Skip to main content

Definitions of Managed Objects for Data Link Switching using SMIv2
RFC 2024

Document Type RFC - Proposed Standard (October 1996)
Authors Dr. David D. Chen , Peter W. Gayek , Shannon D. Nix
Last updated 2013-03-02
RFC stream Internet Engineering Task Force (IETF)
Formats
Additional resources ftp%3A//host%20name/pub/standards/aiw/maillogs/mib.mail
IESG Responsible AD (None)
Send notices to (None)
RFC 2024
Network Working Group                                         D. Awduche
Request for Comments: 3272                                Movaz Networks
Category: Informational                                          A. Chiu
                                                         Celion Networks
                                                              A. Elwalid
                                                              I. Widjaja
                                                     Lucent Technologies
                                                                 X. Xiao
                                                        Redback Networks
                                                                May 2002

        Overview and Principles of Internet Traffic Engineering

Status of this Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2002).  All Rights Reserved.

Abstract

   This memo describes the principles of Traffic Engineering (TE) in the
   Internet.  The document is intended to promote better understanding
   of the issues surrounding traffic engineering in IP networks, and to
   provide a common basis for the development of traffic engineering
   capabilities for the Internet.  The principles, architectures, and
   methodologies for performance evaluation and performance optimization
   of operational IP networks are discussed throughout this document.

Table of Contents

   1.0 Introduction...................................................3
      1.1 What is Internet Traffic Engineering?.......................4
      1.2 Scope.......................................................7
      1.3 Terminology.................................................8
   2.0 Background....................................................11
      2.1 Context of Internet Traffic Engineering....................12
      2.2 Network Context............................................13
      2.3 Problem Context............................................14
         2.3.1 Congestion and its Ramifications......................16
      2.4 Solution Context...........................................16
         2.4.1 Combating the Congestion Problem......................18
      2.5 Implementation and Operational Context.....................21

Awduche, et. al.             Informational                      [Page 1]
RFC 3272        Overview and Principles of Internet TE          May 2002

   3.0 Traffic Engineering Process Model.............................21
      3.1 Components of the Traffic Engineering Process Model........23
      3.2 Measurement................................................23
      3.3 Modeling, Analysis, and Simulation.........................24
      3.4 Optimization...............................................25
   4.0 Historical Review and Recent Developments.....................26
      4.1 Traffic Engineering in Classical Telephone Networks........26
      4.2 Evolution of Traffic Engineering in the Internet...........28
         4.2.1 Adaptive Routing in ARPANET...........................28
         4.2.2 Dynamic Routing in the Internet.......................29
         4.2.3 ToS Routing...........................................30
         4.2.4 Equal Cost Multi-Path.................................30
         4.2.5 Nimrod................................................31
      4.3 Overlay Model..............................................31
      4.4 Constraint-Based Routing...................................32
      4.5 Overview of Other IETF Projects Related to Traffic
          Engineering................................................32
         4.5.1 Integrated Services...................................32
         4.5.2 RSVP..................................................33
         4.5.3 Differentiated Services...............................34
         4.5.4 MPLS..................................................35
         4.5.5 IP Performance Metrics................................36
         4.5.6 Flow Measurement......................................37
         4.5.7 Endpoint Congestion Management........................37
      4.6 Overview of ITU Activities Related to Traffic
          Engineering................................................38
      4.7 Content Distribution.......................................39
   5.0 Taxonomy of Traffic Engineering Systems.......................40
      5.1 Time-Dependent Versus State-Dependent......................40
      5.2 Offline Versus Online......................................41
      5.3 Centralized Versus Distributed.............................42
      5.4 Local Versus Global........................................42
      5.5 Prescriptive Versus Descriptive............................42
      5.6 Open-Loop Versus Closed-Loop...............................43
      5.7 Tactical vs Strategic......................................43
   6.0 Recommendations for Internet Traffic Engineering..............43
      6.1 Generic Non-functional Recommendations.....................44
      6.2 Routing Recommendations....................................46
      6.3 Traffic Mapping Recommendations............................48
      6.4 Measurement Recommendations................................49
      6.5 Network Survivability......................................50
         6.5.1 Survivability in MPLS Based Networks..................52
         6.5.2 Protection Option.....................................53
      6.6 Traffic Engineering in Diffserv Environments...............54
      6.7 Network Controllability....................................56
   7.0 Inter-Domain Considerations...................................57
   8.0 Overview of Contemporary TE Practices in Operational
       IP Networks...................................................59

Awduche, et. al.             Informational                      [Page 2]
RFC 3272        Overview and Principles of Internet TE          May 2002

   9.0 Conclusion....................................................63
   10.0 Security Considerations......................................63
   11.0 Acknowledgments..............................................63
   12.0 References...................................................64
   13.0 Authors' Addresses...........................................70
   14.0 Full Copyright Statement.....................................71

1.0 Introduction

   This memo describes the principles of Internet traffic engineering.
   The objective of the document is to articulate the general issues and
   principles for Internet traffic engineering; and where appropriate to
   provide recommendations, guidelines, and options for the development
   of online and offline Internet traffic engineering capabilities and
   support systems.

   This document can aid service providers in devising and implementing
   traffic engineering solutions for their networks.  Networking
   hardware and software vendors will also find this document helpful in
   the development of mechanisms and support systems for the Internet
   environment that support the traffic engineering function.

   This document provides a terminology for describing and understanding
   common Internet traffic engineering concepts.  This document also
   provides a taxonomy of known traffic engineering styles.  In this
   context, a traffic engineering style abstracts important aspects from
   a traffic engineering methodology.  Traffic engineering styles can be
   viewed in different ways depending upon the specific context in which
   they are used and the specific purpose which they serve.  The
   combination of styles and views results in a natural taxonomy of
   traffic engineering systems.

   Even though Internet traffic engineering is most effective when
   applied end-to-end, the initial focus of this document document is
   intra-domain traffic engineering (that is, traffic engineering within
   a given autonomous system).  However, because a preponderance of
   Internet traffic tends to be inter-domain (originating in one
   autonomous system and terminating in another), this document provides
   an overview of aspects pertaining to inter-domain traffic
   engineering.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119.

Awduche, et. al.             Informational                      [Page 3]
RFC 3272        Overview and Principles of Internet TE          May 2002

quot;It is up to this DSLw whether to keep either none, some,
        or all of the NetBIOS name list that was received in
        the capabilities exchange message sent by this partner DLSw.
        This object identifies how much information was kept by
        this DLSw.  These names are stored as userConfigured
        remote entries in dlswDirNBTable.
        A value of (4), notApplicable, should be returned before
        a Capabilities Exchange message is received, or if one is
        never received.

Chen, et. al.               Standards Track                    [Page 34]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        If an implementation chooses to keep dlswTConnOperEntrys in
        the `disconnected' state, this value should remain unchanged."
    ::= { dlswTConnOperEntry 16 }

dlswTConnOperPartnerMacInfo  OBJECT-TYPE
    SYNTAX     INTEGER  {
       none           (1),  -- none is kept
       partial        (2),  -- partial list is kept
       complete       (3),  -- complete list is kept
       notApplicable  (4)
    }
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "It is up to this DLSw whether to keep either none, some,
        or all of the MAC address list that was received in the
        capabilities exchange message sent by this partner DLSw.
        This object identifies how much information was kept by
        this DLSw.  These names are stored as userConfigured
        remote entries in dlswDirMACTable.
        A value of (4), notApplicable, should be returned before
        a Capabilities Exchange message is received, or if one is
        never received.

        If an implementation chooses to keep dlswTConnOperEntrys in
        the `disconnected' state, this value should remain unchanged."
    ::= { dlswTConnOperEntry 17 }

-- ...................................................................
-- Information about the last disconnect of this transport connection.
--   These objects make sense only for implementations that keep
--   transport connection information around after disconnection.
-- ...................................................................
dlswTConnOperDiscTime  OBJECT-TYPE
    SYNTAX     TimeTicks
    UNITS      "hundredths of a second"
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The amount of time (in hundredths of a second) since the
        dlswTConnOperState last entered `disconnected' state."
    ::= { dlswTConnOperEntry 18 }

dlswTConnOperDiscReason  OBJECT-TYPE
    SYNTAX     INTEGER  {
        other              (1),
        capExFailed        (2),
        transportLayerDisc (3),

Chen, et. al.               Standards Track                    [Page 35]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        operatorCommand    (4),
        lastCircuitDiscd   (5),
        protocolError      (6)
    }
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "This object signifies the reason that either prevented the
        transport connection from entering the connected state, or
        caused the transport connection to enter the disconnected
        state."
    ::= { dlswTConnOperEntry 19 }

dlswTConnOperDiscActiveCir  OBJECT-TYPE
    SYNTAX     INTEGER (0..2147483647)
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of circuits active (not in DISCONNECTED state)
        at the time the transport connection was last disconnected.
        This value is zero if the transport connection has never
        been connected."
    ::= { dlswTConnOperEntry 20 }

-- ...................................................................
-- Transport Connection Statistics
-- (1) Traffic counts
-- ...................................................................
dlswTConnOperInDataPkts  OBJECT-TYPE
    SYNTAX     Counter32
    UNITS      "SSP messages"
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of Switch-to-Switch Protocol (SSP) messages of
        type DGRMFRAME, DATAFRAME, or INFOFRAME received on this
        transport connection."
    ::= { dlswTConnOperEntry 21 }

dlswTConnOperOutDataPkts  OBJECT-TYPE
    SYNTAX     Counter32
    UNITS      "SSP messages"
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of Switch-to-Switch Protocol (SSP) messages of
        type DGRMFRAME, DATAFRAME, or INFOFRAME transmitted on this
        transport connection."

Chen, et. al.               Standards Track                    [Page 36]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    ::= { dlswTConnOperEntry 22 }

dlswTConnOperInDataOctets  OBJECT-TYPE
    SYNTAX     Counter32
    UNITS      "octets"
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number octets in Switch-to-Switch Protocol (SSP) messages
        of type DGRMFRAME, DATAFRAME, or INFOFRAME received on this
        transport connection.  Each message is counted starting with
        the first octet following the SSP message header."
    ::= { dlswTConnOperEntry 23 }

dlswTConnOperOutDataOctets  OBJECT-TYPE
    SYNTAX     Counter32
    UNITS      "octets"
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number octets in Switch-to-Switch Protocol (SSP) messages
        of type DGRMFRAME, DATAFRAME, or INFOFRAME transmitted on this
        transport connection.  Each message is counted starting with
        the first octet following the SSP message header."
    ::= { dlswTConnOperEntry 24 }

dlswTConnOperInCntlPkts  OBJECT-TYPE
    SYNTAX     Counter32
    UNITS      "SSP messages"
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of Switch-to-Switch Protocol (SSP) messages
        received on this transport connection which were not of
        type DGRMFRAME, DATAFRAME, or INFOFRAME."
    ::= { dlswTConnOperEntry 25 }

dlswTConnOperOutCntlPkts  OBJECT-TYPE
    SYNTAX     Counter32
    UNITS      "SSP messages"
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of Switch-to-Switch Protocol (SSP) messages of
        transmitted on this transport connection which were not of
        type DGRMFRAME, DATAFRAME, or INFOFRAME."
    ::= { dlswTConnOperEntry 26 }

Chen, et. al.               Standards Track                    [Page 37]
RFC 2024                  DLSw MIB using SMIv2              October 1996

-- ...................................................................
-- (2) Directory activities (Explorer messages)
-- ...................................................................

dlswTConnOperCURexSents  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of CanUReach_ex messages sent on this transport
        connection."
    ::= { dlswTConnOperEntry 27 }

dlswTConnOperICRexRcvds  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of ICanReach_ex messages received on this transport
        connection."
    ::= { dlswTConnOperEntry 28 }

dlswTConnOperCURexRcvds  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of CanUReach_ex messages received on this transport
        connection."
    ::= { dlswTConnOperEntry 29 }

dlswTConnOperICRexSents  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of ICanReach_ex messages sent on this transport
        connection."
    ::= { dlswTConnOperEntry 30 }

-- ...................................................................

dlswTConnOperNQexSents  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of NetBIOS_NQ_ex (NetBIOS Name Query-explorer)

Chen, et. al.               Standards Track                    [Page 38]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        messages sent on this transport connection."
    ::= { dlswTConnOperEntry 31 }

dlswTConnOperNRexRcvds  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of NETBIOS_NR_ex (NetBIOS Name Recognized-explorer)
        messages received on this transport connection."
    ::= { dlswTConnOperEntry 32 }

dlswTConnOperNQexRcvds  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of NETBIOS_NQ_ex messages received on this
        transport connection."
    ::= { dlswTConnOperEntry 33 }

dlswTConnOperNRexSents  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of NETBIOS_NR_ex messages sent on this transport
        connection."
    ::= { dlswTConnOperEntry 34 }

-- ...................................................................
-- (3) Circuit activities on each transport connection
-- ...................................................................
dlswTConnOperCirCreates  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of times that circuits entered `circuit_established'
        state (not counting transitions from `circuit_restart')."
    ::= { dlswTConnOperEntry 35 }

dlswTConnOperCircuits  OBJECT-TYPE
    SYNTAX     Gauge32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of currently active circuits on this transport

Chen, et. al.               Standards Track                    [Page 39]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        connection, where `active' means not in `disconnected' state."
    ::= { dlswTConnOperEntry 36 }

-- -------------------------------------------------------------------
-- Transport Connection Specific
-- -------------------------------------------------------------------
dlswTConnSpecific OBJECT IDENTIFIER ::= { dlswTConn 4 }
dlswTConnTcp      OBJECT IDENTIFIER ::= { dlswTConnSpecific 1 }

-- ...................................................................
-- TCP Transport Connection Specific -- Configuration
-- ...................................................................
dlswTConnTcpConfigTable  OBJECT-TYPE
    SYNTAX     SEQUENCE OF DlswTConnTcpConfigEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "This table defines the TCP transport connections that
        will be either initiated by or accepted by this DSLw.
        It augments the entries in dlswTConnConfigTable whose domain
        is dlswTCPDomain."
    ::= { dlswTConnTcp 1 }

dlswTConnTcpConfigEntry  OBJECT-TYPE
    SYNTAX     DlswTConnTcpConfigEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "Each conceptual row defines parameters that are
        specific to dlswTCPDomain transport connections."
    INDEX   { dlswTConnConfigIndex }
    ::= { dlswTConnTcpConfigTable 1 }

DlswTConnTcpConfigEntry ::= SEQUENCE {
    dlswTConnTcpConfigKeepAliveInt       INTEGER,
    dlswTConnTcpConfigTcpConnections     INTEGER,
    dlswTConnTcpConfigMaxSegmentSize     INTEGER
    }

dlswTConnTcpConfigKeepAliveInt  OBJECT-TYPE
    SYNTAX     INTEGER (0..1800)
    UNITS      "seconds"
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The time in seconds between TCP keepAlive messages when
        no traffic is flowing.  Zero signifies no keepAlive protocol.

Chen, et. al.               Standards Track                    [Page 40]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        Changes take effect only for new TCP connections."
    DEFVAL  { 0 }
    ::= { dlswTConnTcpConfigEntry 1 }

dlswTConnTcpConfigTcpConnections  OBJECT-TYPE
    SYNTAX     INTEGER (1..16)
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "This is our preferred number of TCP connections within a
        TCP transport connection.  The actual number used is negotiated
        at capabilities exchange time. Changes take effect only
        for new transport connections."
    DEFVAL  { 2 }
    ::= { dlswTConnTcpConfigEntry 2 }

dlswTConnTcpConfigMaxSegmentSize  OBJECT-TYPE
    SYNTAX     INTEGER (0..65535)
    UNITS      "packets"
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "This is the number of bytes that this node is
        willing to receive over the read TCP connection(s).
        Changes take effect for new transport connections."
    DEFVAL  { 4096 }
    ::= { dlswTConnTcpConfigEntry 3 }

-- ...................................................................
-- TCP Transport Connection Specific -- Operation
-- ...................................................................
dlswTConnTcpOperTable  OBJECT-TYPE
    SYNTAX     SEQUENCE OF DlswTConnTcpOperEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "A list of TCP transport connections.   It is optional
        but desirable for the agent to keep an entry for some
        period of time after the transport connection is
        disconnected.  This allows the manager to capture
        additional useful information about the connection, in
        particular, statistical information and the cause of the
        disconnection."
    ::= { dlswTConnTcp 2 }

dlswTConnTcpOperEntry  OBJECT-TYPE
    SYNTAX     DlswTConnTcpOperEntry

1.1. What is Internet Traffic Engineering?

   Internet traffic engineering is defined as that aspect of Internet
   network engineering dealing with the issue of performance evaluation
   and performance optimization of operational IP networks.  Traffic
   Engineering encompasses the application of technology and scientific
   principles to the measurement, characterization, modeling, and
   control of Internet traffic [RFC-2702, AWD2].

   Enhancing the performance of an operational network, at both the
   traffic and resource levels, are major objectives of Internet traffic
   engineering.  This is accomplished by addressing traffic oriented
   performance requirements, while utilizing network resources
   economically and reliably.  Traffic oriented performance measures
   include delay, delay variation, packet loss, and throughput.

   An important objective of Internet traffic engineering is to
   facilitate reliable network operations [RFC-2702].  Reliable network
   operations can be facilitated by providing mechanisms that enhance
   network integrity and by embracing policies emphasizing network
   survivability.  This results in a minimization of the vulnerability
   of the network to service outages arising from errors, faults, and
   failures occurring within the infrastructure.

   The Internet exists in order to transfer information from source
   nodes to destination nodes.  Accordingly, one of the most significant
   functions performed by the Internet is the routing of traffic from
   ingress nodes to egress nodes.  Therefore, one of the most
   distinctive functions performed by Internet traffic engineering is
   the control and optimization of the routing function, to steer
   traffic through the network in the most effective way.

   Ultimately, it is the performance of the network as seen by end users
   of network services that is truly paramount.  This crucial point
   should be considered throughout the development of traffic
   engineering mechanisms and policies.  The characteristics visible to
   end users are the emergent properties of the network, which are the
   characteristics of the network when viewed as a whole.  A central
   goal of the service provider, therefore, is to enhance the emergent
   properties of the network while taking economic considerations into
   account.

   The importance of the above observation regarding the emergent
   properties of networks is that special care must be taken when
   choosing network performance measures to optimize.  Optimizing the
   wrong measures may achieve certain local objectives, but may have

Awduche, et. al.             Informational                      [Page 4]
RFC 3272        Overview and Principles of Internet TE          May 2002

   disastrous consequences on the emergent properties of the network and
   thereby on the quality of service perceived by end-users of network
   services.

   A subtle, but practical advantage of the systematic application of
   traffic engineering concepts to operational networks is that it helps
   to identify and structure goals and priorities in terms of enhancing
   the quality of service delivered to end-users of network services.
   The application of traffic engineering concepts also aids in the
   measurement and analysis of the achievement of these goals.

   The optimization aspects of traffic engineering can be achieved
   through capacity management and traffic management.  As used in this
   document, capacity management includes capacity planning, routing
   control, and resource management.  Network resources of particular
   interest include link bandwidth, buffer space, and computational
   resources.  Likewise, as used in this document, traffic management
   includes (1) nodal traffic control functions such as traffic
   conditioning, queue management, scheduling, and (2) other functions
   that regulate traffic flow through the network or that arbitrate
   access to network resources between different packets or between
   different traffic streams.

   The optimization objectives of Internet traffic engineering should be
   viewed as a continual and iterative process of network performance
   improvement and not simply as a one time goal.  Traffic engineering
   also demands continual development of new technologies and new
   methodologies for network performance enhancement.

   The optimization objectives of Internet traffic engineering may
   change over time as new requirements are imposed, as new technologies
   emerge, or as new insights are brought to bear on the underlying
   problems.  Moreover, different networks may have different
   optimization objectives, depending upon their business models,
   capabilities, and operating constraints.  The optimization aspects of
   traffic engineering are ultimately concerned with network control
   regardless of the specific optimization goals in any particular
   environment.

   Thus, the optimization aspects of traffic engineering can be viewed
   from a control perspective.  The aspect of control within the
   Internet traffic engineering arena can be pro-active and/or reactive.
   In the pro-active case, the traffic engineering control system takes
   preventive action to obviate predicted unfavorable future network
   states.  It may also take perfective action to induce a more
   desirable state in the future.  In the reactive case, the control
   system responds correctively and perhaps adaptively to events that
   have already transpired in the network.

Awduche, et. al.             Informational                      [Page 5]
RFC 3272        Overview and Principles of Internet TE          May 2002

   The control dimension of Internet traffic engineering responds at
   multiple levels of temporal resolution to network events.  Certain
   aspects of capacity management, such as capacity planning, respond at
   very coarse temporal levels, ranging from days to possibly years.
   The introduction of automatically switched optical transport networks
   (e.g., based on the Multi-protocol Lambda Switching concepts) could
   significantly reduce the lifecycle for capacity planning by
   expediting provisioning of optical bandwidth.  Routing control
   functions operate at intermediate levels of temporal resolution,
   ranging from milliseconds to days.  Finally, the packet level
   processing functions (e.g., rate shaping, queue management, and
   scheduling) operate at very fine levels of temporal resolution,
   ranging from picoseconds to milliseconds while responding to the
   real-time statistical behavior of traffic.  The subsystems of
   Internet traffic engineering control include: capacity augmentation,
   routing control, traffic control, and resource control (including
   control of service policies at network elements).  When capacity is
   to be augmented for tactical purposes, it may be desirable to devise
   a deployment plan that expedites bandwidth provisioning while
   minimizing installation costs.

