Supernetting: an Address Assignment and Aggregation Strategy
RFC 1338
Document | Type |
RFC - Informational
(June 1992; No errata)
Obsoleted by RFC 1519
Was draft-fuller-supernet (individual)
|
|
---|---|---|---|
Authors | Jessica Yu , Tony Li , Kannan Varadhan , Vince Fuller | ||
Last updated | 2013-03-02 | ||
Stream | Legacy stream | ||
Formats | plain text html pdf htmlized (tools) htmlized bibtex | ||
Stream | Legacy state | (None) | |
Consensus Boilerplate | Unknown | ||
RFC Editor Note | (None) | ||
IESG | IESG state | RFC 1338 (Informational) | |
Telechat date | |||
Responsible AD | (None) | ||
Send notices to | (None) |
Network Working Group V. Fuller Request for Comments: 1338 BARRNet T. Li cisco J. Yu MERIT K. Varadhan OARnet June 1992 Supernetting: an Address Assignment and Aggregation Strategy Status of this Memo This memo provides information for the Internet community. It does not specify an Internet standard. Distribution of this memo is unlimited. Abstract This memo discusses strategies for address assignment of the existing IP address space with a view to conserve the address space and stem the explosive growth of routing tables in default-route-free routers run by transit routing domain providers. Table of Contents Acknowledgements ................................................. 2 1. Problem, goal, and motivation ................................ 2 2. Scheme plan .................................................. 3 2.1. Aggregation and its limitations ............................ 3 2.2. Distributed network number allocation ...................... 5 3. Cost-benefit analysis ........................................ 6 3.1. Present allocation figures ................................. 7 3.2. Historic growth rates ...................................... 8 3.3. Detailed analysis .......................................... 8 3.3.1. Benefits of new addressing plan .......................... 9 3.3.2. Growth rate projections .................................. 9 4. Changes to Inter-Domain routing protocols .................... 11 4.1. General semantic changes ................................... 11 4.2. Rules for route advertisement .............................. 11 4.3. How the rules work ......................................... 13 4.4. Responsibility for and configuration of aggregation ........ 14 5. Example of new allocation and routing ........................ 15 5.1. Address allocation ......................................... 15 5.2. Routing advertisements ..................................... 17 6. Transitioning to a long term solution ........................ 18 Fuller, Li, Yu, & Varadhan [Page 1] RFC 1338 Supernetting June 1992 7. Conclusions .................................................. 18 8. Recommendations .............................................. 18 9. Bibliography ................................................. 19 10. Security Considerations ...................................... 19 11. Authors' Addresses ........................................... 19 Acknowledgements The authors wish to express their appreciation to the members of the ROAD group with whom many of the ideas contained in this document were inspired and developed. 1. Problem, Goal, and Motivation As the Internet has evolved and grown over in recent years, it has become painfully evident that it is soon to face several serious scaling problems. These include: 1. Exhaustion of the class-B network address space. One fundamental cause of this problem is the lack of a network class of a size which is appropriate for mid-sized organization; class-C, with a maximum of 254 host addresses, is too small while class-B, which allows up to 65534 addresses, is to large to be widely allocated. 2. Growth of routing tables in Internet routers beyond the ability of current software (and people) to effectively manage. 3. Eventual exhaustion of the 32-bit IP address space. It has become clear that the first two of these problems are likely to become critical within the next one to three years. This memo attempts to deal with these problems by proposing a mechanism to slow the growth of the routing table and the need for allocating new IP network numbers. It does not attempt to solve the third problem, which is of a more long-term nature, but instead endeavors to ease enough of the short to mid-term difficulties to allow the Internet to continue to function efficiently while progress is made on a longer- term solution. The proposed solution is to hierarchically allocate future IP address assignment, by delegating control of segments of the IP address space to the various network service providers. It is proposed that this scheme of allocating IP addresses beShow full document text