DNS Encoding of Geographical Location
RFC 1712

Document Type RFC - Experimental (November 1994; Errata)
Authors Mike Schulze  , Craig Farrell  , Daniel Baldoni  , Scott Pleitner 
Last updated 2013-03-02
Stream Legacy
Formats plain text html pdf htmlized bibtex
Stream Legacy state (None)
Consensus Boilerplate Unknown
RFC Editor Note (None)
IESG IESG state RFC 1712 (Experimental)
Telechat date
Responsible AD (None)
Send notices to (None)
Network Working Group                                         C. Farrell
Request for Comments: 1712                                    M. Schulze
Category: Experimental                                       S. Pleitner
                                                              D. Baldoni
                                         Curtin University of Technology
                                                           November 1994

                 DNS Encoding of Geographical Location

Status of this Memo

   This memo defines an Experimental Protocol for the Internet
   community.  This memo does not specify an Internet standard of any
   kind.  Discussion and suggestions for improvement are requested.
   Distribution of this memo is unlimited.


   This document defines the format of a new Resource Record (RR) for
   the Domain Naming System (DNS), and reserves a corresponding DNS type
   mnemonic and numerical code.  This definition deals with associating
   geographical host location mappings to host names within a domain.
   The data shown in this document is fictitious and does not
   necessarily reflect the real Internet.

1. Introduction

   It has been a long standing problem to relate IP numbers to
   geographical locations. The availability of Geographical location
   information has immediate applications in network management.  Such
   information can be used to supplement the data already provided by
   utilities such as whois [Har85], traceroute [VJ89], and nslookup
   [UCB89].  The usefulness and functionality of these already widely
   used tools would be greatly enhanced by the provision of reliable
   geographical location information.

   The ideal way to manage and maintain a database of information, such
   as geographical location of internet hosts, is to delegate
   responsibility to local domain administrators. A large distributed
   database could be implemented with a simple mechanism for updating
   the local information.  A query mechanism also has to be available
   for checking local entries, as well as inquiring about data from
   non-local domains.

Farrell, Schulze, Pleitner & Baldoni                            [Page 1]
RFC 1712         DNS Encoding of Geographical Location     November 1994

2. Background

   The Internet continues to grow at an ever increasing rate with IP
   numbers allocated on a first-come-first-serve basis.  Deciding when
   and how to setup a database of geographical information about
   internet hosts presented a number of options.  The uumap project
   [UU85] was the first serious attempt to collect geographical location
   data from sites and store it centrally.  This project met with
   limited success because of the difficulty in maintaining and updating
   a large central database.  Another problem was the lack of tools for
   the checking the data supplied, this problem resulted in some
   erroneous data entering the database.

2.1 SNMP:

   Using an SNMP get request on the sysLocation MIB (Management
   Information Base) variable was also an option, however this would
   require the host to be running an appropriate agent with public read
   access.  It was also felt that MIB data should reflect local
   management data (e.g., "this" host is on level 5 room 74) rather than
   a hosts geographical position.  This view is supported in the
   examples given in literature in this area [ROSE91].

2.2 X500:

   The X.500 Directory service [X.500.88] defined as part of the ISO
   standards also appears as a potential provider of geographical
   location data. However due to the limited implementations of this
   service it was decided to defer this until this service gains wider
   use and acceptance within the Internet community.

2.3 BIND:

   The DNS [Mock87a][Mock87b] represents an existing system ideally
   suited to the provision of host specific information. The DNS is a
   widely used and well-understood mechanism for providing a distributed
   database of such information and its extensible nature allows it to
   be used to disseminate virtually any information.  The most commonly
   used DNS implementation is the Berkeley Internet Name Domain server
   BIND [UCB89].  The information we wished to make available needed to
   be updated locally but available globally; a perfect match with the
   services provided by the DNS. Current DNS servers provide a variety
   of useful information about hosts in their domain but lack the
   ability to report a host's geographical location.

Farrell, Schulze, Pleitner & Baldoni                            [Page 2]
RFC 1712         DNS Encoding of Geographical Location     November 1994

3. RDATA Format

        MSB                                        LSB
        /                 LONGITUDE                  /
        /                  LATITUDE                  /
Show full document text