   Inputs into the traffic engineering control system include network
   state variables, policy variables, and decision variables.

   One major challenge of Internet traffic engineering is the
   realization of automated control capabilities that adapt quickly and
   cost effectively to significant changes in a network's state, while
   still maintaining stability.

   Another critical dimension of Internet traffic engineering is network
   performance evaluation, which is important for assessing the
   effectiveness of traffic engineering methods, and for monitoring and
   verifying compliance with network performance goals.  Results from
   performance evaluation can be used to identify existing problems,
   guide network re-optimization, and aid in the prediction of potential
   future problems.

   Performance evaluation can be achieved in many different ways.  The
   most notable techniques include analytical methods, simulation, and
   empirical methods based on measurements.  When analytical methods or
   simulation are used, network nodes and links can be modeled to
   capture relevant operational features such as topology, bandwidth,
   buffer space, and nodal service policies (link scheduling, packet
   prioritization, buffer management, etc.).  Analytical traffic models
   can be used to depict dynamic and behavioral traffic characteristics,
   such as burstiness, statistical distributions, and dependence.

Awduche, et. al.             Informational                      [Page 6]
RFC 3272        Overview and Principles of Internet TE          May 2002

   Performance evaluation can be quite complicated in practical network
   contexts.  A number of techniques can be used to simplify the
   analysis, such as abstraction, decomposition, and approximation.  For
   example, simplifying concepts such as effective bandwidth and
   effective buffer [Elwalid] may be used to approximate nodal behaviors
   at the packet level and simplify the analysis at the connection
   level.  Network analysis techniques using, for example, queuing
   models and approximation schemes based on asymptotic and
   decomposition techniques can render the analysis even more tractable.
   In particular, an emerging set of concepts known as network calculus
   [CRUZ] based on deterministic bounds may simplify network analysis
   relative to classical stochastic techniques.  When using analytical
   techniques, care should be taken to ensure that the models faithfully
   reflect the relevant operational characteristics of the modeled
   network entities.

   Simulation can be used to evaluate network performance or to verify
   and validate analytical approximations.  Simulation can, however, be
   computationally costly and may not always provide sufficient
   insights.  An appropriate approach to a given network performance
   evaluation problem may involve a hybrid combination of analytical
   techniques, simulation, and empirical methods.

   As a general rule, traffic engineering concepts and mechanisms must
   be sufficiently specific and well defined to address known
   requirements, but simultaneously flexible and extensible to
   accommodate unforeseen future demands.

1.2. Scope

   The scope of this document is intra-domain traffic engineering; that
   is, traffic engineering within a given autonomous system in the
   Internet.  This document will discuss concepts pertaining to intra-
   domain traffic control, including such issues as routing control,
   micro and macro resource allocation, and the control coordination
   problems that arise consequently.

   This document will describe and characterize techniques already in
   use or in advanced development for Internet traffic engineering.  The
   way these techniques fit together will be discussed and scenarios in
   which they are useful will be identified.

   While this document considers various intra-domain traffic
   engineering approaches, it focuses more on traffic engineering with
   MPLS.  Traffic engineering based upon manipulation of IGP metrics is
   not addressed in detail.  This topic may be addressed by other
   working group document(s).

Awduche, et. al.             Informational                      [Page 7]
RFC 3272        Overview and Principles of Internet TE          May 2002

   Although the emphasis is on intra-domain traffic engineering, in
   Section 7.0, an overview of the high level considerations pertaining
   to inter-domain traffic engineering will be provided.  Inter-domain
   Internet traffic engineering is crucial to the performance
   enhancement of the global Internet infrastructure.

   Whenever possible, relevant requirements from existing IETF documents
   and other sources will be incorporated by reference.

1.3 Terminology

   This subsection provides terminology which is useful for Internet
   traffic engineering.  The definitions presented apply to this
   document.  These terms may have other meanings elsewhere.

      - Baseline analysis:
            A study conducted to serve as a baseline for comparison to
            the actual behavior of the network.

      - Busy hour:
            A one hour period within a specified interval of time
            (typically 24 hours) in which the traffic load in a network
            or sub-network is greatest.

      - Bottleneck:
            A network element whose input traffic rate tends to be
            greater than its output rate.

      - Congestion:
            A state of a network resource in which the traffic incident
            on the resource exceeds its output capacity over an interval
            of time.

      - Congestion avoidance:
            An approach to congestion management that attempts to
            obviate the occurrence of congestion.

      - Congestion control:
            An approach to congestion management that attempts to remedy
            congestion problems that have already occurred.

      - Constraint-based routing:
            A class of routing protocols that take specified traffic
            attributes, network constraints, and policy constraints into
            account when making routing decisions.  Constraint-based
            routing is applicable to traffic aggregates as well as
            flows.  It is a generalization of QoS routing.

Awduche, et. al.             Informational                      [Page 8]
RFC 3272        Overview and Principles of Internet TE          May 2002

      - Demand side congestion management:
            A congestion management scheme that addresses congestion
            problems by regulating or conditioning offered load.

      - Effective bandwidth:
            The minimum amount of bandwidth that can be assigned to a
            flow or traffic aggregate in order to deliver 'acceptable
            service quality' to the flow or traffic aggregate.

      - Egress traffic:
            Traffic exiting a network or network element.

      - Hot-spot:
            A network element or subsystem which is in a state of
            congestion.

      - Ingress traffic:
            Traffic entering a network or network element.

      - Inter-domain traffic:
            Traffic that originates in one Autonomous system and
            terminates in another.

      - Loss network:
            A network that does not provide adequate buffering for
            traffic, so that traffic entering a busy resource within the
            network will be dropped rather than queued.

      - Metric:
            A parameter defined in terms of standard units of
            measurement.

      - Measurement Methodology:
            A repeatable measurement technique used to derive one or
            more metrics of interest.

      - Network Survivability:
            The capability to provide a prescribed level of QoS for
            existing services after a given number of failures occur
            within the network.

      - Offline traffic engineering:
            A traffic engineering system that exists outside of the
            network.

Awduche, et. al.             Informational                      [Page 9]
RFC 3272        Overview and Principles of Internet TE          May 2002

      - Online traffic engineering:
            A traffic engineering system that exists within the network,
            typically implemented on or as adjuncts to operational
            network elements.

      - Performance measures:
            Metrics that provide quantitative or qualitative measures of
            the performance of systems or subsystems of interest.

      - Performance management:
            A systematic approach to improving effectiveness in the
            accomplishment of specific networking goals related to
            performance improvement.

      - Performance Metric:
            A performance parameter defined in terms of standard units
            of measurement.

      - Provisioning:
            The process of assigning or configuring network resources to
            meet certain requests.

      - QoS routing:
            Class of routing systems that selects paths to be used by a
            flow based on the QoS requirements of the flow.

      - Service Level Agreement:
            A contract between a provider and a customer that guarantees
            specific levels of performance and reliability at a certain
            cost.

      - Stability:
            An operational state in which a network does not oscillate
            in a disruptive manner from one mode to another mode.

      - Supply side congestion management:
            A congestion management scheme that provisions additional
            network resources to address existing and/or anticipated
            congestion problems.

      - Transit traffic:
            Traffic whose origin and destination are both outside of the
            network under consideration.

      - Traffic characteristic:
            A description of the temporal behavior or a description of
            the attributes of a given traffic flow or traffic aggregate.

Awduche, et. al.             Informational                     [Page 10]
RFC 3272        Overview and Principles of Internet TE          May 2002

      - Traffic engineering system:
            A collection of objects, mechanisms, and protocols that are
            used conjunctively to accomplish traffic engineering
            objectives.

      - Traffic flow:
            A stream of packets between two end-points that can be
            characterized in a certain way.  A micro-flow has a more
            specific definition: A micro-flow is a stream of packets
            with the same source and destination addresses, source and
            destination ports, and protocol ID.

      - Traffic intensity:
            A measure of traffic loading with respect to a resource
            capacity over a specified period of time.  In classical
            telephony systems, traffic intensity is measured in units of
            Erlang.

      - Traffic matrix:
            A representation of the traffic demand between a set of
            origin and destination abstract nodes.  An abstract node can
            consist of one or more network elements.

      - Traffic monitoring:
            The process of observing traffic characteristics at a given
            point in a network and collecting the traffic information
            for analysis and further action.

      - Traffic trunk:
            An aggregation of traffic flows belonging to the same class
            which are forwarded through a common path.  A traffic trunk
            may be characterized by an ingress and egress node, and a
            set of attributes which determine its behavioral
            characteristics and requirements from the network.

2.0 Background

   The Internet has quickly evolved into a very critical communications
   infrastructure, supporting significant economic, educational, and
   social activities.  Simultaneously, the delivery of Internet
   communications services has become very competitive and end-users are
   demanding very high quality service from their service providers.
   Consequently, performance optimization of large scale IP networks,
   especially public Internet backbones, have become an important
   problem.  Network performance requirements are multi-dimensional,
   complex, and sometimes contradictory; making the traffic engineering
   problem very challenging.

Awduche, et. al.             Informational                     [Page 11]
RFC 3272        Overview and Principles of Internet TE          May 2002

   Chen, et. al.               Standards Track                    [Page 41]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       ""
    INDEX   { dlswTConnOperTDomain, dlswTConnOperRemoteTAddr }
    ::= { dlswTConnTcpOperTable 1 }

DlswTConnTcpOperEntry ::= SEQUENCE {
    dlswTConnTcpOperKeepAliveInt             INTEGER,
    dlswTConnTcpOperPrefTcpConnections       INTEGER,
    dlswTConnTcpOperTcpConnections           INTEGER
    }

dlswTConnTcpOperKeepAliveInt  OBJECT-TYPE
    SYNTAX     INTEGER (0..1800)
    UNITS      "seconds"
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The time in seconds between TCP keepAlive messages when
        no traffic is flowing.  Zero signifies no keepAlive protocol is
        operating."
    ::= { dlswTConnTcpOperEntry 1 }

dlswTConnTcpOperPrefTcpConnections  OBJECT-TYPE
    SYNTAX     INTEGER (1..16)
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "This is the number of TCP connections preferred by this DLSw
        partner, as received in its capabilities exchange message."
    ::= { dlswTConnTcpOperEntry 2 }

dlswTConnTcpOperTcpConnections  OBJECT-TYPE
    SYNTAX     INTEGER (1..16)
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "This is the actual current number of TCP connections within
        this transport connection."
    ::= { dlswTConnTcpOperEntry 3 }

-- *******************************************************************
-- DLSW INTERFACE GROUP
-- *******************************************************************

dlswIfTable  OBJECT-TYPE

Chen, et. al.               Standards Track                    [Page 42]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    SYNTAX     SEQUENCE OF DlswIfEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "The list of interfaces on which DLSw is active."
    ::= { dlswInterface 1 }

dlswIfEntry  OBJECT-TYPE
    SYNTAX     DlswIfEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       ""
    INDEX   { ifIndex }
    ::= { dlswIfTable 1 }

DlswIfEntry ::= SEQUENCE {
    dlswIfRowStatus      RowStatus,
    dlswIfVirtualSegment INTEGER,
    dlswIfSapList        OCTET STRING
    }

dlswIfRowStatus  OBJECT-TYPE
    SYNTAX     RowStatus
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "This object is used by the manager to create
        or delete the row entry in the dlswIfTable
        following the RowStatus textual convention."
    ::= { dlswIfEntry 1 }

dlswIfVirtualSegment  OBJECT-TYPE
    SYNTAX     INTEGER (0..4095 | 65535)
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The segment number that uniquely identifies the virtual
        segment to which this DLSw interface is connected.
        Current source routing protocols limit this value to
        the range 0 - 4095. (The value 0 is used by some
        management applications for special test cases.)
        A value of 65535 signifies that no virtual segment
        is assigned to this interface.  For instance,
        in a non-source routing environment, segment number
        assignment is not required."
    DEFVAL { 65535 }
    ::= { dlswIfEntry 2 }

Chen, et. al.               Standards Track                    [Page 43]
RFC 2024                  DLSw MIB using SMIv2              October 1996

dlswIfSapList  OBJECT-TYPE
    SYNTAX     OCTET STRING  (SIZE(16))
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The SAP list indicates which SAPs are allowed to be
        data link switched through this interface.  This list
        has the same format described for dlswTConnConfigSapList.

        When changes to this object take effect is implementation-
        specific.  Turning off a particular SAP can destroy
        active circuits that are using that SAP.  An agent
        implementation may reject such changes until there are no
        active circuits if it so chooses.  In this case, it is up
        to the manager to close the circuits first, using
        dlswCircuitState.

        The DEFVAL below indicates support for SAPs 0, 4, 8, and C."
    DEFVAL  { 'AA000000000000000000000000000000'H }
    ::= { dlswIfEntry 3 }

-- *******************************************************************
-- DIRECTORY
-- Directory services caches the locations of MAC addresses
-- and NetBIOS names.  For resources which are attached via
-- local interfaces, the ifIndex may be cached, and for
-- resources which are reachable via a DLSw partner, the
-- transport address of the DLSw partner is cached.
-- *******************************************************************

-- -------------------------------------------------------------------
-- Directory Related Statistical Objects
-- -------------------------------------------------------------------
dlswDirStat     OBJECT IDENTIFIER ::= { dlswDirectory 1 }

dlswDirMacEntries  OBJECT-TYPE
    SYNTAX     Gauge32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The current total number of entries in the dlswDirMacTable."
    ::= { dlswDirStat 1 }

dlswDirMacCacheHits  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current

Chen, et. al.               Standards Track                    [Page 44]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    DESCRIPTION
       "The number of times a cache search for a particular MAC address
        resulted in success."
    ::= { dlswDirStat 2 }

dlswDirMacCacheMisses  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of times a cache search for a particular MAC address
        resulted in failure."
    ::= { dlswDirStat 3 }

dlswDirMacCacheNextIndex  OBJECT-TYPE
    SYNTAX     INTEGER (0..2147483647)
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The next value of dlswDirMacIndex to be assigned by
        the agent.  A retrieval of this object atomically reserves
        the returned value for use by the manager to create a row
        in dlswDirMacTable.  This makes it possible for the agent
        to control the index space of the MAC address cache, yet
        allows the manager to administratively create new rows."
    ::= { dlswDirStat 4 }

dlswDirNBEntries  OBJECT-TYPE
    SYNTAX     Gauge32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The current total number of entries in the dlswDirNBTable."
    ::= { dlswDirStat 5 }

dlswDirNBCacheHits  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of times a cache search for a particular NetBIOS
        name resulted in success."
    ::= { dlswDirStat 6 }

dlswDirNBCacheMisses  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current

Chen, et. al.               Standards Track                    [Page 45]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    DESCRIPTION
       "The number of times a cache search for a particular NetBIOS
        name resulted in failure."
    ::= { dlswDirStat 7 }

dlswDirNBCacheNextIndex  OBJECT-TYPE
    SYNTAX     INTEGER (0..2147483647)
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The next value of dlswDirNBIndex to be assigned by the
        agent.  A retrieval of this object atomically reserves
        the returned value for use by the manager to create
        a row in dlswDirNBTable.  This makes it possible for the
        agent to control the index space for the NetBIOS name
        cache, yet allows the manager to administratively
        create new rows."
    ::= { dlswDirStat 8 }

-- -------------------------------------------------------------------
-- Directory Cache
-- -------------------------------------------------------------------
dlswDirCache     OBJECT IDENTIFIER ::= { dlswDirectory 2 }

-- ...................................................................
-- Directory for MAC Addresses.
-- All Possible combinations of values of these objects.
--
--     EntryType   LocationType       Location        Status
--  -------------- ------------ ------------------ --------------
--  userConfigured    local     ifEntry or 0.0     reachable, or
--                                                 notReachable, or
--                                                 unknown
--  userConfigured    remote    TConnConfigEntry   reachable, or
--                                                 notReachable, or
--                                                 unknown
--  partnerCapExMsg   remote    TConnOperEntry     unknown
--  dynamic           local     ifEntry or 0.0     reachable
--  dynamic           remote    TConnOperEntry     reachable
--
-- ...................................................................
dlswDirMacTable  OBJECT-TYPE
    SYNTAX     SEQUENCE OF DlswDirMacEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "This table contains locations of MAC addresses.
        They could be either verified or not verified,

Chen, et. al.               Standards Track                    [Page 46]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        local or remote, and configured locally or learned
        from either Capabilities Exchange messages or
        directory searches."
    ::= { dlswDirCache 1 }

dlswDirMacEntry  OBJECT-TYPE
    SYNTAX     DlswDirMacEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "Indexed by dlswDirMacIndex."
    INDEX   { dlswDirMacIndex }
    ::= { dlswDirMacTable 1 }

DlswDirMacEntry ::= SEQUENCE {
    dlswDirMacIndex          INTEGER,
    dlswDirMacMac            MacAddressNC,
    dlswDirMacMask           MacAddressNC,
    dlswDirMacEntryType      INTEGER,
    dlswDirMacLocationType   INTEGER,
    dlswDirMacLocation       RowPointer,
    dlswDirMacStatus         INTEGER,
    dlswDirMacLFSize         LFSize,
    dlswDirMacRowStatus      RowStatus
    }

dlswDirMacIndex  OBJECT-TYPE
    SYNTAX     INTEGER (0..2147483647)
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "Uniquely identifies a conceptual row of this table."
    ::= { dlswDirMacEntry 1 }

dlswDirMacMac  OBJECT-TYPE
    SYNTAX     MacAddressNC
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The MAC address, together with the dlswDirMacMask,
        specifies a set of MAC addresses that are defined or
        discovered through an interface or partner DLSw nodes."
    ::= { dlswDirMacEntry 2 }

dlswDirMacMask  OBJECT-TYPE
    SYNTAX     MacAddressNC
    MAX-ACCESS read-create
    STATUS     current

Chen, et. al.               Standards Track                    [Page 47]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    DESCRIPTION
       "The MAC address mask, together with the dlswDirMacMac,
        specifies a set of MAC addresses that are defined or
        discovered through an interface or partner DLSw nodes."
    DEFVAL { 'FFFFFFFFFFFF'H }
    ::= { dlswDirMacEntry 3 }

dlswDirMacEntryType  OBJECT-TYPE
    SYNTAX     INTEGER  {
        other                    (1),
        userConfiguredPublic     (2),
        userConfiguredPrivate    (3),
        partnerCapExMsg          (4),
        dynamic                  (5)
    }
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The cause of the creation of this conceptual row.
        It could be one of the three methods: (1) user
        configured, including via management protocol
        set operations, configuration file, command line
        or equivalent methods; (2) learned from the
        partner DLSw Capabilities Exchange messages;
        and (3) dynamic, e.g., learned from ICanReach
        messages, or LAN explorer frames.  Since only
        individual MAC addresses can be dynamically learned,
        dynamic entries will all have a mask of all FFs.

        The public versus private distinction for user-
        configured resources applies only to local resources
        (UC remote resources are private), and indicates
        whether that resource should be advertised in
        capabilities exchange messages sent by this node."
    DEFVAL { userConfiguredPublic }
    ::= { dlswDirMacEntry 4 }

dlswDirMacLocationType  OBJECT-TYPE
    SYNTAX     INTEGER  {
        other                 (1),
        local                 (2),
        remote                (3)
    }
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The location of the resource (or a collection of
        resources using a mask) of this conceptual row

Chen, et. al.               Standards Track                    [Page 48]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        is either (1) local - the resource is reachable
        via an interface, or (2) remote - the resource
        is reachable via a partner DLSw node (or a set
        of partner DLSw nodes)."
    DEFVAL { local }
    ::= { dlswDirMacEntry 5 }

dlswDirMacLocation  OBJECT-TYPE
    SYNTAX     RowPointer
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "Points to either the ifEntry, dlswTConnConfigEntry,
        dlswTConnOperEntry, 0.0, or something that is implementation
        specific.  It identifies the location of the MAC address
        (or the collection of MAC addresses.)"
    DEFVAL { null }
    ::= { dlswDirMacEntry 6 }

dlswDirMacStatus  OBJECT-TYPE
    SYNTAX     INTEGER  {
        unknown               (1),
        reachable             (2),
        notReachable          (3)
    }
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "This object specifies whether DLSw currently believes
        the MAC address to be accessible at the specified location.
        The value `notReachable' allows a configured resource
        definition to be taken out of service when a search to
        that resource fails (avoiding a repeat of the search)."
    DEFVAL { unknown }
    ::= { dlswDirMacEntry 7 }

dlswDirMacLFSize  OBJECT-TYPE
    SYNTAX     LFSize
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The largest size of the MAC INFO field (LLC header and data)
        that a circuit to the MAC address can carry through this path."
    DEFVAL { lfs65535 }
    ::= { dlswDirMacEntry 8 }

dlswDirMacRowStatus  OBJECT-TYPE
    SYNTAX     RowStatus

Chen, et. al.               Standards Track                    [Page 49]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "This object is used by the manager to create
        or delete the row entry in the dlswDirMacTable
        following the RowStatus textual convention."
    ::= { dlswDirMacEntry 9 }

-- ...................................................................
-- Directory for NetBIOS Names
-- All Possible combinations of values of these objects.
--
--     EntryType   LocationType       Location        Status
--  -------------- ------------ ------------------ --------------
--  userConfigured    local     ifEntry or 0.0     reachable, or
--                                                 notReachable, or
--                                                 unknown
--  userConfigured    remote    TConnConfigEntry   reachable, or
--                                                 notReachable, or
--                                                 unknown
--  partnerCapExMsg   remote    TConnOperEntry     unknown
--  dynamic           local     ifEntry or 0.0     reachable
--  dynamic           remote    TConnOperEntry     reachable
--
-- ...................................................................
dlswDirNBTable  OBJECT-TYPE
    SYNTAX     SEQUENCE OF DlswDirNBEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "This table contains locations of NetBIOS names.
        They could be either verified or not verified,
        local or remote, and configured locally or learned
        from either Capabilities Exchange messages or
        directory searches."
    ::= { dlswDirCache 2 }

dlswDirNBEntry  OBJECT-TYPE
    SYNTAX     DlswDirNBEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "Indexed by dlswDirNBIndex."
    INDEX   { dlswDirNBIndex }
    ::= { dlswDirNBTable 1 }

DlswDirNBEntry ::= SEQUENCE {
    dlswDirNBIndex           INTEGER,

Chen, et. al.               Standards Track                    [Page 50]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    dlswDirNBName            NBName,
    dlswDirNBNameType        INTEGER,
    dlswDirNBEntryType       INTEGER,
    dlswDirNBLocationType    INTEGER,
    dlswDirNBLocation        RowPointer,
    dlswDirNBStatus          INTEGER,
    dlswDirNBLFSize          LFSize,
    dlswDirNBRowStatus       RowStatus
    }

dlswDirNBIndex  OBJECT-TYPE
    SYNTAX     INTEGER (0..2147483647)
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "Uniquely identifies a conceptual row of this table."
    ::= { dlswDirNBEntry 1 }

dlswDirNBName  OBJECT-TYPE
    SYNTAX     NBName
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The NetBIOS name (including `any char' and `wildcard'
        characters) specifies a set of NetBIOS names that are
        defined or discovered through an interface or partner
        DLSw nodes."
    ::= { dlswDirNBEntry 2 }

dlswDirNBNameType  OBJECT-TYPE
    SYNTAX     INTEGER  {
        unknown       (1),
        individual    (2),
        group         (3)
    }
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "Whether dlswDirNBName represents an (or a set of) individual
        or group NetBIOS name(s)."
    DEFVAL { unknown }
    ::= { dlswDirNBEntry 3 }

dlswDirNBEntryType  OBJECT-TYPE
    SYNTAX     INTEGER  {
        other                    (1),
        userConfiguredPublic     (2),
        userConfiguredPrivate    (3),

Chen, et. al.               Standards Track                    [Page 51]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        partnerCapExMsg          (4),
        dynamic                  (5)
    }
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The cause of the creation of this conceptual row.
        It could be one of the three methods: (1) user
        configured, including via management protocol
        set operations, configuration file, command line,
        or equivalent methods; (2) learned from the
        partner DLSw Capabilities Exchange messages;
        and (3) dynamic, e.g., learned from ICanReach
        messages, or test frames.  Since only actual
        NetBIOS names can be dynamically learned, dynamic
        entries will not contain any char or wildcard
        characters.

