Asymmetric Extended Route Optimization (AERO)
RFC 6706
Document | Type |
RFC - Experimental
(August 2012; No errata)
Was draft-templin-aero (individual in rtg area)
|
|
---|---|---|---|
Author | Fred Templin | ||
Last updated | 2020-07-29 | ||
Stream | IETF | ||
Formats | plain text html pdf htmlized bibtex | ||
Reviews | |||
Stream | WG state | (None) | |
Document shepherd | No shepherd assigned | ||
IESG | IESG state | RFC 6706 (Experimental) | |
Consensus Boilerplate | Unknown | ||
Telechat date | |||
Responsible AD | Stewart Bryant | ||
Send notices to | (None) |
Internet Engineering Task Force (IETF) F. Templin, Ed. Request for Comments: 6706 Boeing Research & Technology Category: Experimental August 2012 ISSN: 2070-1721 Asymmetric Extended Route Optimization (AERO) Abstract Nodes attached to common multi-access link types (e.g., multicast- capable, shared media, non-broadcast multiple access (NBMA), etc.) can exchange packets as neighbors on the link, but they may not always be provisioned with sufficient routing information for optimal neighbor selection. Such nodes should therefore be able to discover a trusted intermediate router on the link that provides both forwarding services to reach off-link destinations and redirection services to inform the node of an on-link neighbor that is closer to the final destination. This redirection can provide a useful route optimization, since the triangular path from the ingress link neighbor, to the intermediate router, and finally to the egress link neighbor may be considerably longer than the direct path from ingress to egress. However, ordinary redirection may lead to operational issues on certain link types and/or in certain deployment scenarios. This document therefore introduces an Asymmetric Extended Route Optimization (AERO) capability that addresses the issues. Status of This Memo This document is not an Internet Standards Track specification; it is published for examination, experimental implementation, and evaluation. This document defines an Experimental Protocol for the Internet community. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Not all documents approved by the IESG are a candidate for any level of Internet Standard; see Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6706. Templin Experimental [Page 1] RFC 6706 AERO August 2012 Copyright Notice Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Templin Experimental [Page 2] RFC 6706 AERO August 2012 Table of Contents 1. Introduction ....................................................4 2. Terminology .....................................................6 3. Motivation ......................................................7 4. Example Use Cases ...............................................8 5. Requirements ....................................................9 6. Asymmetric Extended Route Optimization (AERO) ..................10 6.1. AERO Link Dynamic Routing .................................10 6.2. AERO Node Behavior ........................................11 6.2.1. AERO Node Types ....................................11 6.2.2. AERO Host Behavior .................................11 6.2.3. Edge AERO Router Behavior ..........................11 6.2.4. Intermediate AERO Router Behavior ..................12 6.3. AERO Reference Operational Scenario .......................12 6.4. AERO Specification ........................................14 6.4.1. Traditional Redirection Approaches .................14 6.4.2. AERO Concept of Operations .........................15 6.4.3. Conceptual Data Structures and Protocol Constants ..16 6.4.4. Data Origin Authentication .........................17 6.4.5. AERO Redirection Message Format ....................18 6.4.6. Sending Predirects .................................20 6.4.7. Processing Predirects and Sending Redirects ........21 6.4.8. Forwarding Redirects ...............................22 6.4.9. Processing Redirects ...............................23 6.4.10. Sending Periodic Predirect Keepalives .............24Show full document text