PCE Communication Protocol (PCEP) Extensions for Label Switched Path (LSP) Scheduling with Stateful PCE
RFC 8934
Document | Type | RFC - Proposed Standard (October 2020; No errata) | |
---|---|---|---|
Authors | Huaimo Chen , Zhuangyan , Qin Wu , Daniele Ceccarelli | ||
Last updated | 2020-10-31 | ||
Replaces | draft-zhuang-pce-stateful-pce-lsp-scheduling | ||
Stream | IETF | ||
Formats | plain text html xml pdf htmlized bibtex | ||
Reviews | |||
Stream | WG state | Submitted to IESG for Publication | |
Document shepherd | Adrian Farrel | ||
Shepherd write-up | Show (last changed 2020-03-04) | ||
IESG | IESG state | RFC 8934 (Proposed Standard) | |
Action Holders |
(None)
|
||
Consensus Boilerplate | Yes | ||
Telechat date | |||
Responsible AD | Deborah Brungard | ||
Send notices to | Adrian Farrel <adrian@olddog.co.uk> | ||
IANA | IANA review state | Version Changed - Review Needed | |
IANA action state | RFC-Ed-Ack |
Internet Engineering Task Force (IETF) H. Chen, Ed. Request for Comments: 8934 Futurewei Category: Standards Track Y. Zhuang, Ed. ISSN: 2070-1721 Q. Wu Huawei D. Ceccarelli Ericsson October 2020 PCE Communication Protocol (PCEP) Extensions for Label Switched Path (LSP) Scheduling with Stateful PCE Abstract This document defines a set of extensions to the stateful PCE Communication Protocol (PCEP) to enable Label Switched Path (LSP) path computation, activation, setup, and deletion based on scheduled time intervals for the LSP and the actual network resource usage in a centralized network environment, as stated in RFC 8413. Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8934. Copyright Notice Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction 2. Conventions Used in This Document 2.1. Terminology 3. Motivation and Objectives 4. Procedures and Mechanisms 4.1. LSP Scheduling Overview 4.2. Support of LSP Scheduling 4.2.1. LSP Scheduling 4.2.2. Periodical LSP Scheduling 4.3. Scheduled LSP Creation 4.4. Scheduled LSP Modifications 4.5. Scheduled LSP Activation and Deletion 5. PCEP Objects and TLVs 5.1. Stateful PCE Capability TLV 5.2. LSP Object 5.2.1. SCHED-LSP-ATTRIBUTE TLV 5.2.2. SCHED-PD-LSP-ATTRIBUTE TLV 6. The PCEP Messages 6.1. The PCRpt Message 6.2. The PCUpd Message 6.3. The PCInitiate Message 6.4. The PCReq message 6.5. The PCRep Message 6.6. The PCErr Message 7. Security Considerations 8. Manageability Consideration 8.1. Control of Function and Policy 8.2. Information and Data Models 8.3. Liveness Detection and Monitoring 8.4. Verify Correct Operations 8.5. Requirements on Other Protocols 8.6. Impact on Network Operations 9. IANA Considerations 9.1. PCEP TLV Type Indicators 9.1.1. SCHED-PD-LSP-ATTRIBUTE TLV Opt Field 9.1.2. Schedule TLVs Flag Field 9.2. STATEFUL-PCE-CAPABILITY TLV Flag Field 9.3. PCEP-ERROR Object Error Types and Values 10. References 10.1. Normative References 10.2. Informative References Acknowledgments Contributors Authors' Addresses 1. Introduction The PCE Communication Protocol (PCEP) defined in [RFC5440] is used between a Path Computation Element (PCE) and a Path Computation Client (PCC) (or other PCE) to enable path computation of Multiprotocol Label Switching (MPLS) Traffic Engineering Label Switched Paths (TE LSPs). [RFC8231] describes a set of extensions to PCEP to provide stateful control. A stateful PCE has access to not only the information carried by the network's Interior Gateway Protocol (IGP) but also the set of active paths and their reserved resources for its computations. The additional state allows the PCE to compute constrained paths while considering individual LSPs and their interactions. Traditionally, the usage and allocation of network resources, especially bandwidth, can be supported by a Network Management System (NMS) operation such as path pre-establishment. However, this does not provide efficient usage of network resources. The established paths reserve the resources forever, so they cannot be used by other services even when they are not used for transporting any service.Show full document text