A Simulation Model for IP Multicast with RSVP
RFC 2490
Document | Type |
RFC - Informational
(January 1999; No errata)
Was draft-pullen-ipv4-rsvp (individual)
|
|
---|---|---|---|
Authors | Gang Duan , Lava Lavu , Jiemei Ma , Ravi Malghan , Hoon Nah , Mark Pullen | ||
Last updated | 2013-03-02 | ||
Stream | Legacy | ||
Formats | plain text html pdf ps htmlized bibtex | ||
Stream | Legacy state | (None) | |
Consensus Boilerplate | Unknown | ||
RFC Editor Note | (None) | ||
IESG | IESG state | RFC 2490 (Informational) | |
Telechat date | |||
Responsible AD | (None) | ||
Send notices to | (None) |
Network Working Group M. Pullen Request for Comments: 2490 George Mason University Category: Informational R. Malghan Hitachi Data Systems L. Lavu Bay Networks G. Duan Oracle J. Ma NewBridge H. Nah George Mason University January 1999 A Simulation Model for IP Multicast with RSVP Status of this Memo This memo provides information for the Internet community. It does not specify an Internet standard of any kind. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (1999). All Rights Reserved. Abstract This document describes a detailed model of IPv4 multicast with RSVP that has been developed using the OPNET simulation package [4], with protocol procedures defined in the C language. The model was developed to allow investigation of performance constraints on routing but should have wide applicability in the Internet multicast/resource reservation community. We are making this model publicly available with the intention that it can be used to provide expanded studies of resource-reserved multicasting. Table of Contents 1. Background 2 2. The OPNET Simulation Environment 3 3. IP Multicast Model 3 3.1 Address Format 3 3.2 Network Layer 4 3.3 Node layer 5 4. RSVP Model 13 4.1 RSVP Application 13 Pullen, et. al. Informational [Page 1] RFC 2490 IP Multicast with RSVP January 1999 4.2 RSVP on Routers 14 4.3 RSVP on Hosts 17 5. Multicast Routing Model Interface 19 5.1 Creation of multicast routing processor node 19 5.2 Interfacing processor nodes 19 5.3 Interrupt Generation 21 5.4 Modifications of modules in the process model 22 6. OSPF and MOSPF Models 23 6.1 Init 23 6.2 Idle 23 6.3 BCOspfLsa 23 6.4 BCMospfLsa 23 6.5 Arr 23 6.6 Hello_pks 24 6.7 Mospfspfcalc 24 6.8 Ospfspfcalc 25 6.9 UpstrNode 25 6.10 DABRA 25 7. DVMRP Model 26 7.1 Init 26 7.2 Idle 26 7.3 Probe_Send State 26 7.4 Report_Send 26 7.5 Prune _Send 26 7.6 Graft_send 27 7.7 Arr_Pkt 27 7.8 Route_Calc 28 7.9 Timer 28 8. Simulation performance 28 9. Future Work 29 10. Security Considerations 29 11. References 29 Authors' Addresses 30 Full Copyright Statement 31 1. Background The successful deployment of IP multicasting [1] and its availability in the Mbone has led to continuing increase in real-time multimediaShow full document text