        The public versus private distinction for user-
        configured resources applies only to local resources
        (UC remote resources are private), and indicates
        whether that resource should be advertised in
        capabilities exchange messages sent by this node."
    DEFVAL { userConfiguredPublic }
    ::= { dlswDirNBEntry 4 }

dlswDirNBLocationType  OBJECT-TYPE
    SYNTAX     INTEGER  {
        other                 (1),
        local                 (2),
        remote                (3)
    }
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The location of the resource (or a collection of resources
        using any char/wildcard characters) of this conceptual row
        is either (1) local - the resource is reachable via an
        interface, or (2) remote - the resource is reachable via a
        a partner DLSw node (or a set of partner DLSw nodes)."
    DEFVAL { local }
    ::= { dlswDirNBEntry 5 }

dlswDirNBLocation  OBJECT-TYPE
    SYNTAX     RowPointer
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION

Chen, et. al.               Standards Track                    [Page 52]
RFC 2024                  DLSw MIB using SMIv2              October 1996

       "Points to either the ifEntry, dlswTConnConfigEntry,
        dlswTConnOperEntry, 0.0, or something that is implementation
        specific.  It identifies the location of the NetBIOS name
        or the set of NetBIOS names."
    DEFVAL { null }
    ::= { dlswDirNBEntry 6 }

dlswDirNBStatus  OBJECT-TYPE
    SYNTAX     INTEGER  {
        unknown               (1),
        reachable             (2),
        notReachable          (3)
    }
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "This object specifies whether DLSw currently believes
        the NetBIOS name to be accessible at the specified location.
        The value `notReachable' allows a configured resource
        definition to be taken out of service when a search to
        that resource fails (avoiding a repeat of the search)."
    DEFVAL { unknown }
    ::= { dlswDirNBEntry 7 }

dlswDirNBLFSize  OBJECT-TYPE
    SYNTAX     LFSize
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The largest size of the MAC INFO field (LLC header and data)
        that a circuit to the NB name can carry through this path."
    DEFVAL { lfs65535 }
    ::= { dlswDirNBEntry 8 }

dlswDirNBRowStatus  OBJECT-TYPE
    SYNTAX     RowStatus
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "This object is used by manager to create
        or delete the row entry in the dlswDirNBTable
        following the RowStatus textual convention."
    ::= { dlswDirNBEntry 9 }

-- -------------------------------------------------------------------
-- Resource Locations
-- -------------------------------------------------------------------

Chen, et. al.               Standards Track                    [Page 53]
RFC 2024                  DLSw MIB using SMIv2              October 1996

dlswDirLocate       OBJECT IDENTIFIER ::= { dlswDirectory 3 }

-- ...................................................................
-- Locate Entries in the dlswDirMacTable for a given MAC address
-- ...................................................................
dlswDirLocateMacTable  OBJECT-TYPE
    SYNTAX     SEQUENCE OF DlswDirLocateMacEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       &The network must convey IP packets from ingress nodes to egress nodes
   efficiently, expeditiously, and economically.  Furthermore, in a
   multiclass service environment (e.g., Diffserv capable networks), the
   resource sharing parameters of the network must be appropriately
   determined and configured according to prevailing policies and
   service models to resolve resource contention issues arising from
   mutual interference between packets traversing through the network.
   Thus, consideration must be given to resolving competition for
   network resources between traffic streams belonging to the same
   service class (intra-class contention resolution) and traffic streams
   belonging to different classes (inter-class contention resolution).

2.1 Context of Internet Traffic Engineering

   The context of Internet traffic engineering pertains to the scenarios
   where traffic engineering is used.  A traffic engineering methodology
   establishes appropriate rules to resolve traffic performance issues
   occurring in a specific context.  The context of Internet traffic
   engineering includes:

      (1)   A network context defining the universe of discourse, and in
            particular the situations in which the traffic engineering
            problems occur.  The network context includes network
            structure, network policies, network characteristics,
            network constraints, network quality attributes, and network
            optimization criteria.

      (2)   A problem context defining the general and concrete issues
            that traffic engineering addresses.  The problem context
            includes identification, abstraction of relevant features,
            representation, formulation, specification of the
            requirements on the solution space, and specification of the
            desirable features of acceptable solutions.

      (3)   A solution context suggesting how to address the issues
            identified by the problem context.  The solution context
            includes analysis, evaluation of alternatives, prescription,
            and resolution.

      (4)   An implementation and operational context in which the
            solutions are methodologically instantiated.  The
            implementation and operational context includes planning,
            organization, and execution.

   The context of Internet traffic engineering and the different problem
   scenarios are discussed in the following subsections.

Awduche, et. al.             Informational                     [Page 12]
RFC 3272        Overview and Principles of Internet TE          May 2002

2.2 Network Context

   IP networks range in size from small clusters of routers situated
   within a given location, to thousands of interconnected routers,
   switches, and other components distributed all over the world.

   Conceptually, at the most basic level of abstraction, an IP network
   can be represented as a distributed dynamical system consisting of:
   (1) a set of interconnected resources which provide transport
   services for IP traffic subject to certain constraints, (2) a demand
   system representing the offered load to be transported through the
   network, and (3) a response system consisting of network processes,
   protocols, and related mechanisms which facilitate the movement of
   traffic through the network [see also AWD2].

   The network elements and resources may have specific characteristics
   restricting the manner in which the demand is handled.  Additionally,
   network resources may be equipped with traffic control mechanisms
   superintending the way in which the demand is serviced.  Traffic
   control mechanisms may, for example, be used to control various
   packet processing activities within a given resource, arbitrate
   contention for access to the resource by different packets, and
   regulate traffic behavior through the resource.  A configuration
   management and provisioning system may allow the settings of the
   traffic control mechanisms to be manipulated by external or internal
   entities in order to exercise control over the way in which the
   network elements respond to internal and external stimuli.

   The details of how the network provides transport services for
   packets are specified in the policies of the network administrators
   and are installed through network configuration management and policy
   based provisioning systems.  Generally, the types of services
   provided by the network also depends upon the technology and
   characteristics of the network elements and protocols, the prevailing
   service and utility models, and the ability of the network
   administrators to translate policies into network configurations.

   Contemporary Internet networks have three significant
   characteristics:  (1) they provide real-time services, (2) they have
   become mission critical, and (3) their operating environments are
   very dynamic.  The dynamic characteristics of IP networks can be
   attributed in part to fluctuations in demand, to the interaction
   between various network protocols and processes, to the rapid
   evolution of the infrastructure which demands the constant inclusion
   of new technologies and new network elements, and to transient and
   persistent impairments which occur within the system.

Awduche, et. al.             Informational                     [Page 13]
RFC 3272        Overview and Principles of Internet TE          May 2002

   Packets contend for the use of network resources as they are conveyed
   through the network.  A network resource is considered to be
   congested if the arrival rate of packets exceed the output capacity
   of the resource over an interval of time.  Congestion may result in
   some of the arrival packets being delayed or even dropped.

   Congestion increases transit delays, delay variation, packet loss,
   and reduces the predictability of network services.  Clearly,
   congestion is a highly undesirable phenomenon.

   Combating congestion at a reasonable cost is a major objective of
   Internet traffic engineering.

   Efficient sharing of network resources by multiple traffic streams is
   a basic economic premise for packet switched networks in general and
   for the Internet in particular.  A fundamental challenge in network
   operation, especially in a large scale public IP network, is to
   increase the efficiency of resource utilization while minimizing the
   possibility of congestion.

   Increasingly, the Internet will have to function in the presence of
   different classes of traffic with different service requirements.
   The advent of Differentiated Services [RFC-2475] makes this
   requirement particularly acute.  Thus, packets may be grouped into
   behavior aggregates such that each behavior aggregate may have a
   common set of behavioral characteristics or a common set of delivery
   requirements.  In practice, the delivery requirements of a specific
   set of packets may be specified explicitly or implicitly.  Two of the
   most important traffic delivery requirements are capacity constraints
   and QoS constraints.

   Capacity constraints can be expressed statistically as peak rates,
   mean rates, burst sizes, or as some deterministic notion of effective
   bandwidth.  QoS requirements can be expressed in terms of (1)
   integrity constraints such as packet loss and (2) in terms of
   temporal constraints such as timing restrictions for the delivery of
   each packet (delay) and timing restrictions for the delivery of
   consecutive packets belonging to the same traffic stream (delay
   variation).

2.3 Problem Context

   Fundamental problems exist in association with the operation of a
   network described by the simple model of the previous subsection.
   This subsection reviews the problem context in relation to the
   traffic engineering function.

Awduche, et. al.             Informational                     [Page 14]
RFC 3272        Overview and Principles of Internet TE          May 2002

   The identification, abstraction, representation, and measurement of
   network features relevant to traffic engineering is a significant
   issue.

   One particularly important class of problems concerns how to
   explicitly formulate the problems that traffic engineering attempts
   to solve, how to identify the requirements on the solution space, how
   to specify the desirable features of good solutions, how to actually
   solve the problems, and how to measure and characterize the
   effectiveness of the solutions.

   Another class of problems concerns how to measure and estimate
   relevant network state parameters.  Effective traffic engineering
   relies on a good estimate of the offered traffic load as well as a
   view of the underlying topology and associated resource constraints.
   A network-wide view of the topology is also a must for offline
   planning.

   Still another class of problems concerns how to characterize the
   state of the network and how to evaluate its performance under a
   variety of scenarios.  The performance evaluation problem is two-
   fold.  One aspect of this problem relates to the evaluation of the
   system level performance of the network.  The other aspect relates to
   the evaluation of the resource level performance, which restricts
   attention to the performance analysis of individual network
   resources.  In this memo, we refer to the system level
   characteristics of the network as the "macro-states" and the resource
   level characteristics as the "micro-states." The system level
   characteristics are also known as the emergent properties of the
   network as noted earlier.  Correspondingly, we shall refer to the
   traffic engineering schemes dealing with network performance
   optimization at the systems level as "macro-TE" and the schemes that
   optimize at the individual resource level as "micro-TE."  Under
   certain circumstances, the system level performance can be derived
   from the resource level performance using appropriate rules of
   composition, depending upon the particular performance measures of
   interest.

   Another fundamental class of problems concerns how to effectively
   optimize network performance.  Performance optimization may entail
   translating solutions to specific traffic engineering problems into
   network configurations.  Optimization may also entail some degree of
   resource management control, routing control, and/or capacity
   augmentation.

Awduche, et. al.             Informational                     [Page 15]
RFC 3272        Overview and Principles of Internet TE          May 2002

   As noted previously, congestion is an undesirable phenomena in
   operational networks.  Therefore, the next subsection addresses the
   issue of congestion and its ramifications within the problem context
   of Internet traffic engineering.

2.3.1 Congestion and its Ramifications

   Congestion is one of the most significant problems in an operational
   IP context.  A network element is said to be congested if it
   experiences sustained overload over an interval of time.  Congestion
   almost always results in degradation of service quality to end users.
   Congestion control schemes can include demand side policies and
   supply side policies.  Demand side policies may restrict access to
   congested resources and/or dynamically regulate the demand to
   alleviate the overload situation.  Supply side policies may expand or
   augment network capacity to better accommodate offered traffic.
   Supply side policies may also re-allocate network resources by
   redistributing traffic over the infrastructure.  Traffic
   redistribution and resource re-allocation serve to increase the
   'effective capacity' seen by the demand.

   The emphasis of this memo is primarily on congestion management
   schemes falling within the scope of the network, rather than on
   congestion management systems dependent upon sensitivity and
   adaptivity from end-systems.  That is, the aspects that are
   considered in this memo with respect to congestion management are
   those solutions that can be provided by control entities operating on
   the network and by the actions of network administrators and network
   operations systems.

2.4 Solution Context

   The solution context for Internet traffic engineering involves
   analysis, evaluation of alternatives, and choice between alternative
   courses of action.  Generally the solution context is predicated on
   making reasonable inferences about the current or future state of the
   network, and subsequently making appropriate decisions that may
   involve a preference between alternative sets of action.  More
   specifically, the solution context demands reasonable estimates of
   traffic workload, characterization of network state, deriving
   solutions to traffic engineering problems which may be implicitly or
   explicitly formulated, and possibly instantiating a set of control
   actions.  Control actions may involve the manipulation of parameters
   associated with routing, control over tactical capacity acquisition,
   and control over the traffic management functions.

   The following list of instruments may be applicable to the solution
   context of Internet traffic engineering.

Awduche, et. al.             Informational                     [Page 16]
RFC 3272        Overview and Principles of Internet TE          May 2002

      (1)   A set of policies, objectives, and requirements (which may
            be context dependent) for network performance evaluation and
            performance  optimization.

      (2)   A collection of online and possibly offline tools and
            mechanisms for measurement, characterization, modeling, and
            control of Internet traffic and control over the placement
            and allocation of network resources, as well as control over
            the mapping or distribution of traffic onto the
            infrastructure.

      (3)   A set of constraints on the operating environment, the
            network protocols, and the traffic engineering system
            itself.

      (4)   A set of quantitative and qualitative techniques and
            methodologies for abstracting, formulating, and solving
            traffic engineering problems.

      (5)   A set of administrative control parameters which may be
            manipulated through a Configuration Management (CM) system.
            The CM system itself may include a configuration control
            subsystem, a configuration repository, a configuration
            accounting subsystem, and a configuration auditing
            subsystem.

      (6)   A set of guidelines for network performance evaluation,
            performance optimization, and performance improvement.

   Derivation of traffic characteristics through measurement and/or
   estimation is very useful within the realm of the solution space for
   traffic engineering.  Traffic estimates can be derived from customer
   subscription information, traffic projections, traffic models, and
   from actual empirical measurements.  The empirical measurements may
   be performed at the traffic aggregate level or at the flow level in
   order to derive traffic statistics at various levels of detail.
   Measurements at the flow level or on small traffic aggregates may be
   performed at edge nodes, where traffic enters and leaves the network.
   Measurements at large traffic aggregate levels may be performed
   within the core of the network where potentially numerous traffic
   flows may be in transit concurrently.

   To conduct performance studies and to support planning of existing
   and future networks, a routing analysis may be performed to determine
   the path(s) the routing protocols will choose for various traffic
   demands, and to ascertain the utilization of network resources as
   traffic is routed through the network.  The routing analysis should
   capture the selection of paths through the network, the assignment of

Awduche, et. al.             Informational                     [Page 17]
RFC 3272        Overview and Principles of Internet TE          May 2002

   traffic across multiple feasible routes, and the multiplexing of IP
   traffic over traffic trunks (if such constructs exists) and over the
   underlying network infrastructure.  A network topology model is a
   necessity for routing analysis.  A network topology model may be
   extracted from network architecture documents, from network designs,
   from information contained in router configuration files, from
   routing databases, from routing tables, or from automated tools that
   discover and depict network topology information.  Topology
   information may also be derived from servers that monitor network
   state, and from servers that perform provisioning functions.

   Routing in operational IP networks can be administratively controlled
   at various levels of abstraction including the manipulation of BGP
   attributes and manipulation of IGP metrics.  For path oriented
   technologies such as MPLS, routing can be further controlled by the
   manipulation of relevant traffic engineering parameters, resource
   parameters, and administrative policy constraints.  Within the
   context of MPLS, the path of an explicit label switched path (LSP)
   can be computed and established in various ways including: (1)
   manually, (2) automatically online using constraint-based routing
   processes implemented on label switching routers, and (3)
   automatically offline using constraint-based routing entities
   implemented on external traffic engineering support systems.

2.4.1 Combating the Congestion Problem

   Minimizing congestion is a significant aspect of Internet traffic
   engineering.  This subsection gives an overview of the general
   approaches that have been used or proposed to combat congestion
   problems.

   Congestion management policies can be categorized based upon the
   following criteria (see e.g., [YARE95] for a more detailed taxonomy
   of congestion control schemes): (1) Response time scale which can be
   characterized as long, medium, or short; (2) reactive versus
   preventive which relates to congestion control and congestion
   avoidance; and (3) supply side versus demand side congestion
   management schemes.  These aspects are discussed in the following
   paragraphs.

   (1) Congestion Management based on Response Time Scales

   - Long (weeks to months): Capacity planning works over a relatively
   long time scale to expand network capacity based on estimates or
   forecasts of future traffic demand and traffic distribution.  Since
   router and link provisioning take time and are generally expensive,
   these upgrades are typically carried out in the weeks-to-months or
   even years time scale.

Awduche, et. al.             Informational                     [Page 18]
RFC 3272        Overview and Principles of Internet TE          May 2002

   - Medium (minutes to days): Several control policies fall within the
   medium time scale category.  Examples include: (1) Adjusting IGP
   and/or BGP parameters to route traffic away or towards certain
   segments of the network; (2) Setting up and/or adjusting some
   explicitly routed label switched paths (ER-LSPs) in MPLS networks to
   route some traffic trunks away from possibly congested resources or
   towards possibly more favorable routes; (3) re-configuring the
   logical topology of the network to make it correlate more closely
   with the spatial traffic distribution using for example some
   underlying path-oriented technology such as MPLS LSPs, ATM PVCs, or
   optical channel trails.  Many of these adaptive medium time scale
   response schemes rely on a measurement system that monitors changes
   in traffic distribution, traffic shifts, and network resource
   utilization and subsequently provides feedback to the online and/or
   offline traffic engineering mechanisms and tools which employ this
   feedback information to trigger certain control actions to occur
   within the network.  The traffic engineering mechanisms and tools can
   be implemented in a distributed fashion or in a centralized fashion,
   and may have a hierarchical structure or a flat structure.  The
   comparative merits of distributed and centralized control structures
   for networks are well known.  A centralized scheme may have global
   visibility into the network state and may produce potentially more
   optimal solutions.  However, centralized schemes are prone to single
   points of failure and may not scale as well as distributed schemes.
   Moreover, the information utilized by a centralized scheme may be
   stale and may not reflect the actual state of the network.  It is not
   an objective of this memo to make a recommendation between
   distributed and centralized schemes.  This is a choice that network
   administrators must make based on their specific needs.

