Cooperating Layered Architecture for Software-Defined Networking (CLAS)
RFC 8597
Document | Type |
RFC - Informational
(May 2019; No errata)
Was draft-contreras-layered-sdn (individual)
|
|
---|---|---|---|
Authors | Luis Contreras , Carlos Bernardos , Diego Lopez , Mohamed Boucadair , Paola Iovanna | ||
Last updated | 2019-05-15 | ||
Stream | ISE | ||
Formats | plain text html pdf htmlized bibtex | ||
IETF conflict review | conflict-review-contreras-layered-sdn | ||
Stream | ISE state | Published RFC | |
Consensus Boilerplate | Unknown | ||
Document shepherd | Adrian Farrel | ||
Shepherd write-up | Show (last changed 2018-11-26) | ||
IESG | IESG state | RFC 8597 (Informational) | |
Telechat date | |||
Responsible AD | (None) | ||
Send notices to | Adrian Farrel <rfc-ise@rfc-editor.org> | ||
IANA | IANA review state | IANA OK - No Actions Needed | |
IANA action state | No IANA Actions |
Independent Submission LM. Contreras Request for Comments: 8597 Telefonica Category: Informational CJ. Bernardos ISSN: 2070-1721 UC3M D. Lopez Telefonica M. Boucadair Orange P. Iovanna Ericsson May 2019 Cooperating Layered Architecture for Software-Defined Networking (CLAS) Abstract Software-Defined Networking (SDN) advocates for the separation of the control plane from the data plane in the network nodes and its logical centralization on one or a set of control entities. Most of the network and/or service intelligence is moved to these control entities. Typically, such an entity is seen as a compendium of interacting control functions in a vertical, tightly integrated fashion. The relocation of the control functions from a number of distributed network nodes to a logical central entity conceptually places together a number of control capabilities with different purposes. As a consequence, the existing solutions do not provide a clear separation between transport control and services that rely upon transport capabilities. This document describes an approach called Cooperating Layered Architecture for Software-Defined Networking (CLAS), wherein the control functions associated with transport are differentiated from those related to services in such a way that they can be provided and maintained independently and can follow their own evolution path. Contreras, et al. Informational [Page 1] RFC 8597 Layered SDN Architecture May 2019 Status of This Memo This document is not an Internet Standards Track specification; it is published for informational purposes. This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has chosen to publish this document at its discretion and makes no statement about its value for implementation or deployment. Documents approved for publication by the RFC Editor are not candidates for any level of Internet Standard; see Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8597. Copyright Notice Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Contreras, et al. Informational [Page 2] RFC 8597 Layered SDN Architecture May 2019 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 5 3. Architecture Overview . . . . . . . . . . . . . . . . . . . . 6 3.1. Functional Strata . . . . . . . . . . . . . . . . . . . . 9 3.1.1. Transport Stratum . . . . . . . . . . . . . . . . . . 9 3.1.2. Service Stratum . . . . . . . . . . . . . . . . . . . 10 3.1.3. Recursiveness . . . . . . . . . . . . . . . . . . . . 10 3.2. Plane Separation . . . . . . . . . . . . . . . . . . . . 10 3.2.1. Control Plane . . . . . . . . . . . . . . . . . . . . 11 3.2.2. Management Plane . . . . . . . . . . . . . . . . . . 11 3.2.3. Resource Plane . . . . . . . . . . . . . . . . . . . 11 4. Required Features . . . . . . . . . . . . . . . . . . . . . . 11 5. Communication between SDN Controllers . . . . . . . . . . . . 12 6. Deployment Scenarios . . . . . . . . . . . . . . . . . . . . 12 6.1. Full SDN Environments . . . . . . . . . . . . . . . . . . 13 6.1.1. Multiple Service Strata Associated with a Single Transport Stratum . . . . . . . . . . . . . . . . . . 13 6.1.2. Single Service Stratum Associated with Multiple Transport Strata . . . . . . . . . . . . . . . . . . 13 6.2. Hybrid Environments . . . . . . . . . . . . . . . . . . . 13 6.2.1. SDN Service Stratum Associated with a LegacyShow full document text