Segment Routing with the MPLS Data Plane
RFC 8660
Document | Type | RFC - Proposed Standard (December 2019; No errata) | |
---|---|---|---|
Authors | Ahmed Bashandy , Clarence Filsfils , Stefano Previdi , Bruno Decraene , Stephane Litkowski , Rob Shakir | ||
Last updated | 2019-12-06 | ||
Replaces | draft-filsfils-spring-segment-routing-mpls | ||
Stream | IETF | ||
Formats | plain text html xml pdf htmlized bibtex | ||
Reviews | |||
Stream | WG state | Submitted to IESG for Publication (wg milestone: Oct 2018 - SR-MPLS sent to IESG... ) | |
Document shepherd | Shraddha Hegde | ||
Shepherd write-up | Show (last changed 2018-12-03) | ||
IESG | IESG state | RFC 8660 (Proposed Standard) | |
Action Holders |
(None)
|
||
Consensus Boilerplate | Yes | ||
Telechat date | |||
Responsible AD | Martin Vigoureux | ||
Send notices to | Shraddha Hegde <shraddha@juniper.net> | ||
IANA | IANA review state | Version Changed - Review Needed | |
IANA action state | No IANA Actions |
Internet Engineering Task Force (IETF) A. Bashandy, Ed. Request for Comments: 8660 Arrcus Category: Standards Track C. Filsfils, Ed. ISSN: 2070-1721 S. Previdi Cisco Systems, Inc. B. Decraene S. Litkowski Orange R. Shakir Google December 2019 Segment Routing with the MPLS Data Plane Abstract Segment Routing (SR) leverages the source-routing paradigm. A node steers a packet through a controlled set of instructions, called segments, by prepending the packet with an SR header. In the MPLS data plane, the SR header is instantiated through a label stack. This document specifies the forwarding behavior to allow instantiating SR over the MPLS data plane (SR-MPLS). Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8660. Copyright Notice Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction 1.1. Requirements Language 2. MPLS Instantiation of Segment Routing 2.1. Multiple Forwarding Behaviors for the Same Prefix 2.2. SID Representation in the MPLS Forwarding Plane 2.3. Segment Routing Global Block and Local Block 2.4. Mapping a SID Index to an MPLS Label 2.5. Incoming Label Collision 2.5.1. Tiebreaking Rules 2.5.2. Redistribution between Routing Protocol Instances 2.6. Effect of Incoming Label Collision on Outgoing Label Programming 2.7. PUSH, CONTINUE, and NEXT 2.7.1. PUSH 2.7.2. CONTINUE 2.7.3. NEXT 2.8. MPLS Label Downloaded to the FIB for Global and Local SIDs 2.9. Active Segment 2.10. Forwarding Behavior for Global SIDs 2.10.1. Forwarding for PUSH and CONTINUE of Global SIDs 2.10.2. Forwarding for the NEXT Operation for Global SIDs 2.11. Forwarding Behavior for Local SIDs 2.11.1. Forwarding for the PUSH Operation on Local SIDs 2.11.2. Forwarding for the CONTINUE Operation for Local SIDs 2.11.3. Outgoing Label for the NEXT Operation for Local SIDs 3. IANA Considerations 4. Manageability Considerations 5. Security Considerations 6. References 6.1. Normative References 6.2. Informative References Appendix A. Examples A.1. IGP Segment Examples A.2. Incoming Label Collision Examples A.2.1. Example 1 A.2.2. Example 2 A.2.3. Example 3 A.2.4. Example 4 A.2.5. Example 5 A.2.6. Example 6 A.2.7. Example 7 A.2.8. Example 8 A.2.9. Example 9 A.2.10. Example 10 A.2.11. Example 11 A.2.12. Example 12 A.2.13. Example 13 A.2.14. Example 14 A.3. Examples for the Effect of Incoming Label Collision on an Outgoing Label A.3.1. Example 1 A.3.2. Example 2 Acknowledgements Contributors Authors' Addresses 1. Introduction The Segment Routing architecture [RFC8402] can be directly applied to the MPLS architecture with no change in the MPLS forwarding plane. This document specifies forwarding-plane behavior to allow Segment Routing to operate on top of the MPLS data plane (SR-MPLS). This document does not address control-plane behavior. Control-plane behavior is specified in other documents such as [RFC8665],Show full document text