   - Short (picoseconds to minutes): This category includes packet level
   processing functions and events on the order of several round trip
   times.  It includes router mechanisms such as passive and active
   buffer management.  These mechanisms are used to control congestion
   and/or signal congestion to end systems so that they can adaptively
   regulate the rate at which traffic is injected into the network.  One
   of the most popular active queue management schemes, especially for
   TCP traffic, is Random Early Detection (RED) [FLJA93], which supports
   congestion avoidance by controlling the average queue size.  During
   congestion (but before the queue is filled), the RED scheme chooses
   arriving packets to "mark" according to a probabilistic algorithm
   which takes into account the average queue size.  For a router that
   does not utilize explicit congestion notification (ECN) see e.g.,
   [FLOY94], the marked packets can simply be dropped to signal the
   inception of congestion to end systems.  On the other hand, if the
   router supports ECN, then it can set the ECN field in the packet
   header.  Several variations of RED have been proposed to support
   different drop precedence levels in multi-class environments [RFC-

Awduche, et. al.             Informational                     [Page 19]
RFC 3272        Overview and Principles of Internet TE          May 2002

   2597], e.g., RED with In and Out (RIO) and Weighted RED.  There is
   general consensus that RED provides congestion avoidance performance
   which is not worse than traditional Tail-Drop (TD) queue management
   (drop arriving packets only when the queue is full).  Importantly,
   however, RED reduces the possibility of global synchronization and
   improves fairness among different TCP sessions.  However, RED by
   itself can not prevent congestion and unfairness caused by sources
   unresponsive to RED, e.g., UDP traffic and some misbehaved greedy
   connections.  Other schemes have been proposed to improve the
   performance and fairness in the presence of unresponsive traffic.
   Some of these schemes were proposed as theoretical frameworks and are
   typically not available in existing commercial products.  Two such
   schemes are Longest Queue Drop (LQD) and Dynamic Soft Partitioning
   with Random Drop (RND) [SLDC98].

   (2) Congestion Management: Reactive versus Preventive Schemes

   - Reactive: reactive (recovery) congestion management policies react
   to existing congestion problems to improve it.  All the policies
   described in the long and medium time scales above can be categorized
   as being reactive especially if the policies are based on monitoring
   and identifying existing congestion problems, and on the initiation
   of relevant actions to ease a situation.

   - Preventive: preventive (predictive/avoidance) policies take
   proactive action to prevent congestion based on estimates and
   predictions of future potential congestion problems.  Some of the
   policies described in the long and medium time scales fall into this
   category.  They do not necessarily respond immediately to existing
   congestion problems.  Instead forecasts of traffic demand and
   workload distribution are considered and action may be taken to
   prevent potential congestion problems in the future.  The schemes
   described in the short time scale (e.g., RED and its variations, ECN,
   LQD, and RND) are also used for congestion avoidance since dropping
   or marking packets before queues actually overflow would trigger
   corresponding TCP sources to slow down.

   (3) Congestion Management: Supply Side versus Demand Side Schemes

   - Supply side: supply side congestion management policies increase
   the effective capacity available to traffic in order to control or
   obviate congestion.  This can be accomplished by augmenting capacity.
   Another way to accomplish this is to minimize congestion by having a
   relatively balanced distribution of traffic over the network.  For
   example, capacity planning should aim to provide a physical topology
   and associated link bandwidths that match estimated traffic workload
   and traffic distribution based on forecasting (subject to budgetary
   and other constraints).  However, if actual traffic distribution does

Awduche, et. al.             Informational                     [Page 20]
RFC 3272        Overview and Principles of Internet TE          May 2002

   not match the topology derived from capacity panning (due to
   forecasting errors or facility constraints for example), then the
   traffic can be mapped onto the existing topology using routing
   control mechanisms, using path oriented technologies (e.g., MPLS LSPs
   and optical channel trails) to modify the logical topology, or by
   using some other load redistribution mechanisms.

   - Demand side: demand side congestion management policies control or
   regulate the offered traffic to alleviate congestion problems.  For
   example, some of the short time scale mechanisms described earlier
   (such as RED and its variations, ECN, LQD, and RND) as well as
   policing and rate shaping mechanisms attempt to regulate the offered
   load in various ways.  Tariffs may also be applied as a demand side
   instrument.  To date, however, tariffs have not been used as a means
   of demand side congestion management within the Internet.

   In summary, a variety of mechanisms can be used to address congestion
   problems in IP networks.  These mechanisms may operate at multiple
   time-scales.

2.5 Implementation and Operational Context

   The operational context of Internet traffic engineering is
   characterized by constant change which occur at multiple levels of
   abstraction.  The implementation context demands effective planning,
   organization, and execution.  The planning aspects may involve
   determining prior sets of actions to achieve desired objectives.
   Organizing involves arranging and assigning responsibility to the
   various components of the traffic engineering system and coordinating
   the activities to accomplish the desired TE objectives.  Execution
   involves measuring and applying corrective or perfective actions to
   attain and maintain desired TE goals.

3.0 Traffic Engineering Process Model(s)

   This section describes a generic process model that captures the high
   level practical aspects of Internet traffic engineering in an
   operational context.  The process model is described as a sequence of
   actions that a traffic engineer, or more generally a traffic
   engineering system, must perform to optimize the performance of an
   operational network (see also [RFC-2702, AWD2]).  The process model
   described here represents the broad activities common to most traffic
   engineering methodologies although the details regarding how traffic
   engineering is executed may differ from network to network.  This
   process model may be enacted explicitly or implicitly, by an
   automaton and/or by a human.

Awduche, et. al.             Informational                     [Page 21]
RFC 3272        Overview and Principles of Internet TE          May 2002

   The traffic engineering process model is iterative [AWD2].  The four
   phases of the process model described below are repeated continually.

   The first phase of the TE process model is to define the relevant
   control policies that govern the operation of the network.  These
   policies may depend upon many factors including the prevailing
   business model, the network cost structure, the operating
   constraints, the utility model, and optimization criteria.

   The second phase of the process model is a feedback mechanism
   involving the acquisition of measurement data from the operational
   network.  If empirical data is not readily available from the
   network, then synthetic workloads may be used instead which reflect
   either the prevailing or the expected workload of the network.
   Synthetic workloads may be derived by estimation or extrapolation
   using prior empirical data.  Their derivation may also be obtained
   using mathematical models of traffic characteristics or other means.

   The third phase of the process model is to analyze the network state
   and to characterize traffic workload.  Performance analysis may be
   proactive and/or reactive.  Proactive performance analysis identifies
   potential problems that do not exist, but could manifest in the
   future.  Reactive performance analysis identifies existing problems,
   determines their cause through diagnosis, and evaluates alternative
   approaches to remedy the problem, if necessary.  A number of
   quantitative and qualitative techniques may be used in the analysis
   process, including modeling based analysis and simulation.  The
   analysis phase of the process model may involve investigating the
   concentration and distribution of traffic across the network or
   relevant subsets of the network, identifying the characteristics of
   the offered traffic workload, identifying existing or potential
   bottlenecks, and identifying network pathologies such as ineffective
   link placement, single points of failures, etc.  Network pathologies
   may result from many factors including inferior network architecture,
   inferior network design, and configuration problems.  A traffic
   matrix may be constructed as part of the analysis process.  Network
   analysis may also be descriptive or prescriptive.

   The fourth phase of the TE process model is the performance
   optimization of the network.  The performance optimization phase
   involves a decision process which selects and implements a set of
   actions from a set of alternatives.  Optimization actions may include
   the use of appropriate techniques to either control the offered
   traffic or to control the distribution of traffic across the network.
   Optimization actions may also involve adding additional links or
   increasing link capacity, deploying additional hardware such as
   routers and switches, systematically adjusting parameters associated
   with routing such as IGP metrics and BGP attributes, and adjusting

Awduche, et. al.             Informational                     [Page 22]
RFC 3272        Overview and Principles of Internet TE          May 2002

   traffic management parameters.  Network performance optimization may
   also involve starting a network planning process to improve the
   network architecture, network design, network capacity, network
   technology, and the configuration of network elements to accommodate
   current and future growth.

3.1 Components of the Traffic Engineering Process Model

   The key components of the traffic engineering process model include a
   measurement subsystem, a modeling and analysis subsystem, and an
   optimization subsystem.  The following subsections examine these
   components as they apply to the traffic engineering process model.

3.2 Measurement

   Measurement is crucial to the traffic engineering function.  The
   operational state of a network can be conclusively determined only
   through measurement.  Measurement is also critical to the
   optimization function because it provides feedback data which is used
   by traffic engineering control subsystems.  This data is used to
   adaptively optimize network performance in response to events and
   stimuli originating within and outside the network.  Measurement is
   also needed to determine the quality of network services and to
   evaluate the effectiveness of traffic engineering policies.
   Experience suggests that measurement is most effective when acquired
   and applied systematically.

   When developing a measurement system to support the traffic
   engineering function in IP networks, the following questions should
   be carefully considered: Why is measurement needed in this particular
   context? What parameters are to be measured?  How should the
   measurement be accomplished?  Where should the measurement be
   performed? When should the measurement be performed?  How frequently
   should the monitored variables be measured?  What level of
   measurement accuracy and reliability is desirable? What level of
   measurement accuracy and reliability is realistically attainable? To
   what extent can the measurement system permissibly interfere with the
   monitored network components and variables? What is the acceptable
   cost of measurement? The answers to these questions will determine
   the measurement tools and methodologies appropriate in any given
   traffic engineering context.

   It should also be noted that there is a distinction between
   measurement and evaluation.  Measurement provides raw data concerning
   state parameters and variables of monitored network elements.
   Evaluation utilizes the raw data to make inferences regarding the
   monitored system.

Awduche, et. al.             Informational                     [Page 23]
RFC 3272        Overview and Principles of Internet TE          May 2002

   Measurement in support of the TE function can occur at different
   levels of abstraction.  For example, measurement can be used to
   derive packet level characteristics, flow level characteristics, user
   or customer level characteristics, traffic aggregate characteristics,
   component level characteristics, and network wide characteristics.

3.3 Modeling, Analysis, and Simulation

   Modeling and analysis are important aspects of Internet traffic
   engineering.  Modeling involves constructing an abstract or physical
   representation which depicts relevant traffic characteristics and
   network attributes.

   A network model is an abstract representation of the network which
   captures relevant network features, attributes, and characteristics,
   such as link and nodal attributes and constraints.  A network model
   may facilitate analysis and/or simulation which can be used to
   predict network performance under various conditions as well as to
   guide network expansion plans.

   In general, Internet traffic engineering models can be classified as
   either structural or behavioral.  Structural models focus on the
   organization of the network and its components.  Behavioral models
   focus on the dynamics of the network and the traffic workload.
   Modeling for Internet traffic engineering may also be formal or
   informal.

   Accurate behavioral models for traffic sources are particularly
   useful for analysis.  Development of behavioral traffic source models
   that are consistent with empirical data obtained from operational
   networks is a major research topic in Internet traffic engineering.
   These source models should also be tractable and amenable to
   analysis.  The topic of source models for IP traffic is a research
   topic and is therefore outside the scope of this document.  Its
   importance, however, must be emphasized.

   Network simulation tools are extremely useful for traffic
   engineering.  Because of the complexity of realistic quantitative
   analysis of network behavior, certain aspects of network performance
   studies can only be conducted effectively using simulation.  A good
   network simulator can be used to mimic and visualize network
   characteristics under various conditions in a safe and non-disruptive
   manner.  For example, a network simulator may be used to depict
   congested resources and hot spots, and to provide hints regarding
   possible solutions to network performance problems.  A good simulator
   may also be used to validate the effectiveness of planned solutions
   to network issues without the need to tamper with the operational
   network, or to commence an expensive network upgrade which may not

Awduche, et. al.             Informational                     [Page 24]
RFC 3272        Overview and Principles of Internet TE          May 2002

   achieve the desired objectives.  Furthermore, during the process of
   network planning, a network simulator may reveal pathologies such as
   single points of failure which may require additional redundancy, and
   potential bottlenecks and hot spots which may require additional
   capacity.

   Routing simulators are especially useful in large networks.  A
   routing simulator may identify planned links which may not actually
   be used to route traffic by the existing routing protocols.
   Simulators can also be used to conduct scenario based and
   perturbation based analysis, as well as sensitivity studies.
   Simulation results can be used to initiate appropriate actions in
   various ways.  For example, an important application of network
   simulation tools is to investigate and identify how best to make the
   network evolve and grow, in order to accommodate projected future
   demands.

3.4 Optimization

   Network performance optimization involves resolving network issues by
   transforming such issues into concepts that enable a solution,
   identification of a solution, and implementation of the solution.
   Network performance optimization can be corrective or perfective.  In
   corrective optimization, the goal is to remedy a problem that has
   occurred or that is incipient.  In perfective optimization, the goal
   is to improve network performance even when explicit problems do not
   exist and are not anticipated.

   Network performance optimization is a continual process, as noted
   previously.  Performance optimization iterations may consist of
   real-time optimization sub-processes and non-real-time network
   planning sub-processes.  The difference between real-time
   optimization and network planning is primarily in the relative time-
   scale in which they operate and in the granularity of actions.  One
   of the objectives of a real-time optimization sub-process is to
   control the mapping and distribution of traffic over the existing
   network infrastructure to avoid and/or relieve congestion, to assure
   satisfactory service delivery, and to optimize resource utilization.
   Real-time optimization is needed because random incidents such as
   fiber cuts or shifts in traffic demand will occur irrespective of how
   well a network is designed.  These incidents can cause congestion and
   other problems to manifest in an operational network.  Real-time
   optimization must solve such problems in small to medium time-scales
   ranging from micro-seconds to minutes or hours.  Examples of real-
   time optimization include queue management, IGP/BGP metric tuning,
   and using technologies such as MPLS explicit LSPs to change the paths
   of some traffic trunks [XIAO].

Awduche, et. al.             Informational                     [Page 25]
RFC 3272        Overview and Principles of Internet TE          May 2002

   One of the functions of the network planning sub-process is to
   initiate actions to systematically evolve the architecture,
   technology, topology, and capacity of a network.  When a problem
   exists in the network, real-time optimization should provide an
   immediate remedy.  Because a prompt response is necessary, the real-
   time solution may not be the best possible solution.  Network
   planning may subsequently be needed to refine the solution and
   improve the situation.  Network planning is also required to expand
   the network to support traffic growth and changes in traffic
   distribution over time.  As previously noted, a change in the
   topology and/or capacity of the network may be the outcome of network
   planning.

   Clearly, network planning and real-time performance optimization are
   mutually complementary activities.  A well-planned and designed
   network makes real-time optimization easier, while a systematic
   approach to real-time network performance optimization allows network
   planning to focus on long term issues rather than tactical
   considerations.  Systematic real-time network performance
   optimization also provides valuable inputs and insights toward
   network planning.

   Stability is an important consideration in real-time network
   performance optimization.  This aspect will be repeatedly addressed
   throughout this memo.

4.0 Historical Review and Recent Developments

   This section briefly reviews different traffic engineering approaches
   proposed and implemented in telecommunications and computer networks.
   The discussion is not intended to be comprehensive.  It is primarily
   intended to illuminate pre-existing perspectives and prior art
   concerning traffic engineering in the Internet and in legacy
   telecommunications networks.

4.1 Traffic Engineering in Classical Telephone Networks

   This subsection presents a brief overview of traffic engineering in
   telephone networks which often relates to the way user traffic is
   steered from an originating node to the terminating node.  This
   subsection presents a brief overview of this topic.  A detailed
   description of the various routing strategies applied in telephone
   networks is included in the book by G. Ash [ASH2].

   The early telephone network relied on static hierarchical routing,
   whereby routing patterns remained fixed independent of the state of
   the network or time of day.  The hierarchy was intended to
   accommodate overflow traffic, improve network reliability via

Awduche, et. al.             Informational                     [Page 26]
RFC 3272        Overview and Principles of Internet TE          May 2002

   alternate routes, and prevent call looping by employing strict
   hierarchical rules.  The network was typically over-provisioned since
   a given fixed route had to be dimensioned so that it could carry user
   traffic during a busy hour of any busy day.  Hierarchical routing in
   the telephony network was found to be too rigid upon the advent of
   digital switches and stored program control which were able to manage
   more complicated traffic engineering rules.

   Dynamic routing was introduced to alleviate the routing inflexibility
   in the static hierarchical routing so that the network would operate
   more efficiently.  This resulted in significant economic gains
   [HUSS87].  Dynamic routing typically reduces the overall loss
   probability by 10 to 20 percent (compared to static hierarchical
   routing).  Dynamic routing can also improve network resilience by
   recalculating routes on a per-call basis and periodically updating
   routes.

   There are three main types of dynamic routing in the telephone
   network.  They are time-dependent routing, state-dependent routing
   (SDR), and event dependent routing (EDR).

   In time-dependent routing, regular variations in traffic loads (such
   as time of day or day of week) are exploited in pre-planned routing
   tables.  In state-dependent routing, routing tables are updated
   online according to the current state of the network (e.g., traffic
   demand, utilization, etc.).  In event dependent routing, routing
   changes are incepted by events (such as call setups encountering
   congested or blocked links) whereupon new paths are searched out
   using learning models.  EDR methods are real-time adaptive, but they
   do not require global state information as does SDR.  Examples of EDR
   schemes include the dynamic alternate routing (DAR) from BT, the
   state-and-time dependent routing (STR) from NTT, and the success-to-
   the-top (STT) routing from AT&T.

   Dynamic non-hierarchical routing (DNHR) is an example of dynamic
   routing that was introduced in the AT&T toll network in the 1980's to
   respond to time-dependent information such as regular load variations
   as a function of time.  Time-dependent information in terms of load
   may be divided into three time scales: hourly, weekly, and yearly.
   Correspondingly, three algorithms are defined to pre-plan the routing
   tables.  The network design algorithm operates over a year-long
   interval while the demand servicing algorithm operates on a weekly
   basis to fine tune link sizes and routing tables to correct forecast
   errors on the yearly basis.  At the smallest time scale, the routing
   algorithm is used to make limited adjustments based on daily traffic
   variations.  Network design and demand servicing are computed using
   offline calculations.  Typically, the calculations require extensive
   searches on possible routes.  On the other hand, routing may need

Awduche, et. al.             Informational                     [Page 27]
RFC 3272        Overview and Principles of Internet TE          May 2002

   online calculations to handle crankback.  DNHR adopts a "two-link"
   approach whereby a path can consist of two links at most.  The
   routing algorithm presents an ordered list of route choices between
   an originating switch and a terminating switch.  If a call overflows,
   a via switch (a tandem exchange between the originating switch and
   the terminating switch) would send a crankback signal to the
   originating switch.  This switch would then select the next route,
   and so on, until there are no alternative routes available in which
   the call is blocked.

4.2 Evolution of Traffic Engineering in Packet Networks

   This subsection reviews related prior work that was intended to
   improve the performance of data networks.  Indeed, optimization of
   the performance of data networks started in the early days of the
   ARPANET.  Other early commercial networks such as SNA also recognized
   the importance of performance optimization and service
   differentiation.

   In terms of traffic management, the Internet has been a best effort
   service environment until recently.  In particular, very limited
   traffic management capabilities existed in IP networks to provide
   differentiated queue management and scheduling services to packets
   belonging to different classes.

   In terms of routing control, the Internet has employed distributed
   protocols for intra-domain routing.  These protocols are highly
   scalable and resilient.  However, they are based on simple algorithms
   for path selection which have very limited functionality to allow
   flexible control of the path selection process.

   In the following subsections, the evolution of practical traffic
   engineering mechanisms in IP networks and its predecessors are
   reviewed.

4.2.1 Adaptive Routing in the ARPANET

   The early ARPANET recognized the importance of adaptive routing where
   routing decisions were based on the current state of the network
   [MCQ80].  Early minimum delay routing approaches forwarded each
   packet to its destination along a path for which the total estimated
   transit time was the smallest.  Each node maintained a table of
   network delays, representing the estimated delay that a packet would
   experience along a given path toward its destination.  The minimum
   delay table was periodically transmitted by a node to its neighbors.
   The shortest path, in terms of hop count, was also propagated to give
   the connectivity information.

