Structured Local Address Plan (SLAP) Quadrant Selection Option for DHCPv6
RFC 8948
Document | Type | RFC - Proposed Standard (December 2020; No errata) | |
---|---|---|---|
Authors | Carlos Bernardos , Alain Mourad | ||
Last updated | 2020-12-01 | ||
Replaces | draft-bernardos-dhc-slap-quadrant | ||
Stream | IETF | ||
Formats | plain text html xml pdf htmlized bibtex | ||
Reviews | |||
Stream | WG state | Submitted to IESG for Publication (wg milestone: Nov 2019 - WGLC SLAP quadrant s... ) | |
Document shepherd | Ian Farrer | ||
Shepherd write-up | Show (last changed 2020-05-12) | ||
IESG | IESG state | RFC 8948 (Proposed Standard) | |
Action Holders |
(None)
|
||
Consensus Boilerplate | Yes | ||
Telechat date | |||
Responsible AD | Éric Vyncke | ||
Send notices to | Tomek Mrugalski <tomasz.mrugalski@gmail.com>, Ian Farrer <ianfarrer@gmx.com> | ||
IANA | IANA review state | Version Changed - Review Needed | |
IANA action state | RFC-Ed-Ack | ||
IANA expert review state | Expert Reviews OK |
Internet Engineering Task Force (IETF) CJ. Bernardos Request for Comments: 8948 UC3M Category: Standards Track A. Mourad ISSN: 2070-1721 InterDigital December 2020 Structured Local Address Plan (SLAP) Quadrant Selection Option for DHCPv6 Abstract The IEEE originally structured the 48-bit Media Access Control (MAC) address space in such a way that half of it was reserved for local use. In 2017, the IEEE published a new standard (IEEE Std 802c) with a new optional Structured Local Address Plan (SLAP). It specifies different assignment approaches in four specified regions of the local MAC address space. The IEEE is developing protocols to assign addresses (IEEE P802.1CQ). There is also work in the IETF on specifying a new mechanism that extends DHCPv6 operation to handle the local MAC address assignments. This document proposes extensions to DHCPv6 protocols to enable a DHCPv6 client or a DHCPv6 relay to indicate a preferred SLAP quadrant to the server so that the server may allocate MAC addresses in the quadrant requested by the relay or client. A new DHCPv6 option (QUAD) is defined for this purpose. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8948. Copyright Notice Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction 1.1. Problem Statement 1.1.1. Wi-Fi (IEEE 802.11) Devices 1.1.2. Hypervisor: Functions That Are and Are Not Migratable 2. Terminology 3. DHCPv6 Extensions 3.1. Address Assignment from the Preferred SLAP Quadrant Indicated by the Client 3.2. Address Assignment from the Preferred SLAP Quadrant Indicated by the Relay 4. DHCPv6 Option Definition 4.1. QUAD Option 5. IANA Considerations 6. Security Considerations 7. References 7.1. Normative References 7.2. Informative References Appendix A. Example Uses of Quadrant Selection Mechanisms Acknowledgments Authors' Addresses 1. Introduction The IEEE structures the 48-bit MAC address space in such a way that half of it is reserved for local use (where the Universal/Local (U/L) bit is set to 1). In 2017, the IEEE published a new standard [IEEEStd802c] that defines a new optional Structured Local Address Plan (SLAP) that specifies different assignment approaches in four specified regions of the local MAC address space. These four regions, called SLAP quadrants, are briefly described below (see Figure 1 and Table 1 for details): * In SLAP Quadrant 01, Extended Local Identifier (ELI) MAC addresses are assigned based on a 24-bit Company ID (CID), which is assigned by the IEEE Registration Authority (RA). The remaining bits are specified as an extension by the CID assignee or by a protocol designated by the CID assignee. * In SLAP Quadrant 11, Standard Assigned Identifier (SAI) MAC addresses are assigned based on a protocol specified in an IEEE 802 standard. For 48-bit MAC addresses, 44 bits are available. Multiple protocols for assigning SAIs may be specified in IEEE standards. Coexistence of multiple protocols may be supported by limiting the subspace available for assignment by each protocol. * In SLAP Quadrant 00, Administratively Assigned Identifier (AAI) MAC addresses are assigned locally by an administrator. Multicast IPv6 packets use a destination address starting in 33-33, so AAI addresses in that range should not be assigned. For 48-bit MAC addresses, 44 bits are available.Show full document text