Mobile Multicast Sender Support in Proxy Mobile IPv6 (PMIPv6) Domains
RFC 7287
Document | Type | RFC - Experimental (June 2014; No errata) | |
---|---|---|---|
Authors | Thomas Schmidt , Shuai Gao , Hong-Ke Zhang , Matthias Wählisch | ||
Last updated | 2015-10-14 | ||
Stream | Internent Engineering Task Force (IETF) | ||
Formats | plain text html pdf htmlized (tools) htmlized bibtex | ||
Reviews | |||
Stream | WG state | Submitted to IESG for Publication | |
Document shepherd | Stig Venaas | ||
Shepherd write-up | Show (last changed 2014-03-24) | ||
IESG | IESG state | RFC 7287 (Experimental) | |
Action Holders |
(None)
|
||
Consensus Boilerplate | Yes | ||
Telechat date | |||
Responsible AD | Brian Haberman | ||
Send notices to | (None) | ||
IANA | IANA review state | Version Changed - Review Needed | |
IANA action state | No IANA Actions |
Internet Engineering Task Force (IETF) T. Schmidt, Ed. Request for Comments: 7287 HAW Hamburg Category: Experimental S. Gao ISSN: 2070-1721 H. Zhang Beijing Jiaotong University M. Waehlisch link-lab & FU Berlin June 2014 Mobile Multicast Sender Support in Proxy Mobile IPv6 (PMIPv6) Domains Abstract Multicast communication can be enabled in Proxy Mobile IPv6 (PMIPv6) domains via the Local Mobility Anchors by deploying Multicast Listener Discovery (MLD) proxy functions at Mobile Access Gateways, by using direct traffic distribution within an ISP's access network, or by selective route optimization schemes. This document describes a base solution and an experimental protocol to support mobile multicast senders in PMIPv6 domains for all three scenarios. Protocol optimizations for synchronizing PMIPv6 with PIM, as well as a peering function for MLD proxies are defined. Mobile sources always remain agnostic of multicast mobility operations. Status of This Memo This document is not an Internet Standards Track specification; it is published for examination, experimental implementation, and evaluation. This document defines an Experimental Protocol for the Internet community. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc7287. Schmidt, et al. Experimental [Page 1] RFC 7287 Multicast Senders in PMIPv6 June 2014 Copyright Notice Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Schmidt, et al. Experimental [Page 2] RFC 7287 Multicast Senders in PMIPv6 June 2014 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1. Requirements Language . . . . . . . . . . . . . . . . . . 5 3. Base Solution for Source Mobility and PMIPv6 Routing . . . . 5 3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . 5 3.2. Base Solution for Source Mobility: Details . . . . . . . 9 3.2.1. Operations of the Mobile Node . . . . . . . . . . . . 9 3.2.2. Operations of the Mobile Access Gateway . . . . . . . 9 3.2.3. Operations of the Local Mobility Anchor . . . . . . . 9 3.2.4. IPv4 Support . . . . . . . . . . . . . . . . . . . . 10 3.2.5. Efficiency of the Distribution System . . . . . . . . 11 4. Direct Multicast Routing . . . . . . . . . . . . . . . . . . 12 4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2. MLD Proxies at MAGs . . . . . . . . . . . . . . . . . . . 13 4.2.1. Considerations for PIM-SM on the Upstream . . . . . . 14 4.2.2. SSM Considerations . . . . . . . . . . . . . . . . . 14 4.3. PIM-SM at MAGs . . . . . . . . . . . . . . . . . . . . . 15 4.3.1. Routing Information Base for PIM-SM . . . . . . . . . 15 4.3.2. Operations of PIM in Phase One (RP Tree) . . . . . . 16 4.3.3. Operations of PIM in Phase Two (Register-Stop) . . . 16 4.3.4. Operations of PIM in Phase Three (Shortest-Path Tree) 17 4.3.5. PIM-SSM Considerations . . . . . . . . . . . . . . . 18 4.3.6. Handover Optimizations for PIM . . . . . . . . . . . 18 4.4. BIDIR-PIM . . . . . . . . . . . . . . . . . . . . . . . . 18 4.4.1. Routing Information Base for BIDIR-PIM . . . . . . . 19Show full document text