Awduche, et. al.             Informational                     [Page 28]
RFC 3272        Overview and Principles of Internet TE          May 2002

   One drawback to this approach is that dynamic link metrics tend to
   create quot;This table is used to retrieve all entries in the
        dlswDirMacTable that match a given MAC address,
        in the order of the best matched first, the
        second best matched second, and so on, till
        no more entries match the given MAC address."
    ::= { dlswDirLocate 1 }

dlswDirLocateMacEntry  OBJECT-TYPE
    SYNTAX     DlswDirLocateMacEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "Indexed by dlswDirLocateMacMac and dlswDirLocateMacMatch.
        The first object is the MAC address of interest, and
        the second object is the order in the list of all
        entries that match the MAC address."
    INDEX   { dlswDirLocateMacMac, dlswDirLocateMacMatch }
    ::= { dlswDirLocateMacTable 1 }

DlswDirLocateMacEntry ::= SEQUENCE {
    dlswDirLocateMacMac            MacAddressNC,
    dlswDirLocateMacMatch          INTEGER,
    dlswDirLocateMacLocation       RowPointer
    }

dlswDirLocateMacMac  OBJECT-TYPE
    SYNTAX     MacAddressNC
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "The MAC address to be located."
    ::= { dlswDirLocateMacEntry 1 }

dlswDirLocateMacMatch  OBJECT-TYPE
    SYNTAX     INTEGER (1..255)
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION

Chen, et. al.               Standards Track                    [Page 54]
RFC 2024                  DLSw MIB using SMIv2              October 1996

       "The order of the entries of dlswDirMacTable
        that match dlswDirLocateMacMac.  A value of
        one represents the entry that best matches the
        MAC address.  A value of two represents the second
        best matched entry, and so on."
    ::= { dlswDirLocateMacEntry 2 }

dlswDirLocateMacLocation  OBJECT-TYPE
    SYNTAX     RowPointer
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "Points to the dlswDirMacEntry."
    ::= { dlswDirLocateMacEntry 3 }

-- ...................................................................
-- Locate Entries in the dlswDirNBTable for a given NetBIOS name
-- ...................................................................
dlswDirLocateNBTable  OBJECT-TYPE
    SYNTAX     SEQUENCE OF DlswDirLocateNBEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "This table is used to retrieve all entries in the
        dlswDirNBTable that match a given NetBIOS name,
        in the order of the best matched first, the
        second best matched second, and so on, till
        no more entries match the given NetBIOS name."
    ::= { dlswDirLocate 2 }

dlswDirLocateNBEntry  OBJECT-TYPE
    SYNTAX     DlswDirLocateNBEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "Indexed by dlswDirLocateNBName and dlswDirLocateNBMatch.
        The first object is the NetBIOS name of interest, and
        the second object is the order in the list of all
        entries that match the NetBIOS name."
    INDEX   { dlswDirLocateNBName, dlswDirLocateNBMatch }
    ::= { dlswDirLocateNBTable 1 }

DlswDirLocateNBEntry ::= SEQUENCE {
    dlswDirLocateNBName           NBName,
    dlswDirLocateNBMatch          INTEGER,
    dlswDirLocateNBLocation       RowPointer
    }

Chen, et. al.               Standards Track                    [Page 55]
RFC 2024                  DLSw MIB using SMIv2              October 1996

dlswDirLocateNBName  OBJECT-TYPE
    SYNTAX     NBName
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "The NetBIOS name to be located (no any char or wildcards)."
    ::= { dlswDirLocateNBEntry 1 }

dlswDirLocateNBMatch  OBJECT-TYPE
    SYNTAX     INTEGER (1..255)
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "The order of the entries of dlswDirNBTable
        that match dlswDirLocateNBName.  A value of
        one represents the entry that best matches the
        NetBIOS name.  A value of two represents the second
        best matched entry, and so on."
    ::= { dlswDirLocateNBEntry 2 }

dlswDirLocateNBLocation  OBJECT-TYPE
    SYNTAX     RowPointer
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "Points to the dlswDirNBEntry."
    ::= { dlswDirLocateNBEntry 3 }

-- *******************************************************************
-- CIRCUIT
-- A circuit is the end-to-end association of two DLSw entities
-- through one or two DLSw nodes.  It is the concatenation of
-- two "data links", optionally with an intervening transport
-- connection. The origin of the circuit is the end station that
-- initiates the circuit.  The target of the circuit is the end
-- station that receives the initiation.
-- *******************************************************************

-- -------------------------------------------------------------------
-- Statistics Related to Circuits
-- -------------------------------------------------------------------
dlswCircuitStat      OBJECT IDENTIFIER ::= { dlswCircuit 1 }

dlswCircuitStatActives  OBJECT-TYPE
    SYNTAX     Gauge32
    MAX-ACCESS read-only
    STATUS     current

Chen, et. al.               Standards Track                    [Page 56]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    DESCRIPTION
       "The current number of circuits in dlswCircuitTable that are
        not in the disconnected state."
    ::= { dlswCircuitStat 1 }

dlswCircuitStatCreates  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The total number of entries ever added to dlswCircuitTable,
        or reactivated upon exiting `disconnected' state."
    ::= { dlswCircuitStat 2 }

-- -------------------------------------------------------------------
-- Circuit Table
--
-- This table is the DLSw entity's view of circuits.  There will be
-- a conceptual row in the table associated with each data link.
--
-- The chart below lists the various possible combinations of
-- origin and target MAC locations and the number of entries in
-- this Circuit Table:
--
--           number of       |    Origin End Station Location
--         entries in the    |--------------------------------------
--         Circuit Table     |  internal     local       remote
--    -----------------------|--------------------------------------
--     Target    |  internal |     NA          2           1
--     End       |  local    |     2           2           1
--     Station   |  remote   |     1           1           NA
--     Location  |           |
--
--     NA: Not applicable
--
--  Note:
--  (a) IfIndex and RouteInfo are applied only if location is local.
--  (b) TDomain and TAddr are applied only if location is remote.
--
-- Most of statistics related to circuits can be collected
-- from LLC-2 Link Station Table.
-- -------------------------------------------------------------------
dlswCircuitTable  OBJECT-TYPE
    SYNTAX     SEQUENCE OF DlswCircuitEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION

Chen, et. al.               Standards Track                    [Page 57]
RFC 2024                  DLSw MIB using SMIv2              October 1996

       "This table is the circuit representation in the DLSw
        entity. Virtual data links are used to represent any internal
        end stations.  There is a conceptual row associated with
        each data link.  Thus, for circuits without an intervening
        transport connection, there are two conceptual rows
        for each circuit.

        The table consists of the circuits being established,
        established, and as an implementation option, circuits that
        have been disconnected.  For circuits carried over
        transport connections, an entry is created after
        the CUR_cs was sent or received.  For circuits between
        two locally attached devices, or internal virtual MAC
        addresses, an entry is created when the equivalent of
        CUR_cs sent/received status is reached.

        End station 1 (S1) and End station 2 (S2) are used to
        represent the two end stations of the circuit.
        S1 is always an end station which is locally attached.
        S2 may be locally attached or remote.  If it is locally
        attached, the circuit will be represented by two rows indexed
        by (A, B) and (B, A) where A & B are the relevant MACs/SAPs.

        The table may be used to store the causes of disconnection of
        circuits.  It is recommended that the oldest disconnected
        circuit entry be removed from this table when the memory
        space of disconnected circuits is needed."
    ::= { dlswCircuit 2 }

dlswCircuitEntry  OBJECT-TYPE
    SYNTAX     DlswCircuitEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       ""
    INDEX   { dlswCircuitS1Mac,
              dlswCircuitS1Sap,
              dlswCircuitS2Mac,
              dlswCircuitS2Sap }
    ::= { dlswCircuitTable 1 }

DlswCircuitEntry ::= SEQUENCE {
    dlswCircuitS1Mac                MacAddressNC,
    dlswCircuitS1Sap                OCTET STRING,
    dlswCircuitS1IfIndex            INTEGER,
    dlswCircuitS1DlcType            DlcType,
    dlswCircuitS1RouteInfo          OCTET STRING,
    dlswCircuitS1CircuitId          OCTET STRING,

Chen, et. al.               Standards Track                    [Page 58]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    dlswCircuitS1Dlc                RowPointer,

    dlswCircuitS2Mac                MacAddressNC,
    dlswCircuitS2Sap                OCTET STRING,
    dlswCircuitS2Location           EndStationLocation,
    dlswCircuitS2TDomain            OBJECT IDENTIFIER,
    dlswCircuitS2TAddress           TAddress,
    dlswCircuitS2CircuitId          OCTET STRING,

    dlswCircuitOrigin               INTEGER,

    dlswCircuitEntryTime            TimeTicks,
    dlswCircuitStateTime            TimeTicks,
    dlswCircuitState                INTEGER,

    dlswCircuitPriority             INTEGER,

    dlswCircuitFCSendGrantedUnits   INTEGER,
    dlswCircuitFCSendCurrentWndw    INTEGER,
    dlswCircuitFCRecvGrantedUnits   INTEGER,
    dlswCircuitFCRecvCurrentWndw    INTEGER,
    dlswCircuitFCLargestRecvGranted Gauge32,
    dlswCircuitFCLargestSendGranted Gauge32,
    dlswCircuitFCHalveWndwSents     Counter32,
    dlswCircuitFCResetOpSents       Counter32,
    dlswCircuitFCHalveWndwRcvds     Counter32,
    dlswCircuitFCResetOpRcvds       Counter32,
    dlswCircuitDiscReasonLocal      INTEGER,
    dlswCircuitDiscReasonRemote     INTEGER,
    dlswCircuitDiscReasonRemoteData OCTET STRING
    }

-- ...................................................................
-- Information related to the End Station 1 (S1).
-- ...................................................................
dlswCircuitS1Mac  OBJECT-TYPE
    SYNTAX     MacAddressNC
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "The MAC Address of End Station 1 (S1) used for this circuit."
    ::= { dlswCircuitEntry 1 }

dlswCircuitS1Sap  OBJECT-TYPE
    SYNTAX     OCTET STRING (SIZE(1))
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION

Chen, et. al.               Standards Track                    [Page 59]
RFC 2024                  DLSw MIB using SMIv2              October 1996

       "The SAP at End Station 1 (S1) used for this circuit."
    ::= { dlswCircuitEntry 2 }

dlswCircuitS1IfIndex  OBJECT-TYPE
    SYNTAX     INTEGER (0..2147483647)
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The ifEntry index of the local interface through which S1
        can be reached."
    ::= { dlswCircuitEntry 3 }

dlswCircuitS1DlcType  OBJECT-TYPE
    SYNTAX     DlcType
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The DLC protocol in use between the DLSw node and S1."
    ::= { dlswCircuitEntry 4 }

dlswCircuitS1RouteInfo  OBJECT-TYPE
    SYNTAX     OCTET STRING (SIZE (0..30))
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "If source-route bridging is in use between the DLSw
        node and S1, this is the routing information field
        describing the path between the two devices.
        Otherwise the value will be an OCTET STRING of
        zero length."
    ::= { dlswCircuitEntry 5 }

dlswCircuitS1CircuitId  OBJECT-TYPE
    SYNTAX     OCTET STRING (SIZE (0 | 8))
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The Circuit ID assigned by this DLSw node to this circuit.
        The first four octets are the DLC port Id, and
        the second four octets are the Data Link Correlator.
        If the DLSw SSP was not used to establish this circuit,
        the value will be a string of zero length."
    ::= { dlswCircuitEntry 6 }

dlswCircuitS1Dlc  OBJECT-TYPE
    SYNTAX     RowPointer
    MAX-ACCESS read-only
    STATUS     current

Chen, et. al.               Standards Track                    [Page 60]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    DESCRIPTION
       "Points to a conceptual row of the underlying DLC MIB,
        which could either be the standard MIBs (e.g., the SDLC),
        or an enterprise-specific DLC MIB."
    ::= { dlswCircuitEntry 7 }

-- ...................................................................
-- Information related to the End Station 2 (S2).
-- ...................................................................
dlswCircuitS2Mac  OBJECT-TYPE
    SYNTAX     MacAddressNC
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "The MAC Address of End Station 2 (S2) used for this circuit."
    ::= { dlswCircuitEntry 8 }

dlswCircuitS2Sap  OBJECT-TYPE
    SYNTAX     OCTET STRING (SIZE(1))
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "The SAP at End Station 2 (S2) used for this circuit."
    ::= { dlswCircuitEntry 9 }

dlswCircuitS2Location  OBJECT-TYPE
    SYNTAX     EndStationLocation
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The location of End Station 2 (S2).
        If the location of End Station 2 is local, the
        interface information will be available in the
        conceptual row whose S1 and S2 are the S2 and
        the S1 of this conceptual row, respectively."
    ::= { dlswCircuitEntry 10 }

dlswCircuitS2TDomain  OBJECT-TYPE
    SYNTAX     OBJECT IDENTIFIER
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "If the location of End Station 2 is remote,
        this value is the transport domain of the
        transport protocol the circuit is running
        over.  Otherwise, the value is 0.0."
    ::= { dlswCircuitEntry 11 }

Chen, et. al.               Standards Track                    [Page 61]
RFC 2024                  DLSw MIB using SMIv2              October 1996

dlswCircuitS2TAddress  OBJECT-TYPE
    SYNTAX     TAddress
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "If the location of End Station 2 is remote,
        this object contains the address of the partner
        DLSw, else it will be an OCTET STRING of zero length."
    ::= { dlswCircuitEntry 12 }

dlswCircuitS2CircuitId  OBJECT-TYPE
    SYNTAX     OCTET STRING (SIZE (0 | 8))
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The Circuit ID assigned to this circuit by the partner
        DLSw node.  The first four octets are the DLC port Id, and
        the second four octets are the Data Link Correlator.
        If the DLSw SSP was not used to establish this circuit,
        the value will be a string of zero length."
    ::= { dlswCircuitEntry 13 }

-- ...................................................................
dlswCircuitOrigin  OBJECT-TYPE
    SYNTAX     INTEGER  {
        s1             (1),
        s2             (2)
    }
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "This object specifies which of the two end stations
        initiated the establishment of this circuit."
    ::= { dlswCircuitEntry 14 }

-- ...................................................................
-- Operational information related to this circuit.
-- ...................................................................
dlswCircuitEntryTime  OBJECT-TYPE
    SYNTAX     TimeTicks
    UNITS      "hundredths of a second"
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The amount of time (in hundredths of a second) since this
        circuit table conceptual row was created."
    ::= { dlswCircuitEntry 15 }

Chen, et. al.               Standards Track                    [Page 62]
RFC 2024                  DLSw MIB using SMIv2              October 1996

dlswCircuitStateTime  OBJECT-TYPE
    SYNTAX     TimeTicks
    UNITS      "hundredths of a second"
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The amount of time (in hundredths of a second) since this
        circuit entered the current state."
    ::= { dlswCircuitEntry 16 }

dlswCircuitState  OBJECT-TYPE
    SYNTAX     INTEGER  {
        disconnected           (1),
        circuitStart           (2),
        resolvePending         (3),
        circuitPending         (4),
        circuitEstablished     (5),
        connectPending         (6),
        contactPending         (7),
        connected              (8),
        disconnectPending      (9),
        haltPending            (10),
        haltPendingNoack       (11),
        circuitRestart         (12),
        restartPending         (13)
    }
    MAX-ACCESS read-write
    STATUS     current
    DESCRIPTION
       "The current state of this circuit.  The agent, implementation
        specific, may choose to keep entries for some period of time
        after circuit disconnect, so the manager can gather the time
        and cause of disconnection.

        While all of the specified values may be returned from a GET
        operation, the only SETable value is `disconnectPending'.
        When this value is set, DLSw should perform the appropriate
        action given its previous state (e.g., send HALT_DL if the
        state was `connected') to bring the circuit down to the
        `disconnected' state.  Both the partner DLSw and local end
        station(s) should be notified as appropriate.

        This MIB provides no facility to re-establish a disconnected
        circuit, because in DLSw this should be an end station-driven
        function."
    ::= { dlswCircuitEntry 17 }

dlswCircuitPriority  OBJECT-TYPE

Chen, et. al.               Standards Track                    [Page 63]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    SYNTAX     INTEGER  {
        unsupported     (1),
        low             (2),
        medium          (3),
        high            (4),
        highest         (5)
    }
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The transmission priority of this circuit as understood by
        this DLSw node.  This value is determined by the two DLSw
        nodes at circuit startup time.  If this DLSw node does not
        support DLSw circuit priority, the value `unsupported' should
        be returned."
    ::= { dlswCircuitEntry 18 }

-- ...................................................................
-- Pacing Objects:
-- These objects are applicable if DLSw is using the SSP circuit
-- pacing protocol to control the flow between the two data links
-- in this circuit.
-- ...................................................................
dlswCircuitFCSendGrantedUnits  OBJECT-TYPE
    SYNTAX     INTEGER (0..65535)
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of paced SSP messages that this DLSw is currently
        authorized to send on this circuit before it must stop and
        wait for an additional flow control indication from the
        partner DLSw.

        The value zero should be returned if this circuit is not
        running the DLSw pacing protocol."
    ::= { dlswCircuitEntry 19 }

dlswCircuitFCSendCurrentWndw  OBJECT-TYPE
    SYNTAX     INTEGER (0..65535)
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The current window size that this DLSw is using in its role
        as a data sender.  This is the value by which this DLSw would
        increase the number of messages it is authorized to send, if
        it were to receive a flow control indication with the bits
        specifying `repeat window'.

Chen, et. al.               Standards Track                    [Page 64]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        The value zero should be returned if this circuit is not
        running the DLSw pacing protocol."
    ::= { dlswCircuitEntry 20 }

dlswCircuitFCRecvGrantedUnits  OBJECT-TYPE
    SYNTAX     INTEGER (0..65535)
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The current number of paced SSP messages that this DLSw has
        authorized the partner DLSw to send on this circuit before
        the partner DLSw must stop and wait for an additional flow
        control indication from this DLSw.

        The value zero should be returned if this circuit is not
        running the DLSw pacing protocol."
    ::= { dlswCircuitEntry 21 }

dlswCircuitFCRecvCurrentWndw  OBJECT-TYPE
    SYNTAX     INTEGER (0..65535)
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The current window size that this DLSw is using in its role
        as a data receiver.  This is the number of additional paced
        SSP messages that this DLSw would be authorizing its DLSw
        partner to send, if this DLSw were to send a flow control
        indication with the bits specifying `repeat window'.

        The value zero should be returned if this circuit is not
        running the DLSw pacing protocol."
    ::= { dlswCircuitEntry 22 }

dlswCircuitFCLargestRecvGranted  OBJECT-TYPE
    SYNTAX     Gauge32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The largest receive window size granted by this DLSw during
        the current activation of this circuit.  This is not the
        largest number of messages granted at any time, but the
        largest window size as represented by FCIND operator bits.

        The value zero should be returned if this circuit is not
        running the DLSw pacing protocol."
    ::= { dlswCircuitEntry 23 }

dlswCircuitFCLargestSendGranted  OBJECT-TYPE

Chen, et. al.               Standards Track                    [Page 65]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    SYNTAX     Gauge32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The largest send (with respect to this DLSw) window size
        granted by the partner DLSw during the current activation of
        this circuit.

        The value zero should be returned if this circuit is not
        running the DLSw pacing protocol."
    ::= { dlswCircuitEntry 24 }

dlswCircuitFCHalveWndwSents  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of Halve Window operations this DLSw has sent on
        this circuit, in its role as a data receiver.

        The value zero should be returned if this circuit is not
        running the DLSw pacing protocol."
    ::= { dlswCircuitEntry 25 }

dlswCircuitFCResetOpSents  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of Reset Window operations this DLSw has sent on
        this circuit, in its role as a data receiver.

        The value zero should be returned if this circuit is not
        running the DLSw pacing protocol."
    ::= { dlswCircuitEntry 26 }

dlswCircuitFCHalveWndwRcvds  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of Halve Window operations this DLSw has received on
        this circuit, in its role as a data sender.

        The value zero should be returned if this circuit is not
        running the DLSw pacing protocol."
    ::= { dlswCircuitEntry 27 }

Chen, et. al.               Standards Track                    [Page 66]
RFC 2024                  DLSw MIB using SMIv2              October 1996

dlswCircuitFCResetOpRcvds  OBJECT-TYPE
    SYNTAX     Counter32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of Reset Window operations this DLSw has received on
        this circuit, in its role as a data sender.
        The value zero should be returned if this circuit is not
        running the DLSw pacing protocol."
    ::= { dlswCircuitEntry 28 }

-- ...................................................................
-- Information about the circuit disconnection
-- ...................................................................
dlswCircuitDiscReasonLocal  OBJECT-TYPE
    SYNTAX     INTEGER  {
        endStationDiscRcvd           (1),
        endStationDlcError           (2),
        protocolError                (3),
        operatorCommand              (4),
        haltDlRcvd                   (5),
        haltDlNoAckRcvd              (6),
        transportConnClosed          (7)
    }
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The reason why this circuit was last disconnected, as seen
        by this DLSw node.

        This object is present only if the agent keeps circuit
        table entries around for some period after circuit disconnect."
    ::= { dlswCircuitEntry 29 }

dlswCircuitDiscReasonRemote  OBJECT-TYPE
    SYNTAX     INTEGER  {
        unknown                      (1),
        endStationDiscRcvd           (2),
        endStationDlcError           (3),
        protocolError                (4),
        operatorCommand              (5)
    }
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The generic reason code why this circuit was last
        disconnected, as reported by the DLSw partner in a HALT_DL

Chen, et. al.               Standards Track                    [Page 67]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        or HALT_DL_NOACK.  If the partner does not send a reason
        code in these messages, or the DLSw implementation does
        not report receiving one, the value `unknown' is returned.

        This object is present only if the agent keeps circuit table
        entries around for some period after circuit disconnect."
    ::= { dlswCircuitEntry 30 }

dlswCircuitDiscReasonRemoteData  OBJECT-TYPE
    SYNTAX     OCTET STRING (SIZE (0 | 4))
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "Implementation-specific data reported by the DLSw partner in
        a HALT_DL or HALT_DL_NOACK, to help specify how and why this
        circuit was last disconnected.  If the partner does not send
        this data in these messages, or the DLSw implementation does
        not report receiving it, a string of zero length is returned.

        This object is present only if the agent keeps circuit table
        entries around for some period after circuit disconnect."
    ::= { dlswCircuitEntry 31 }

-- ...................................................................
-- Statistics related to this circuit.
-- All statistics are in LLC-2 Link Station Statistical Table.
-- All SDLC statistics are in SDLC MIB
-- ...................................................................

