strong
   mutual authentication with certificates [RFC5280] and is widely
   deployed and often used for network access authentication.  There are
   also many other TLS-based EAP methods, such as Flexible
   Authentication via Secure Tunneling (EAP-FAST) [RFC4851], Tunneled
   Transport Layer Security (EAP-TTLS) [RFC5281], Tunnel Extensible
   Authentication Protocol (EAP-TEAP) [RFC7170], and possibly many
Show full document text