Depth-First Forwarding (DFF) in Unreliable Networks
RFC 6971
Document | Type |
RFC - Experimental
(June 2013; Errata)
Was draft-cardenas-dff (individual)
|
|
---|---|---|---|
Authors | Ulrich Herberg , Alvaro Cardenas , Tadashige Iwao , Michael Dow , Sandra Cespedes | ||
Last updated | 2020-01-21 | ||
Stream | IETF | ||
Formats | plain text html pdf htmlized with errata bibtex | ||
Reviews | |||
Stream | WG state | (None) | |
Document shepherd | No shepherd assigned | ||
IESG | IESG state | RFC 6971 (Experimental) | |
Consensus Boilerplate | Unknown | ||
Telechat date | |||
Responsible AD | Ted Lemon | ||
IESG note | Document Shepherd: Geoff Mulligan (geoff.ietf@mulligan.com) | ||
Send notices to | alvaro.cardenas@me.com, geoff.ietf@mulligan.com | ||
IANA | IANA review state | IANA - Review Needed | |
IANA action state | RFC-Ed-Ack |
Internet Engineering Task Force (IETF) U. Herberg, Ed. Request for Comments: 6971 Fujitsu Category: Experimental A. Cardenas ISSN: 2070-1721 University of Texas at Dallas T. Iwao Fujitsu M. Dow Freescale S. Cespedes Icesi University June 2013 Depth-First Forwarding (DFF) in Unreliable Networks Abstract This document specifies the Depth-First Forwarding (DFF) protocol for IPv6 networks, a data-forwarding mechanism that can increase reliability of data delivery in networks with dynamic topology and/or lossy links. The protocol operates entirely on the forwarding plane but may interact with the routing plane. DFF forwards data packets using a mechanism similar to a "depth-first search" for the destination of a packet. The routing plane may be informed of failures to deliver a packet or loops. This document specifies the DFF mechanism both for IPv6 networks (as specified in RFC 2460) and for "mesh-under" Low-Power Wireless Personal Area Networks (LoWPANs), as specified in RFC 4944. The design of DFF assumes that the underlying link layer provides means to detect if a packet has been successfully delivered to the Next Hop or not. It is applicable for networks with little traffic and is used for unicast transmissions only. Herberg, et al. Experimental [Page 1] RFC 6971 DFF June 2013 Status of This Memo This document is not an Internet Standards Track specification; it is published for examination, experimental implementation, and evaluation. This document defines an Experimental Protocol for the Internet community. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6971. Copyright Notice Copyright (c) 2013 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2. Experiments to Be Conducted . . . . . . . . . . . . . . . 5 2. Notation and Terminology . . . . . . . . . . . . . . . . . . . 6 2.1. Notation . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . 7 3. Applicability Statement . . . . . . . . . . . . . . . . . . . 9 4. Protocol Overview and Functioning . . . . . . . . . . . . . . 10 4.1. Overview of Information Sets . . . . . . . . . . . . . . . 11 4.2. Signaling Overview . . . . . . . . . . . . . . . . . . . . 11 5. Protocol Dependencies . . . . . . . . . . . . . . . . . . . . 13 Herberg, et al. Experimental [Page 2] RFC 6971 DFF June 2013 6. Information Sets . . . . . . . . . . . . . . . . . . . . . . . 13 6.1. Symmetric Neighbor List . . . . . . . . . . . . . . . . . 13 6.2. Processed Set . . . . . . . . . . . . . . . . . . . . . . 13 7. Packet Header Fields . . . . . . . . . . . . . . . . . . . . . 14 8. Protocol Parameters . . . . . . . . . . . . . . . . . . . . . 15 9. Data Packet Generation and Processing . . . . . . . . . . . . 15 9.1. Data Packets Entering the DFF Routing Domain . . . . . . . 16Show full document text