-- *******************************************************************
-- DLSW SDLC EXTENSION
-- *******************************************************************
dlswSdlcLsEntries  OBJECT-TYPE
    SYNTAX     Gauge32
    MAX-ACCESS read-only
    STATUS     current
    DESCRIPTION
       "The number of entries in dlswSdlcLsTable."
    ::= { dlswSdlc 1 }

-- ...................................................................
dlswSdlcLsTable  OBJECT-TYPE
    SYNTAX     SEQUENCE OF DlswSdlcLsEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION

Chen, et. al.               Standards Track                    [Page 68]
RFC 2024                  DLSw MIB using SMIv2              October 1996

       "The table defines the virtual MAC addresses for those
        SDLC link stations that participate in data link switching."
    ::= { dlswSdlc 2 }

dlswSdlcLsEntry  OBJECT-TYPE
    SYNTAX     DlswSdlcLsEntry
    MAX-ACCESS not-accessible
    STATUS     current
    DESCRIPTION
       "The index of this table is the ifIndex value for the
        SDLC port which owns this link station and the poll
        address of the particular SDLC link station."
    INDEX  { ifIndex, sdlcLSAddress }
    ::= { dlswSdlcLsTable 1 }

DlswSdlcLsEntry ::= SEQUENCE {
    dlswSdlcLsLocalMac           MacAddressNC,
    dlswSdlcLsLocalSap           OCTET STRING,
    dlswSdlcLsLocalIdBlock       DisplayString,
    dlswSdlcLsLocalIdNum         DisplayString,
    dlswSdlcLsRemoteMac          MacAddressNC,
    dlswSdlcLsRemoteSap          OCTET STRING,
    dlswSdlcLsRowStatus          RowStatus
    }

dlswSdlcLsLocalMac    OBJECT-TYPE
    SYNTAX     MacAddressNC
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The virtual MAC address used to represent the SDLC-attached
        link station to the rest of the DLSw network."
    ::= { dlswSdlcLsEntry 1 }

dlswSdlcLsLocalSap    OBJECT-TYPE
    SYNTAX     OCTET STRING (SIZE(1))
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The SAP used to represent this link station."
    ::= { dlswSdlcLsEntry 2 }

dlswSdlcLsLocalIdBlock OBJECT-TYPE
    SYNTAX     DisplayString  (SIZE (0 | 3))
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The block number is the first three digits of the node_id,

Chen, et. al.               Standards Track                    [Page 69]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        if available.  These 3 hexadecimal digits identify the
        product."
    DEFVAL { ''H }
    ::= { dlswSdlcLsEntry 3 }

dlswSdlcLsLocalIdNum OBJECT-TYPE
    SYNTAX     DisplayString  (SIZE (0 | 5))
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The ID number is the last 5 digits of the node_id, if
        available.  These 5 hexadecimal digits are
        administratively defined and combined with the 3 digit
        block number form the node_id.  This node_id is used to
        identify the local node and is included in SNA XIDs."
    DEFVAL { ''H }
    ::= { dlswSdlcLsEntry 4 }

dlswSdlcLsRemoteMac    OBJECT-TYPE
    SYNTAX     MacAddressNC
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The MAC address to which DLSw should attempt to connect
        this link station. If this information is not available,
        a length of zero for this object should be returned."
    DEFVAL { ''H }
    ::= { dlswSdlcLsEntry 5 }

dlswSdlcLsRemoteSap    OBJECT-TYPE
    SYNTAX     OCTET STRING (SIZE (0 | 1))
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "The SAP of the remote station to which this link
        station should be connected.  If this information
        is not available, a length of zero for this object
        should be returned."
    DEFVAL { ''H }
    ::= { dlswSdlcLsEntry 6 }

dlswSdlcLsRowStatus    OBJECT-TYPE
    SYNTAX     RowStatus
    MAX-ACCESS read-create
    STATUS     current
    DESCRIPTION
       "This object is used by the manager to create
        or delete the row entry in the dlswSdlcLsTable

Chen, et. al.               Standards Track                    [Page 70]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        following the RowStatus textual convention."
    ::= { dlswSdlcLsEntry 7 }

-- *******************************************************************
-- TRAP GENERATION CONTROL
-- *******************************************************************
dlswTrapControl OBJECT IDENTIFIER  ::= { dlswNode 10}

dlswTrapCntlTConnPartnerReject  OBJECT-TYPE
    SYNTAX     INTEGER  {
        enabled     (1),
        disabled    (2),
        partial     (3)
    }
    MAX-ACCESS read-write
    STATUS     current
    DESCRIPTION
       "Indicates whether the DLSw is permitted to emit partner
        reject related traps.  With the value of `enabled'
        the DLSw will emit all partner reject related traps.
        With the value of `disabled' the DLSw will not emit
        any partner reject related traps.  With the value
        of `partial' the DLSw will only emits partner reject
        traps for CapEx reject.  The changes take effect
        immediately."
    ::= { dlswTrapControl 1 }

dlswTrapCntlTConnProtViolation  OBJECT-TYPE
    SYNTAX     TruthValue
    MAX-ACCESS read-write
    STATUS     current
    DESCRIPTION
       "Indicates whether the DLSw is permitted to generate
        protocol-violation traps on the events such as
        window size violation.  The changes take effect
        immediately."
    ::= { dlswTrapControl 2 }

dlswTrapCntlTConn  OBJECT-TYPE
    SYNTAX     INTEGER {
        enabled     (1),
        disabled    (2),
        partial     (3)
    }
    MAX-ACCESS read-write
    STATUS     current
    DESCRIPTION

Chen, et. al.               Standards Track                    [Page 71]
RFC 2024                  DLSw MIB using SMIv2              October 1996

       "Indicates whether the DLSw is permitted to emit transport
        connection up and down traps.  With the value of `enabled'
        the DLSw will emit traps when connections enter `connected'
        and `disconnected' states.  With the value of `disabled'
        the DLSw will not emit traps when connections enter of
        `connected' and `disconnected' states.  With the value
        of `partial' the DLSw will only emits transport connection
        down traps when the connection is closed with busy.
        The changes take effect immediately."
    ::= { dlswTrapControl 3 }

dlswTrapCntlCircuit  OBJECT-TYPE
    SYNTAX     INTEGER {
        enabled     (1),
        disabled    (2),
        partial     (3)
    }
    MAX-ACCESS read-write
    STATUS     current
    DESCRIPTION
       "Indicates whether the DLSw is permitted to generate
        circuit up and down traps.  With the value of `enabled'
        the DLSw will emit traps when circuits enter `connected'
        and `disconnected' states.  With the value of `disabled'
        the DLSw will not emit traps when circuits enter of
        `connected' and `disconnected' states.  With the value
        of `partial' the DLSw will emit traps only for those
        circuits that are initiated by this DLSw, e.g.,
        originating the CUR_CS message.  The changes take effect
        immediately."
    ::= { dlswTrapControl 4 }

-- *******************************************************************
-- NOTIFICATIONS, i.e., TRAP DEFINITIONS
-- *******************************************************************
dlswTraps              OBJECT IDENTIFIER ::= { dlswMIB 0 }

-- -------------------------------------------------------------------
-- This section defines the well-known notifications sent by
-- DLSW agents.
-- Care must be taken to insure that no particular notification
-- is sent to a single receiving entity more often than once
-- every five seconds.
--
-- Traps includes:
-- (1) Partner rejected (capEx rejection, not in partner list, etc.)
-- (2) DLSw protocol violation (e.g., window size violation, etc.)
-- (3) Transport connection up/down

Chen, et. al.               Standards Track                    [Page 72]
RFC 2024                  DLSw MIB using SMIv2              October 1996

-- (4) Circuit up/down
-- -------------------------------------------------------------------
--

dlswTrapTConnPartnerReject NOTIFICATION-TYPE
    OBJECTS { dlswTConnOperTDomain, dlswTConnOperRemoteTAddr
    }
    STATUS     current
    DESCRIPTION
       "This trap is sent each time a transport connection
        is rejected by a partner DLSw during Capabilities
        Exchanges.  The emission of this trap is controlled
        by dlswTrapCntlTConnPartnerReject."
    ::= { dlswTraps 1 }

dlswTrapTConnProtViolation NOTIFICATION-TYPE
    OBJECTS { dlswTConnOperTDomain, dlswTConnOperRemoteTAddr
    }
    STATUS     current
    DESCRIPTION
       "This trap is sent each time a protocol violation is
        detected for a transport connection.  The emission of this
        trap is controlled by dlswTrapCntlTConnProtViolation."
    ::= { dlswTraps 2 }

dlswTrapTConnUp NOTIFICATION-TYPE
    OBJECTS { dlswTConnOperTDomain, dlswTConnOperRemoteTAddr
    }
    STATUS     current
    DESCRIPTION
       "This trap is sent each time a transport connection
        enters `connected' state.  The emission of this trap
        is controlled by dlswTrapCntlTConn."
    ::= { dlswTraps 3 }

dlswTrapTConnDown NOTIFICATION-TYPE
    OBJECTS { dlswTConnOperTDomain, dlswTConnOperRemoteTAddr
    }
    STATUS     current
    DESCRIPTION
       "This trap is sent each time a transport connection
        enters `disconnected' state.  The emission of this trap
        is controlled by dlswTrapCntlTConn."
    ::= { dlswTraps 4 }

dlswTrapCircuitUp NOTIFICATION-TYPE
    OBJECTS { dlswCircuitS1Mac, dlswCircuitS1Sap,
              dlswCircuitS2Mac, dlswCircuitS2Sap

Chen, et. al.               Standards Track                    [Page 73]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    }
    STATUS     current
    DESCRIPTION
       "This trap is sent each time a circuit enters `connected'
        state.  The emission of this trap is controlled by
        dlswTrapCntlCircuit."
    ::= { dlswTraps 5 }

dlswTrapCircuitDown NOTIFICATION-TYPE
    OBJECTS { dlswCircuitS1Mac, dlswCircuitS1Sap,
              dlswCircuitS2Mac, dlswCircuitS2Sap
    }
    STATUS     current
    DESCRIPTION
       "This trap is sent each time a circuit enters `disconnected'
        state.  The emission of this trap is controlled by
        dlswTrapCntlCircuit."
    ::= { dlswTraps 6 }

-- *******************************************************************
-- CONFORMANCE INFORMATION
-- *******************************************************************
dlswConformance        OBJECT IDENTIFIER ::= { dlsw 3 }

dlswCompliances        OBJECT IDENTIFIER ::= { dlswConformance 1 }
dlswGroups             OBJECT IDENTIFIER ::= { dlswConformance 2 }

-- -------------------------------------------------------------------
-- COMPLIANCE STATEMENTS
-- -------------------------------------------------------------------

-- ...................................................................
-- Core compliance for all DLSw entities
-- ...................................................................
dlswCoreCompliance MODULE-COMPLIANCE
    STATUS current
    DESCRIPTION
       "The core compliance statement for all DLSw nodes."
    MODULE
        MANDATORY-GROUPS  {
                dlswNodeGroup,
                dlswTConnStatGroup,
                dlswTConnConfigGroup,
                dlswTConnOperGroup,
                dlswInterfaceGroup,
                dlswCircuitGroup,
                dlswCircuitStatGroup,

Chen, et. al.               Standards Track                    [Page 74]
RFC 2024                  DLSw MIB using SMIv2              October 1996

                dlswNotificationGroup }

        GROUP dlswNodeNBGroup
            DESCRIPTION
               "The DLSw NetBIOS Node group is mandatory only for
                those DLSw entities that implement NetBIOS."

        GROUP dlswTConnNBGroup
            DESCRIPTION
               "The DLSw NetBIOS Transport Connection group is
                mandatory only for those DLSw entities that
                implement NetBIOS."

        OBJECT  dlswNodeStatus
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswNodeVirtualSegmentLFSize
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswNodeResourceNBExclusivity
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswNodeResourceMacExclusivity
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTrapCntlTConnPartnerReject
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTrapCntlTConnProtViolation
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTrapCntlTConn
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

Chen, et. al.               Standards Track                    [Page 75]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        OBJECT  dlswTrapCntlCircuit
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTConnConfigTDomain
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTConnConfigLocalTAddr
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTConnConfigRemoteTAddr
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTConnConfigEntryType
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTConnConfigGroupDefinition
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTConnConfigSetupType
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTConnConfigSapList
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTConnConfigAdvertiseMacNB
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTConnConfigInitCirRecvWndw
            MIN-ACCESS  read-only
            DESCRIPTION

Chen, et. al.               Standards Track                    [Page 76]
RFC 2024                  DLSw MIB using SMIv2              October 1996

                "Write access is not required."

        OBJECT  dlswTConnConfigRowStatus
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTConnOperState
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswIfRowStatus
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswIfVirtualSegment
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswIfSapList
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswCircuitState
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

    ::= { dlswCompliances 1 }

-- ...................................................................
-- Compliance for all DLSw entities that provide TCP transport.
-- ...................................................................
dlswTConnTcpCompliance MODULE-COMPLIANCE
    STATUS current
    DESCRIPTION
       "Compliance for DLSw nodes that use TCP as a
        transport connection protocol."
    MODULE
        MANDATORY-GROUPS  {
                dlswTConnTcpConfigGroup,
                dlswTConnTcpOperGroup }

        OBJECT  dlswTConnTcpConfigKeepAliveInt

Chen, et. al.               Standards Track                    [Page 77]
RFC 2024                  DLSw MIB using SMIv2              October 1996

            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTConnTcpConfigTcpConnections
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswTConnTcpConfigMaxSegmentSize
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

    ::= { dlswCompliances 2 }

-- ...................................................................
-- Compliance for all DLSw Entities that implement a directory
-- ...................................................................
dlswDirCompliance MODULE-COMPLIANCE
    STATUS current
    DESCRIPTION
       "Compliance for DLSw nodes that provide a directory
        function."
    MODULE
        MANDATORY-GROUPS  {
                dlswDirGroup }

        GROUP dlswDirNBGroup
            DESCRIPTION
               "The DLSw NetBIOS group is mandatory only for
                those DLSw entities that implement NetBIOS."

        OBJECT  dlswDirMacMac
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswDirMacMask
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswDirMacEntryType
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

Chen, et. al.               Standards Track                    [Page 78]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        OBJECT  dlswDirMacLocationType
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswDirMacLocation
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswDirMacStatus
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswDirMacLFSize
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required.&"traffic magnets" causing congestion to be shifted from one
   location of a network to another location, resulting in oscillation
   and network instability.

4.2.2 Dynamic Routing in the Internet

   The Internet evolved from the APARNET and adopted dynamic routing
   algorithms with distributed control to determine the paths that
   packets should take en-route to their destinations.  The routing
   algorithms are adaptations of shortest path algorithms where costs
   are based on link metrics.  The link metric can be based on static or
   dynamic quantities.  The link metric based on static quantities may
   be assigned administratively according to local criteria.  The link
   metric based on dynamic quantities may be a function of a network
   congestion measure such as delay or packet loss.

   It was apparent early that static link metric assignment was
   inadequate because it can easily lead to unfavorable scenarios in
   which some links become congested while others remain lightly loaded.
   One of the many reasons for the inadequacy of static link metrics is
   that link metric assignment was often done without considering the
   traffic matrix in the network.  Also, the routing protocols did not
   take traffic attributes and capacity constraints into account when
   making routing decisions.  This results in traffic concentration
   being localized in subsets of the network infrastructure and
   potentially causing congestion.  Even if link metrics are assigned in
   accordance with the traffic matrix, unbalanced loads in the network
   can still occur due to a number factors including:

      -  Resources may not be deployed in the most optimal locations
         from a routing perspective.

      -  Forecasting errors in traffic volume and/or traffic
         distribution.

      -  Dynamics in traffic matrix due to the temporal nature of
         traffic patterns, BGP policy change from peers, etc.

   The inadequacy of the legacy Internet interior gateway routing system
   is one of the factors motivating the interest in path oriented
   technology with explicit routing and constraint-based routing
   capability such as MPLS.

Awduche, et. al.             Informational                     [Page 29]
RFC 3272        Overview and Principles of Internet TE          May 2002

4.2.3 ToS Routing

   Type-of-Service (ToS) routing involves different routes going to the
   same destination with selection dependent upon the ToS field of an IP
   packet [RFC-2474].  The ToS classes may be classified as low delay
   and high throughput.  Each link is associated with multiple link
   costs and each link cost is used to compute routes for a particular
   ToS.  A separate shortest path tree is computed for each ToS.  The
   shortest path algorithm must be run for each ToS resulting in very
   expensive computation.  Classical ToS-based routing is now outdated
   as the IP header field has been replaced by a Diffserv field.
   Effective traffic engineering is difficult to perform in classical
   ToS-based routing because each class still relies exclusively on
   shortest path routing which results in localization of traffic
   concentration within the network.

4.2.4 Equal Cost Multi-Path

   Equal Cost Multi-Path (ECMP) is another technique that attempts to
   address the deficiency in the Shortest Path First (SPF) interior
   gateway routing systems [RFC-2328].  In the classical SPF algorithm,
   if two or more shortest paths exist to a given destination, the
   algorithm will choose one of them.  The algorithm is modified
   slightly in ECMP so that if two or more equal cost shortest paths
   exist between two nodes, the traffic between the nodes is distributed
   among the multiple equal-cost paths.  Traffic distribution across the
   equal-cost paths is usually performed in one of two ways: (1)
   packet-based in a round-robin fashion, or (2) flow-based using
   hashing on source and destination IP addresses and possibly other
   fields of the IP header.  The first approach can easily cause out-
   of-order packets while the second approach is dependent upon the
   number and distribution of flows.  Flow-based load sharing may be
   unpredictable in an enterprise network where the number of flows is
   relatively small and less heterogeneous (for example, hashing may not
   be uniform), but it is generally effective in core public networks
   where the number of flows is large and heterogeneous.

   In ECMP, link costs are static and bandwidth constraints are not
   considered, so ECMP attempts to distribute the traffic as equally as
   possible among the equal-cost paths independent of the congestion
   status of each path.  As a result, given two equal-cost paths, it is
   possible that one of the paths will be more congested than the other.
   Another drawback of ECMP is that load sharing cannot be achieved on
   multiple paths which have non-identical costs.

Awduche, et. al.             Informational                     [Page 30]
RFC 3272        Overview and Principles of Internet TE          May 2002

4.2.5 Nimrod

   Nimrod is a routing system developed to provide heterogeneous service
   specific routing in the Internet, while taking multiple constraints
   into account [RFC-1992].  Essentially, Nimrod is a link state routing
   protocol which supports path oriented packet forwarding.  It uses the
   concept of maps to represent network connectivity and services at
   multiple levels of abstraction.  Mechanisms are provided to allow
   restriction of the distribution of routing information.

   Even though Nimrod did not enjoy deployment in the public Internet, a
   number of key concepts incorporated into the Nimrod architecture,
   such as explicit routing which allows selection of paths at
   originating nodes, are beginning to find applications in some recent
   constraint-based routing initiatives.

4.3 Overlay Model

   In the overlay model, a virtual-circuit network, such as ATM, frame
   relay, or WDM, provides virtual-circuit connectivity between routers
   that are located at the edges of a virtual-circuit cloud.  In this
   mode, two routers that are connected through a virtual circuit see a
   direct adjacency between themselves independent of the physical route
   taken by the virtual circuit through the ATM, frame relay, or WDM
   network.  Thus, the overlay model essentially decouples the logical
   topology that routers see from the physical topology that the ATM,
   frame relay, or WDM network manages.  The overlay model based on ATM
   or frame relay enables a network administrator or an automaton to
   employ traffic engineering concepts to perform path optimization by
   re-configuring or rearranging the virtual circuits so that a virtual
   circuit on a congested or sub-optimal physical link can be re-routed
   to a less congested or more optimal one.  In the overlay model,
   traffic engineering is also employed to establish relationships
   between the traffic management parameters (e.g., PCR, SCR, and MBS
   for ATM) of the virtual-circuit technology and the actual traffic
   that traverses each circuit.  These relationships can be established
   based upon known or projected traffic profiles, and some other
   factors.

   The overlay model using IP over ATM requires the management of two
   separate networks with different technologies (IP and ATM) resulting
   in increased operational complexity and cost.  In the fully-meshed
   overlay model, each router would peer to every other router in the
   network, so that the total number of adjacencies is a quadratic
   function of the number of routers.  Some of the issues with the
   overlay model are discussed in [AWD2].

Awduche, et. al.             Informational                     [Page 31]
RFC 3272        Overview and Principles of Internet TE          May 2002

4.4 Constrained-Based Routing

   Constraint-based routing refers to a class of routing systems that
   compute routes through a network subject to the satisfaction of a set
   of constraints and requirements.  In the most general setting,
   constraint-based routing may also seek to optimize overall network
   performance while minimizing costs.

   The constraints and requirements may be imposed by the network itself
   or by administrative policies.  Constraints may include bandwidth,
   hop count, delay, and policy instruments such as resource class
   attributes.  Constraints may also include domain specific attributes
   of certain network technologies and contexts which impose
   restrictions on the solution space of the routing function.  Path
   oriented technologies such as MPLS have made constraint-based routing
   feasible and attractive in public IP networks.

   The concept of constraint-based routing within the context of MPLS
   traffic engineering requirements in IP networks was first defined in
   [RFC-2702].

   Unlike QoS routing (for example, see [RFC-2386] and [MA]) which
   generally addresses the issue of routing individual traffic flows to
   satisfy prescribed flow based QoS requirements subject to network
   resource availability, constraint-based routing is applicable to
   traffic aggregates as well as flows and may be subject to a wide
   variety of constraints which may include policy restrictions.

4.5 Overview of Other IETF Projects Related to Traffic Engineering

   This subsection reviews a number of IETF activities pertinent to
   Internet traffic engineering.  These activities are primarily
   intended to evolve the IP architecture to support new service
   definitions which allow preferential or differentiated treatment to
   be accorded to certain types of traffic.

4.5.1 Integrated Services

   The IETF Integrated Services working group developed the integrated
   services (Intserv) model.  This model requires resources, such as
   bandwidth and buffers, to be reserved a priori for a given traffic
   flow to ensure that the quality of service requested by the traffic
   flow is satisfied.  The integrated services model includes additional
   components beyond those used in the best-effort model such as packet
   classifiers, packet schedulers, and admission control.  A packet
   classifier is used to identify flows that are to receive a certain
   level of service.  A packet scheduler handles the scheduling of

Awduche, et. al.             Informational                     [Page 32]
RFC 3272        Overview and Principles of Internet TE          May 2002

   service to different packet flows to ensure that QoS commitments are
   met.  Admission control is used to determine whether a router has the
   necessary resources to accept a new flow.

   Two services have been defined under the Integrated Services model:
   guaranteed service [RFC-2212] and controlled-load service [RFC-2211].

