Address-Protected Neighbor Discovery for Low-Power and Lossy Networks
RFC 8928

Document Type RFC - Proposed Standard (November 2020; No errata)
Updates RFC 8505
Authors Pascal Thubert  , Behcet Sarikaya  , Mohit Sethi  , Rene Struik 
Last updated 2020-11-23
Replaces draft-sarikaya-6lo-ap-nd
Stream IETF
Formats plain text html xml pdf htmlized bibtex
Reviews
Stream WG state Submitted to IESG for Publication
Document shepherd Shwetha Bhandari
Shepherd write-up Show (last changed 2019-04-25)
IESG IESG state RFC 8928 (Proposed Standard)
Consensus Boilerplate Yes
Telechat date
Responsible AD Suresh Krishnan
Send notices to Shwetha Bhandari <shwethab@cisco.com>, Erik Kline <ek.ietf@gmail.com>
IANA IANA review state Version Changed - Review Needed
IANA action state RFC-Ed-Ack


Internet Engineering Task Force (IETF)                   P. Thubert, Ed.
Request for Comments: 8928                                         Cisco
Updates: 8505                                                B. Sarikaya
Category: Standards Track                                               
ISSN: 2070-1721                                                 M. Sethi
                                                                Ericsson
                                                               R. Struik
                                             Struik Security Consultancy
                                                           November 2020

 Address-Protected Neighbor Discovery for Low-Power and Lossy Networks

Abstract

   This document updates the IPv6 over Low-Power Wireless Personal Area
   Network (6LoWPAN) Neighbor Discovery (ND) protocol defined in RFCs
   6775 and 8505.  The new extension is called Address-Protected
   Neighbor Discovery (AP-ND), and it protects the owner of an address
   against address theft and impersonation attacks in a Low-Power and
   Lossy Network (LLN).  Nodes supporting this extension compute a
   cryptographic identifier (Crypto-ID), and use it with one or more of
   their Registered Addresses.  The Crypto-ID identifies the owner of
   the Registered Address and can be used to provide proof of ownership
   of the Registered Addresses.  Once an address is registered with the
   Crypto-ID and a proof of ownership is provided, only the owner of
   that address can modify the registration information, thereby
   enforcing Source Address Validation.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8928.

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

   1.  Introduction
   2.  Terminology
     2.1.  Requirements Language
     2.2.  Background
     2.3.  Abbreviations
   3.  Updating RFC 8505
   4.  New Fields and Options
     4.1.  New Crypto-ID
     4.2.  Updated EARO
     4.3.  Crypto-ID Parameters Option
     4.4.  NDP Signature Option
     4.5.  Extensions to the Capability Indication Option
   5.  Protocol Scope
   6.  Protocol Flows
     6.1.  First Exchange with a 6LR
     6.2.  NDPSO Generation and Verification
     6.3.  Multi-Hop Operation
   7.  Security Considerations
     7.1.  Brown Field
     7.2.  Threats Identified in RFC 3971
     7.3.  Related to 6LoWPAN ND
     7.4.  Compromised 6LR
     7.5.  ROVR Collisions
     7.6.  Implementation Attacks
     7.7.  Cross-Algorithm and Cross-Protocol Attacks
     7.8.  Public Key Validation
     7.9.  Correlating Registrations
   8.  IANA Considerations
     8.1.  CGA Message Type
     8.2.  Crypto-Type Subregistry
     8.3.  IPv6 ND Option Types
     8.4.  New 6LoWPAN Capability Bit
   9.  References
     9.1.  Normative References
     9.2.  Informative References
   Appendix A.  Requirements Addressed in This Document
   Appendix B.  Representation Conventions
     B.1.  Signature Schemes
     B.2.  Representation of ECDSA Signatures
     B.3.  Representation of Public Keys Used with ECDSA
     B.4.  Alternative Representations of Curve25519
     Acknowledgments
   Authors' Addresses

1.  Introduction

   Neighbor Discovery optimizations for 6LoWPAN networks (aka 6LoWPAN
   ND) [RFC6775] adapts the original IPv6 Neighbor Discovery protocols
   defined in [RFC4861] and [RFC4862] for constrained Low-Power and
   Lossy Networks (LLNs).  In particular, 6LoWPAN ND introduces a
   unicast host Address Registration mechanism that reduces the use of
   multicast compared to the Duplicate Address Detection (DAD) mechanism
   defined in IPv6 ND. 6LoWPAN ND defines a new Address Registration
   Option (ARO) that is carried in the unicast Neighbor Solicitation
   (NS) and Neighbor Advertisement (NA) messages exchanged between a
   6LoWPAN Node (6LN) and a 6LoWPAN Router (6LR).  It also defines the
Show full document text