   The guaranteed service can be used for applications requiring bounded
   packet delivery time.  For this type of application, data that is
   delivered to the application after a pre-defined amount of time has
   elapsed is usually considered worthless.  Therefore, guaranteed
   service was intended to provide a firm quantitative bound on the
   end-to-end packet delay for a flow.  This is accomplished by
   controlling the queuing delay on network elements along the data flow
   path.  The guaranteed service model does not, however, provide
   bounds on jitter (inter-arrival times between consecutive packets).

   The controlled-load service can be used for adaptive applications
   that can tolerate some delay but are sensitive to traffic overload
   conditions.  This type of application typically functions
   satisfactorily when the network is lightly loaded but its performance
   degrades significantly when the network is heavily loaded.
   Controlled-load service, therefore, has been designed to provide
   approximately the same service as best-effort service in a lightly
   loaded network regardless of actual network conditions.  Controlled-
   load service is described qualitatively in that no target values of
   delay or loss are specified.

   The main issue with the Integrated Services model has been
   scalability [RFC-2998], especially in large public IP networks which
   may potentially have millions of active micro-flows in transit
   concurrently.

   A notable feature of the Integrated Services model is that it
   requires explicit signaling of QoS requirements from end systems to
   routers [RFC-2753].  The Resource Reservation Protocol (RSVP)
   performs this signaling function and is a critical component of the
   Integrated Services model.  The RSVP protocol is described next.

4.5.2 RSVP

   RSVP is a soft state signaling protocol [RFC-2205].  It supports
   receiver initiated establishment of resource reservations for both
   multicast and unicast flows.  RSVP was originally developed as a
   signaling protocol within the integrated services framework for
   applications to communicate QoS requirements to the network and for
   the network to reserve relevant resources to satisfy the QoS
   requirements [RFC-2205].

quot;

        OBJECT  dlswDirMacRowStatus
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswDirNBName
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswDirNBNameType
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswDirNBEntryType
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswDirNBLocationType
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswDirNBLocation
            MIN-ACCESS  read-only
            DESCRIPTION

Chen, et. al.               Standards Track                    [Page 79]
RFC 2024                  DLSw MIB using SMIv2              October 1996

                "Write access is not required."

        OBJECT  dlswDirNBStatus
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswDirNBLFSize
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

        OBJECT  dlswDirNBRowStatus
            MIN-ACCESS  read-only
            DESCRIPTION
                "Write access is not required."

    ::= { dlswCompliances 3 }

-- ...................................................................
-- Compliance for all DLSw entities that provide an ordered
-- list of directory entries that match a resource
-- ...................................................................
dlswDirLocateCompliance MODULE-COMPLIANCE
    STATUS current
    DESCRIPTION
       "Compliance for DLSw nodes that provide an ordered
        list of directory entries for a given resource."
    MODULE
        MANDATORY-GROUPS  {
                dlswDirLocateGroup }

        GROUP dlswDirLocateNBGroup
            DESCRIPTION
               "The DLSw NetBIOS group is mandatory only for
                those DLSw entities that implement NetBIOS."

    ::= { dlswCompliances 4 }

-- ...................................................................
-- Compliance for all DLSw entities that support SDLC end stations
-- ...................................................................
dlswSdlcCompliance MODULE-COMPLIANCE
    STATUS current
    DESCRIPTION
       "Compliance for DLSw nodes that support SDLC."
    MODULE
        MANDATORY-GROUPS  {

Chen, et. al.               Standards Track                    [Page 80]
RFC 2024                  DLSw MIB using SMIv2              October 1996

                dlswSdlcGroup }

        OBJECT  dlswSdlcLsLocalMac
            MIN-ACCESS  read-only
            DESCRIPTION
               "Write access is not required."

        OBJECT  dlswSdlcLsLocalSap
            MIN-ACCESS  read-only
            DESCRIPTION
               "Write access is not required."

        OBJECT  dlswSdlcLsLocalIdBlock
            MIN-ACCESS  read-only
            DESCRIPTION
               "Write access is not required."

        OBJECT  dlswSdlcLsLocalIdNum
            MIN-ACCESS  read-only
            DESCRIPTION
               "Write access is not required."

        OBJECT  dlswSdlcLsRemoteMac
            MIN-ACCESS  read-only
            DESCRIPTION
               "Write access is not required."

        OBJECT  dlswSdlcLsRemoteSap
            MIN-ACCESS  read-only
            DESCRIPTION
               "Write access is not required."

        OBJECT  dlswSdlcLsRowStatus
            MIN-ACCESS  read-only
            DESCRIPTION
               "Write access is not required."

    ::= { dlswCompliances 5 }

-- -------------------------------------------------------------------
-- CONFORMANCE GROUPS
-- -------------------------------------------------------------------

-- ...................................................................
-- Node Conformance Group
-- ...................................................................
dlswNodeGroup  OBJECT-GROUP
    OBJECTS  {

Chen, et. al.               Standards Track                    [Page 81]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        dlswNodeVersion,
        dlswNodeVendorID,
        dlswNodeVersionString,
        dlswNodeStdPacingSupport,
        dlswNodeStatus,
        dlswNodeUpTime,
        dlswNodeVirtualSegmentLFSize,
        dlswNodeResourceMacExclusivity,
        dlswTrapCntlTConnPartnerReject,
        dlswTrapCntlTConnProtViolation,
        dlswTrapCntlTConn,
        dlswTrapCntlCircuit
        }
    STATUS current
    DESCRIPTION
       "Conformance group for DLSw node general information."
    ::= { dlswGroups 1 }

-- ...................................................................
dlswNodeNBGroup  OBJECT-GROUP
    OBJECTS  {
        dlswNodeResourceNBExclusivity
        }
    STATUS current
    DESCRIPTION
       "Conformance group for DLSw node general information
        specifically for nodes that support NetBIOS."
    ::= { dlswGroups 2 }

-- ...................................................................
dlswTConnStatGroup  OBJECT-GROUP
    OBJECTS  {
        dlswTConnStatActiveConnections,
        dlswTConnStatCloseIdles,
        dlswTConnStatCloseBusys
        }
    STATUS current
    DESCRIPTION
       "Conformance group for statistics for transport
        connections."
    ::= { dlswGroups 3 }

-- ...................................................................
dlswTConnConfigGroup  OBJECT-GROUP
    OBJECTS  {
        dlswTConnConfigTDomain,
        dlswTConnConfigLocalTAddr,
        dlswTConnConfigRemoteTAddr,

Chen, et. al.               Standards Track                    [Page 82]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        dlswTConnConfigLastModifyTime,
        dlswTConnConfigEntryType,
        dlswTConnConfigGroupDefinition,
        dlswTConnConfigSetupType,
        dlswTConnConfigSapList,
        dlswTConnConfigAdvertiseMacNB,
        dlswTConnConfigInitCirRecvWndw,
        dlswTConnConfigOpens,
        dlswTConnConfigRowStatus
        }
    STATUS current
    DESCRIPTION
       "Conformance group for the configuration of
        transport connections."
    ::= { dlswGroups 4 }

-- ...................................................................
dlswTConnOperGroup  OBJECT-GROUP
    OBJECTS  {
        dlswTConnOperLocalTAddr,
        dlswTConnOperEntryTime,
        dlswTConnOperConnectTime,
        dlswTConnOperState,
        dlswTConnOperConfigIndex,
        dlswTConnOperFlowCntlMode,
        dlswTConnOperPartnerVersion,
        dlswTConnOperPartnerVendorID,
        dlswTConnOperPartnerVersionStr,
        dlswTConnOperPartnerInitPacingWndw,
        dlswTConnOperPartnerSapList,
        dlswTConnOperPartnerMacExcl,
        dlswTConnOperPartnerMacInfo,
        dlswTConnOperDiscTime,
        dlswTConnOperDiscReason,
        dlswTConnOperDiscActiveCir,
        dlswTConnOperInDataPkts,
        dlswTConnOperOutDataPkts,
        dlswTConnOperInDataOctets,
        dlswTConnOperOutDataOctets,
        dlswTConnOperInCntlPkts,
        dlswTConnOperOutCntlPkts,
        dlswTConnOperCURexSents,
        dlswTConnOperICRexRcvds,
        dlswTConnOperCURexRcvds,
        dlswTConnOperICRexSents,
        dlswTConnOperCirCreates,
        dlswTConnOperCircuits
        }

Chen, et. al.               Standards Track                    [Page 83]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    STATUS current
    DESCRIPTION
       "Conformance group for operation information for
        transport connections."
    ::= { dlswGroups 5 }
-- ...................................................................
dlswTConnNBGroup  OBJECT-GROUP
    OBJECTS  {
        dlswTConnOperPartnerNBExcl,
        dlswTConnOperPartnerNBInfo,
        dlswTConnOperNQexSents,
        dlswTConnOperNRexRcvds,
        dlswTConnOperNQexRcvds,
        dlswTConnOperNRexSents
        }
    STATUS current
    DESCRIPTION
       "Conformance group for operation information for
        transport connections, specifically for nodes
        that support NetBIOS."
    ::= { dlswGroups 6 }

-- ...................................................................
dlswTConnTcpConfigGroup  OBJECT-GROUP
    OBJECTS  {
        dlswTConnTcpConfigKeepAliveInt,
        dlswTConnTcpConfigTcpConnections,
        dlswTConnTcpConfigMaxSegmentSize
        }
    STATUS current
    DESCRIPTION
       "Conformance group for configuration information for
        transport connections using TCP."
    ::= { dlswGroups 7 }

-- ...................................................................
dlswTConnTcpOperGroup  OBJECT-GROUP
    OBJECTS  {
        dlswTConnTcpOperKeepAliveInt,
        dlswTConnTcpOperPrefTcpConnections,
        dlswTConnTcpOperTcpConnections
        }
    STATUS current
    DESCRIPTION
       "Conformance group for operation information for
        transport connections using TCP."
    ::= { dlswGroups 8 }

Chen, et. al.               Standards Track                    [Page 84]
RFC 2024                  DLSw MIB using SMIv2              October 1996

-- ...................................................................
dlswInterfaceGroup  OBJECT-GROUP
    OBJECTS  {
        dlswIfRowStatus,
        dlswIfVirtualSegment,
        dlswIfSapList
        }
    STATUS current
    DESCRIPTION
       "Conformance group for DLSw interfaces."
    ::= { dlswGroups 9 }

-- ...................................................................
dlswDirGroup  OBJECT-GROUP
    OBJECTS  {
        dlswDirMacEntries,
        dlswDirMacCacheHits,
        dlswDirMacCacheMisses,
        dlswDirMacCacheNextIndex,
        dlswDirMacMac,
        dlswDirMacMask,
        dlswDirMacEntryType,
        dlswDirMacLocationType,
        dlswDirMacLocation,
        dlswDirMacStatus,
        dlswDirMacLFSize,
        dlswDirMacRowStatus
        }
    STATUS current
    DESCRIPTION
       "Conformance group for DLSw directory using MAC
        addresses."
    ::= { dlswGroups 10 }

-- ...................................................................
dlswDirNBGroup  OBJECT-GROUP
    OBJECTS  {
        dlswDirNBEntries,
        dlswDirNBCacheHits,
        dlswDirNBCacheMisses,
        dlswDirNBCacheNextIndex,
        dlswDirNBName,
        dlswDirNBNameType,
        dlswDirNBEntryType,
        dlswDirNBLocationType,
        dlswDirNBLocation,
        dlswDirNBStatus,
        dlswDirNBLFSize,

Chen, et. al.               Standards Track                    [Page 85]
RFC 2024                  DLSw MIB using SMIv2              October 1996Awduche, et. al.             Informational                     [Page 33]
RFC 3272        Overview and Principles of Internet TE          May 2002

   Under RSVP, the sender or source node sends a PATH message to the
   receiver with the same source and destination addresses as the
   traffic which the sender will generate.  The PATH message contains:
   (1) a sender Tspec specifying the characteristics of the traffic, (2)
   a sender Template specifying the format of the traffic, and (3) an
   optional Adspec which is used to support the concept of one pass with
   advertising" (OPWA) [RFC-2205].  Every intermediate router along the
   path forwards the PATH Message to the next hop determined by the
   routing protocol.  Upon receiving a PATH Message, the receiver
   responds with a RESV message which includes a flow descriptor used to
   request resource reservations.  The RESV message travels to the
   sender or source node in the opposite direction along the path that
   the PATH message traversed.  Every intermediate router along the path
   can reject or accept the reservation request of the RESV message.  If
   the request is rejected, the rejecting router will send an error
   message to the receiver and the signaling process will terminate.  If
   the request is accepted, link bandwidth and buffer space are
   allocated for the flow and the related flow state information is
   installed in the router.

   One of the issues with the original RSVP specification was
   Scalability.  This is because reservations were required for micro-
   flows, so that the amount of state maintained by network elements
   tends to increase linearly with the number of micro-flows.  These
   issues are described in [RFC-2961].

   Recently, RSVP has been modified and extended in several ways to
   mitigate the scaling problems.  As a result, it is becoming a
   versatile signaling protocol for the Internet.  For example, RSVP has
   been extended to reserve resources for aggregation of flows, to set
   up MPLS explicit label switched paths, and to perform other signaling
   functions within the Internet.  There are also a number of proposals
   to reduce the amount of refresh messages required to maintain
   established RSVP sessions [RFC-2961].

   A number of IETF working groups have been engaged in activities
   related to the RSVP protocol.  These include the original RSVP
   working group, the MPLS working group, the Resource Allocation
   Protocol working group, and the Policy Framework working group.

4.5.3 Differentiated Services

   The goal of the Differentiated Services (Diffserv) effort within the
   IETF is to devise scalable mechanisms for categorization of traffic
   into behavior aggregates, which ultimately allows each behavior
   aggregate to be treated differently, especially when there is a
   shortage of resources such as link bandwidth and buffer space [RFC-
   2475].  One of the primary motivations for the Diffserv effort was to

Awduche, et. al.             Informational                     [Page 34]
RFC 3272        Overview and Principles of Internet TE          May 2002

   devise alternative mechanisms for service differentiation in the
   Internet that mitigate the scalability issues encountered with the
   Intserv model.

   The IETF Diffserv working group has defined a Differentiated Services
   field in the IP header (DS field).  The DS field consists of six bits
   of the part of the IP header formerly known as TOS octet.  The DS
   field is used to indicate the forwarding treatment that a packet
   should receive at a node [RFC-2474].  The Diffserv working group has
   also standardized a number of Per-Hop Behavior (PHB) groups.  Using
   the PHBs, several classes of services can be defined using different
   classification, policing, shaping, and scheduling rules.

   For an end-user of network services to receive Differentiated
   Services from its Internet Service Provider (ISP), it may be
   necessary for the user to have a Service Level Agreement (SLA) with
   the ISP.  An SLA may explicitly or implicitly specify a Traffic
   Conditioning Agreement (TCA) which defines classifier rules as well
   as metering, marking, discarding, and shaping rules.

   Packets are classified, and possibly policed and shaped at the
   ingress to a Diffserv network.  When a packet traverses the boundary
   between different Diffserv domains, the DS field of the packet may be
   re-marked according to existing agreements between the domains.

   Differentiated Services allows only a finite number of service
   classes to be indicated by the DS field.  The main advantage of the
   Diffserv approach relative to the Intserv model is scalability.
   Resources are allocated on a per-class basis and the amount of state
   information is proportional to the number of classes rather than to
   the number of application flows.

   It should be obvious from the previous discussion that the Diffserv
   model essentially deals with traffic management issues on a per hop
   basis.  The Diffserv control model consists of a collection of
   micro-TE control mechanisms.  Other traffic engineering capabilities,
   such as capacity management (including routing control), are also
   required in order to deliver acceptable service quality in Diffserv
   networks.  The concept of Per Domain Behaviors has been introduced to
   better capture the notion of differentiated services across a
   complete domain [RFC-3086].

4.5.4 MPLS

   MPLS is an advanced forwarding scheme which also includes extensions
   to conventional IP control plane protocols.  MPLS extends the
   Internet routing model and enhances packet forwarding and path
   control [RFC-3031].

Awduche, et. al.             Informational                     [Page 35]
RFC 3272        Overview and Principles of Internet TE          May 2002

   At the ingress to an MPLS domain, label switching routers (LSRs)
   classify IP packets into forwarding equivalence classes (FECs) based
   on a variety of factors, including, e.g., a combination of the
   information carried in the IP header of the packets and the local
   routing information maintained by the LSRs.  An MPLS label is then
   prepended to each packet according to their forwarding equivalence
   classes.  In a non-ATM/FR environment, the label is 32 bits long and
   contains a 20-bit label field, a 3-bit experimental field (formerly
   known as Class-of-Service or CoS field), a 1-bit label stack
   indicator and an 8-bit TTL field.  In an ATM (FR) environment, the
   label consists of information encoded in the VCI/VPI (DLCI) field.
   An MPLS capable router (an LSR) examines the label and possibly the
   experimental field and uses this information to make packet
   forwarding decisions.

   An LSR makes forwarding decisions by using the label prepended to
   packets as the index into a local next hop label forwarding entry
   (NHLFE).  The packet is then processed as specified in the NHLFE.
   The incoming label may be replaced by an outgoing label, and the
   packet may be switched to the next LSR.  This label-switching process
   is very similar to the label (VCI/VPI) swapping process in ATM
   networks.  Before a packet leaves an MPLS domain, its MPLS label may
   be removed.  A Label Switched Path (LSP) is the path between an
   ingress LSRs and an egress LSRs through which a labeled packet
   traverses.  The path of an explicit LSP is defined at the originating
   (ingress) node of the LSP.  MPLS can use a signaling protocol such as
   RSVP or LDP to set up LSPs.

   MPLS is a very powerful technology for Internet traffic engineering
   because it supports explicit LSPs which allow constraint-based
   routing to be implemented efficiently in IP networks [AWD2].  The
   requirements for traffic engineering over MPLS are described in
   [RFC-2702].  Extensions to RSVP to support instantiation of explicit
   LSP are discussed in [RFC-3209].  Extensions to LDP, known as CR-LDP,
   to support explicit LSPs are presented in [JAM].

4.5.5 IP Performance Metrics

   The IETF IP Performance Metrics (IPPM) working group has been
   developing a set of standard metrics that can be used to monitor the
   quality, performance, and reliability of Internet services.  These
   metrics can be applied by network operators, end-users, and
   independent testing groups to provide users and service providers
   with a common understanding of the performance and reliability of the
   Internet component 'clouds' they use/provide [RFC-2330].  The
   criteria for performance metrics developed by the IPPM WG are
   described in [RFC-2330].  Examples of performance metrics include
   one-way packet

Awduche, et. al.             Informational                     [Page 36]
RFC 3272        Overview and Principles of Internet TE          May 2002

   loss [RFC-2680], one-way delay [RFC-2679], and connectivity measures
   between two nodes [RFC-2678].  Other metrics include second-order
   measures of packet loss and delay.

   Some of the performance metrics specified by the IPPM WG are useful
   for specifying Service Level Agreements (SLAs).  SLAs are sets of
   service level objectives negotiated between users and service
   providers, wherein each objective is a combination of one or more
   performance metrics, possibly subject to certain constraints.

4.5.6 Flow Measurement

   The IETF Real Time Flow Measurement (RTFM) working group has produced
   an architecture document defining a method to specify traffic flows
   as well as a number of components for flow measurement (meters, meter
   readers, manager) [RFC-2722].  A flow measurement system enables
   network traffic flows to be measured and analyzed at the flow level
   for a variety of purposes.  As noted in RFC 2722, a flow measurement
   system can be very useful in the following contexts: (1)
   understanding the behavior of existing networks, (2) planning for
   network development and expansion, (3) quantification of network
   performance, (4) verifying the quality of network service, and (5)
   attribution of network usage to users.

   A flow measurement system consists of meters, meter readers, and
   managers.  A meter observes packets passing through a measurement
   point, classifies them into certain groups, accumulates certain usage
   data (such as the number of packets and bytes for each group), and
   stores the usage data in a flow table.  A group may represent a user
   application, a host, a network, a group of networks, etc.  A meter
   reader gathers usage data from various meters so it can be made
   available for analysis.  A manager is responsible for configuring and
   controlling meters and meter readers.  The instructions received by a
   meter from a manager include flow specification, meter control
   parameters, and sampling techniques.  The instructions received by a
   meter reader from a manager include the address of the meter whose
   date is to be collected, the frequency of data collection, and the
   types of flows to be collected.

4.5.7 Endpoint Congestion Management

   [RFC-3124] is intended to provide a set of congestion control
   mechanisms that transport protocols can use.  It is also intended to
   develop mechanisms for unifying congestion control across a subset of
   an endpoint's active unicast connections (called a congestion group).
   A congestion manager continuously monitors the state of the path for

Awduche, et. al.             Informational                     [Page 37]
RFC 3272        Overview and Principles of Internet TE          May 2002

   each congestion group under its control.  The manager uses that
   information to instruct a scheduler on how to partition bandwidth
   among the connections of that congestion group.

4.6 Overview of ITU Activities Related to Traffic Engineering

   This section provides an overview of prior work within the ITU-T
   pertaining to traffic engineering in traditional telecommunications
   networks.

   ITU-T Recommendations E.600 [ITU-E600], E.701 [ITU-E701], and E.801
   [ITU-E801] address traffic engineering issues in traditional
   telecommunications networks.  Recommendation E.600 provides a
   vocabulary for describing traffic engineering concepts, while E.701
   defines reference connections, Grade of Service (GOS), and traffic
   parameters for ISDN.  Recommendation E.701 uses the concept of a
   reference connection to identify representative cases of different
   types of connections without describing the specifics of their actual
   realizations by different physical means.  As defined in
   Recommendation E.600, "a connection is an association of resources
   providing means for communication between two or more devices in, or
   attached to, a telecommunication network."  Also, E.600 defines "a
   resource as any set of physically or conceptually identifiable
   entities within a telecommunication network, the use of which can be
   unambiguously determined" [ITU-E600].  There can be different types
   of connections as the number and types of resources in a connection
   may vary.

   Typically, different network segments are involved in the path of a
   connection.  For example, a connection may be local, national, or
   international.  The purposes of reference connections are to clarify
   and specify traffic performance issues at various interfaces between
   different network domains.  Each domain may consist of one or more
   service provider networks.

   Reference connections provide a basis to define grade of service
   (GoS) parameters related to traffic engineering within the ITU-T
   framework.  As defined in E.600, "GoS refers to a number of traffic
   engineering variables which are used to provide a measure of the
   adequacy of a group of resources under specified conditions."  These
   GoS variables may be probability of loss, dial tone, delay, etc.
   They are essential for network internal design and operation as well
   as for component performance specification.

   GoS is different from quality of service (QoS) in the ITU framework.
   QoS is the performance perceivable by a telecommunication service
   user and expresses the user's degree of satisfaction of the service.
   QoS parameters focus on performance aspects observable at the service

Awduche, et. al.             Informational                     [Page 38]
RFC 3272        Overview and Principles of Internet TE          May 2002

   access points and network interfaces, rather than their causes within
   the network.  GoS, on the other hand, is a set of network oriented
   measures which characterize the adequacy of a group of resources
   under specified conditions.  For a network to be effective in serving
   its users, the values of both GoS and QoS parameters must be related,
   with GoS parameters typically making a major contribution to the QoS.

   Recommendation E.600 stipulates that a set of GoS parameters must be
   selected and defined on an end-to-end basis for each major service
   category provided by a network to assist the network provider with
   improving efficiency and effectiveness of the network.  Based on a
   selected set of reference connections, suitable target values are
   assigned to the selected GoS parameters under normal and high load
   conditions.  These end-to-end GoS target values are then apportioned
   to individual resource components of the reference connections for
   dimensioning purposes.

4.7 Content Distribution

   The Internet is dominated by client-server interactions, especially
   Web traffic (in the future, more sophisticated media servers may
   become dominant).  The location and performance of major information
   servers has a significant impact on the traffic patterns within the
   Internet as well as on the perception of service quality by end
   users.

   A number of dynamic load balancing techniques have been devised to
   improve the performance of replicated information servers.  These
   techniques can cause spatial traffic characteristics to become more
   dynamic in the Internet because information servers can be
   dynamically picked based upon the location of the clients, the
   location of the servers, the relative utilization of the servers, the
   relative performance of different networks, and the relative
   performance of different parts of a network.  This process of
   assignment of distributed servers to clients is called Traffic
   Directing.  It functions at the application layer.

   Traffic Directing schemes that allocate servers in multiple
   geographically dispersed locations to clients may require empirical
   network performance statistics to make more effective decisions.  In
   the future, network measurement systems may need to provide this type
   of information.  The exact parameters needed are not yet defined.

   When congestion exists in the network, Traffic Directing and Traffic
   Engineering systems should act in a coordinated manner.  This topic
   is for further study.

Awduche, et. al.             Informational                     [Page 39]
RFC 3272        Overview and Principles of Internet TE          May 2002

   The issues related to location and replication of information
   servers, particularly web servers, are important for Internet traffic
   engineering because these servers contribute a substantial proportion
   of Internet traffic.

5.0 Taxonomy of Traffic Engineering Systems

   This section presents a short taxonomy of traffic engineering
   systems.  A taxonomy of traffic engineering systems can be
   constructed based on traffic engineering styles and views as listed
   below:

      - Time-dependent vs State-dependent vs Event-dependent
      - Offline vs Online
      - Centralized vs Distributed
      - Local vs Global Information
      - Prescriptive vs Descriptive
      - Open Loop vs Closed Loop
      - Tactical vs Strategic

   These classification systems are described in greater detail in the
   following subsections of this document.

5.1 Time-Dependent Versus State-Dependent Versus Event Dependent

   Traffic engineering methodologies can be classified as time-
   dependent, or state-dependent, or event-dependent.  All TE schemes
   are considered to be dynamic in this document.  Static TE implies
   that no traffic engineering methodology or algorithm is being
   applied.

   In the time-dependent TE, historical information based on periodic
   variations in traffic, (such as time of day), is used to pre-program
   routing plans and other TE control mechanisms.  Additionally,
   customer subscription or traffic projection may be used.  Pre-
   programmed routing plans typically change on a relatively long time
   scale (e.g., diurnal).  Time-dependent algorithms do not attempt to
   adapt to random variations in traffic or changing network conditions.
   An example of a time-dependent algorithm is a global centralized
   optimizer where the input to the system is a traffic matrix and
   multi-class QoS requirements as described [MR99].

   State-dependent TE adapts the routing plans for packets based on the
   current state of the network.  The current state of the network
   provides additional information on variations in actual traffic
   (i.e., perturbations from regular variations) that could not be
   predicted using historical information.  Constraint-based routing is

Awduche, et. al.             Informational                     [Page 40]
RFC 3272        Overview and Principles of Internet TE          May 2002

   an example of state-dependent TE operating in a relatively long time
   scale.  An example operating in a relatively short time scale is a
   load-balancing algorithm described in [MATE].

   The state of the network can be based on parameters such as
   utilization, packet delay, packet loss, etc.  These parameters can be
   obtained in several ways.  For example, each router may flood these
   parameters periodically or by means of some kind of trigger to other
   routers.  Another approach is for a particular router performing
   adaptive TE to send probe packets along a path to gather the state of
   that path.  Still another approach is for a management system to
   gather relevant information from network elements.

   Expeditious and accurate gathering and distribution of state
   information is critical for adaptive TE due to the dynamic nature of
   network conditions.  State-dependent algorithms may be applied to
   increase network efficiency and resilience.  Time-dependent
   algorithms are more suitable for predictable traffic variations.  On
   the other hand, state-dependent algorithms are more suitable for
   adapting to the prevailing network state.

   Event-dependent TE methods can also be used for TE path selection.
   Event-dependent TE methods are distinct from time-dependent and
   state-dependent TE methods in the manner in which paths are selected.
   These algorithms are adaptive and distributed in nature and typically
   use learning models to find good paths for TE in a network.  While
   state-dependent TE models typically use available-link-bandwidth
   (ALB) flooding for TE path selection, event-dependent TE methods do
   not require ALB flooding.  Rather, event-dependent TE methods
   typically search out capacity by learning models, as in the success-
   to-the-top (STT) method.  ALB flooding can be resource intensive,
   since it requires link bandwidth to carry LSAs, processor capacity to
   process LSAs, and the overhead can limit area/autonomous system (AS)
   size.  Modeling results suggest that event-dependent TE methods could
   lead to a reduction in ALB flooding overhead without loss of network
   throughput performance [ASH3].

5.2 Offline Versus Online

   Traffic engineering requires the computation of routing plans.  The
   computation may be performed offline or online.  The computation can
   be done offline for scenarios where routing plans need not be
   executed in real-time.  For example, routing plans computed from
   forecast information may be computed offline.  Typically, offline
   computation is also used to perform extensive searches on multi-
   dimensional solution spaces.

Awduche, et. al.             Informational                     [Page 41]
RFC 3272        Overview and Principles of Internet TE          May 2002

   Online computation is required when the routing plans must adapt to
   changing network conditions as in state-dependent algorithms.  Unlike
   offline computation (which can be computationally demanding), online
   computation is geared toward relative simple and fast calculations to
   select routes, fine-tune the allocations of resources, and perform
   load balancing.

5.3 Centralized Versus Distributed

   Centralized control has a central authority which determines routing
   plans and perhaps other TE control parameters on behalf of each
   router.  The central authority collects the network-state information
   from all routers periodically and returns the routing information to
   the routers.  The routing update cycle is a critical parameter
   directly impacting the performance of the network being controlled.
   Centralized control may need high processing power and high bandwidth
   control channels.

   Distributed control determines route selection by each router
   autonomously based on the routers view of the state of the network.
   The network state information may be obtained by the router using a
   probing method or distributed by other routers on a periodic basis
   using link state advertisements.  Network state information may also
   be disseminated under exceptional conditions.

5.4 Local Versus Global

   Traffic engineering algorithms may require local or global network-
   state information.

   Local information pertains to the state of a portion of the domain.
   Examples include the bandwidth and packet loss rate of a particular
   path.  Local state information may be sufficient for certain
   instances of distributed-controlled TEs.

   Global information pertains to the state of the entire domain
   undergoing traffic engineering.  Examples include a global traffic
   matrix and loading information on each link throughout the domain of
   interest.  Global state information is typically required with
   centralized control.  Distributed TE systems may also need global
   information in some cases.

5.5 Prescriptive Versus Descriptive

   TE systems may also be classified as prescriptive or descriptive.

Awduche, et. al.             Informational                     [Page 42]
RFC 3272        Overview and Principles of Internet TE          May 2002

   Prescriptive traffic engineering evaluates alternatives and
   recommends a course of action.  Prescriptive traffic engineering can
   be further categorized as either corrective or perfective.
   Corrective TE prescribes a course of action to address an existing or
   predicted anomaly.  Perfective TE prescribes a course of action to
   evolve and improve network performance even when no anomalies are
   evident.

   Descriptive traffic engineering, on the other hand, characterizes the
   state of the network and assesses the impact of various policies
   without recommending any particular course of action.

5.6 Open-Loop Versus Closed-Loop

   Open-loop traffic engineering control is where control action does
   not use feedback information from the current network state.  The
   control action may use its own local information for accounting
   purposes, however.

   Closed-loop traffic engineering control is where control action
   utilizes feedback information from the network state.  The feedback
   information may be in the form of historical information or current
   measurement.

5.7 Tactical vs Strategic

   Tactical traffic engineering aims to address specific performance
   problems (such as hot-spots) that occur in the network from a
   tactical perspective, without consideration of overall strategic
   imperatives.  Without proper planning and insights, tactical TE tends
   to be ad hoc in nature.

   Strategic traffic engineering approaches the TE problem from a more
   organized and systematic perspective, taking into consideration the
   immediate and longer term consequences of specific policies and
   actions.

6.0 Recommendations for Internet Traffic Engineering

   This section describes high level recommendations for traffic
   engineering in the Internet.  These recommendations are presented in
   general terms.

   The recommendations describe the capabilities needed to solve a
   traffic engineering problem or to achieve a traffic engineering
   objective.  Broadly speaking, these recommendations can be
   categorized as either functional and non-functional recommendations.

Awduche, et. al.             Informational                     [Page 43]
RFC 3272        Overview and Principles of Internet TE          May 2002

   Functional recommendations for Internet traffic engineering describe
   the functions that a traffic engineering system should perform.
   These functions are needed to realize traffic engineering objectives
   by addressing traffic engineering problems.

   Non-functional recommendations for Internet traffic engineering
   relate to the quality attributes or state characteristics of a
   traffic engineering system.  These recommendations may contain
   conflicting assertions and may sometimes be difficult to quantify
   precisely.

6.1 Generic Non-functional Recommendations

   The generic non-functional recommendations for Internet traffic
   engineering include: usability, automation, scalability, stability,
   visibility, simplicity, efficiency, reliability, correctness,
   maintainability, extensibility, interoperability, and security.  In a
   given context, some of these recommendations may be critical while
   others may be optional.  Therefore, prioritization may be required
   during the development phase of a traffic engineering system (or
   components thereof) to tailor it to a specific operational context.

   In the following paragraphs, some of the aspects of the non-
   functional recommendations for Internet traffic engineering are
   summarized.

   Usability: Usability is a human factor aspect of traffic engineering
   systems.  Usability refers to the ease with which a traffic
   engineering system can be deployed and operated.  In general, it is
   desirable to have a TE system that can be readily deployed in an
   existing network.  It is also desirable to have a TE system that is
   easy to operate and maintain.

   Automation: Whenever feasible, a traffic engineering system should
   automate as many traffic engineering functions as possible to
   minimize the amount of human effort needed to control and analyze
   operational networks.  Automation is particularly imperative in large
   scale public networks because of the high cost of the human aspects
   of network operations and the high risk of network problems caused by
   human errors.  Automation may entail the incorporation of automatic
   feedback and intelligence into some components of the traffic
   engineering system.

   Scalability: Contemporary public networks are growing very fast with
   respect to network size and traffic volume.  Therefore, a TE system
   should be scalable to remain applicable as the network evolves.  In
   particular, a TE system should remain functional as the network
   expands with regard to the number of routers and links, and with

Awduche, et. al.             Informational                     [Page 44]
RFC 3272        Overview and Principles of Internet TE          May 2002

   respect to the traffic volume.  A TE system should have a scalable
   architecture, should not adversely impair other functions and
   processes in a network element, and should not consume too much
   network resources when collecting and distributing state information
   or when exerting control.

   Stability: Stability is a very important consideration in traffic
   engineering systems that respond to changes in the state of the
   network.  State-dependent traffic engineering methodologies typically
   mandate a tradeoff between responsiveness and stability.  It is
   strongly recommended that when tradeoffs are warranted between
   responsiveness and stability, that the tradeoff should be made in
   favor of stability (especially in public IP backbone networks).

   Flexibility: A TE system should be flexible to allow for changes in
   optimization policy.  In particular, a TE system should provide
   sufficient configuration options so that a network administrator can
   tailor the TE system to a particular environment.  It may also be
   desirable to have both online and offline TE subsystems which can be
   independently enabled and disabled.  TE systems that are used in
   multi-class networks should also have options to support class based
   performance evaluation and optimization.

   Visibility: As part of the TE system, mechanisms should exist to
   collect statistics from the network and to analyze these statistics
   to determine how well the network is functioning.  Derived statistics
   such as traffic matrices, link utilization, latency, packet loss, and
   other performance measures of interest which are determined from
   network measurements can be used as indicators of prevailing network
   conditions.  Other examples of status information which should be
   observed include existing functional routing information
   (additionally, in the context of MPLS existing LSP routes), etc.

   Simplicity: Generally, a TE system should be as simple as possible.
   More importantly, the TE system should be relatively easy to use
   (i.e., clean, convenient, and intuitive user interfaces).  Simplicity
   in user interface does not necessarily imply that the TE system will
   use naive algorithms.  When complex algorithms and internal
   structures are used, such complexities should be hidden as much as
   possible from the network administrator through the user interface.

   Interoperability: Whenever feasible, traffic engineering systems and
   their components should be developed with open standards based
   interfaces to allow interoperation with other systems and components.

   Security: Security is a critical consideration in traffic engineering
   systems.  Such traffic engineering systems typically exert control
   over certain functional aspects of the network to achieve the desired

Awduche, et. al.             Informational                     [Page 45]
RFC 3272        Overview and Principles of Internet TE          May 2002

        dlswDirNBRowStatus
        }
    STATUS current
    DESCRIPTION
       "Conformance group for DLSw directory using NetBIOS
        names."
    ::= { dlswGroups 11 }

-- ...................................................................
dlswDirLocateGroup  OBJECT-GROUP
    OBJECTS  {
        dlswDirLocateMacLocation
        }
    STATUS current
    DESCRIPTION
       "Conformance group for a node that can return directory
        entry order for a given MAC address."
    ::= { dlswGroups 12 }

-- ...................................................................
dlswDirLocateNBGroup  OBJECT-GROUP
    OBJECTS  {
        dlswDirLocateNBLocation
        }
    STATUS current
    DESCRIPTION
       "Conformance group for a node that can return directory
        entry order for a given NetBIOS name."
    ::= { dlswGroups 13 }

-- ...................................................................
dlswCircuitStatGroup  OBJECT-GROUP
    OBJECTS  {
        dlswCircuitStatActives,
        dlswCircuitStatCreates
        }
    STATUS current
    DESCRIPTION
       "Conformance group for statistics about circuits."
    ::= { dlswGroups 14 }

-- ...................................................................
dlswCircuitGroup  OBJECT-GROUP
    OBJECTS  {
        dlswCircuitS1IfIndex,
        dlswCircuitS1DlcType,
        dlswCircuitS1RouteInfo,
        dlswCircuitS1CircuitId,

Chen, et. al.               Standards Track                    [Page 86]
RFC 2024                  DLSw MIB using SMIv2              October 1996

        dlswCircuitS1Dlc,
        dlswCircuitS2Location,
        dlswCircuitS2TDomain,
        dlswCircuitS2TAddress,
        dlswCircuitS2CircuitId,
        dlswCircuitOrigin,
        dlswCircuitEntryTime,
        dlswCircuitStateTime,
        dlswCircuitState,
        dlswCircuitPriority,
        dlswCircuitFCSendGrantedUnits,
        dlswCircuitFCSendCurrentWndw,
        dlswCircuitFCRecvGrantedUnits,
        dlswCircuitFCRecvCurrentWndw,
        dlswCircuitFCLargestRecvGranted,
        dlswCircuitFCLargestSendGranted,
        dlswCircuitFCHalveWndwSents,
        dlswCircuitFCResetOpSents,
        dlswCircuitFCHalveWndwRcvds,
        dlswCircuitFCResetOpRcvds,
        dlswCircuitDiscReasonLocal,
        dlswCircuitDiscReasonRemote,
        dlswCircuitDiscReasonRemoteData
        }
    STATUS current
    DESCRIPTION
       "Conformance group for DLSw circuits."
    ::= { dlswGroups 15 }

-- ...................................................................
dlswSdlcGroup  OBJECT-GROUP
    OBJECTS  {
        dlswSdlcLsEntries,
        dlswSdlcLsLocalMac,
        dlswSdlcLsLocalSap,
        dlswSdlcLsLocalIdBlock,
        dlswSdlcLsLocalIdNum,
        dlswSdlcLsRemoteMac,
        dlswSdlcLsRemoteSap,
        dlswSdlcLsRowStatus
        }
    STATUS current
    DESCRIPTION
       "Conformance group for DLSw SDLC support."
    ::= { dlswGroups 16 }

-- ...................................................................
dlswNotificationGroup  NOTIFICATION-GROUP

Chen, et. al.               Standards Track                    [Page 87]
RFC 2024                  DLSw MIB using SMIv2              October 1996

    NOTIFICATIONS  {
        dlswTrapTConnPartnerReject,
        dlswTrapTConnProtViolation,
        dlswTrapTConnUp,
        dlswTrapTConnDown,
        dlswTrapCircuitUp,
        dlswTrapCircuitDown
        }
    STATUS current
    DESCRIPTION
       "Conformance group for DLSw notifications."
    ::= { dlswGroups 17 }

END

Chen, et. al.               Standards Track                    [Page 88]
RFC 2024                  DLSw MIB using SMIv2              October 1996

4.0  Acknowledgements

   This memo has been produced by the AIW DLSw MIB RIGlet, which is also
   recognized as the IETF DLSw MIB Working Group.

5.0  References

[1] Bartky, A., "Data Link Switching: Switch-to-Switch Protocol; AIW
    DLSw RIG: DLSw Closed Pages, DLSw Standard Version 1", RFC 1795,
    Sync Research Inc., April 1995.

[2] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S.
    Waldbusser, "Structure of Management Information for version 2 of
    the Simple Network Management Protocol (SNMPv2)", RFC 1902, January
    1996.

[3] Rose, M., and K. McCloghrie, "Structure and Identification of
    Management Information for TCP/IP-based Internets", STD 16, RFC
    1155, Performance Systems International, Hughes LAN Systems, May
    1990.

[4] McCloghrie, K., and M. Rose, "Management Information Base for
    Network Management of TCP/IP-based internets - MIB-II", STD 17, RFC
    1213, Hughes LAN Systems, Performance Systems International, March
    1991.

[5] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple Network
    Management Protocol", STD 15, RFC 1157, SNMP Research, Performance
    Systems International, Performance Systems International, MIT
    Laboratory for Computer Science, May 1990.

[6] SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and S.
    Waldbusser, "Protocol Operations for version 2 of the Simple Network
    Management Protocol (SNMPv2)", RFC 1905, January 1996.

[7] IEEE Project, "ANSI/IEEE P802.1D", 1993

[8] McCloghrie, K., and F. Kastenholz, "Evolution of the Interfaces
    Group of MIB-II", RFC 1573, Hughes LAN Systems, FTP Software,
    January 1994.

[9] Hilgeman, J., S. Nix, A. Bartky, and W. Clark, "Definitions of
    Managed Objects for SNA Data Link Control (SDLC) using SMIv2", RFC
    1747, Apertus Technologies, Inc., Metaplex, Inc., Sync Research,
    Inc., cisco Systems, Inc., January 1995

Chen, et. al.               Standards Track                    [Page 89]
RFC 2024                  DLSw MIB using SMIv2              October 1996

6.0  Security Considerations

   Security issues are not discussed in this memo.

7.0  Authors' Addresses

   David D. Chen
   IBM Networking Systems
   P. O. Box 12195
   Research Triangle Park, NC  27709
   US

   Phone: +1 919 254 6182
   EMail: dchen@vnet.ibm.com

   Peter W. Gayek
   IBM Networking Systems
   P. O. Box 12195
   Research Triangle Park, NC  27709
   US

   Phone: +1 919 254 1808
   EMail: gayek@vnet.ibm.com

   Shannon Nix
   Metaplex, Inc.

   7025 Kit Creek Road
   P. O. Box 14987
   Research Triangle Park, NC 27709
   US

   Phone: +1 919 472 2388
   EMail: snix@metaplex.com

Chen, et. al.               Standards Track                    [Page 90]