IEEE 802.5 Token Ring MIB
RFC 1231
Document | Type |
RFC - Proposed Standard
(May 1991; No errata)
Updated by RFC 1239
|
|
---|---|---|---|
Authors | Eric Decker , Richard Fox , Keith McCloghrie | ||
Last updated | 2013-03-02 | ||
Stream | IETF | ||
Formats | plain text html pdf htmlized bibtex | ||
Stream | WG state | (None) | |
Document shepherd | No shepherd assigned | ||
IESG | IESG state | RFC 1231 (Proposed Standard) | |
Consensus Boilerplate | Unknown | ||
Telechat date | |||
Responsible AD | (None) | ||
Send notices to | (None) |
Network Working Group K. McCloghrie Request for Comments: 1231 Hughes LAN Systems, Inc. R. Fox Synoptics, Inc. E. Decker cisco Systems, Inc. May 1991 IEEE 802.5 Token Ring MIB Status of this Memo This memo defines a MIB for 805.5 networks for use with the SNMP protocol. This memo is a product of the Transmission Working Group of the Internet Engineering Task Force (IETF). This RFC specifies an IAB standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited. Table of Contents 1. Abstract .............................................. 1 2. The Network Management Framework....................... 2 3. Objects ............................................... 2 3.1 Format of Definitions ............................... 3 4. Overview .............................................. 3 4.1 Scope of Definitions ................................ 3 4.2 Textual Conventions ................................. 3 5. Definitions ........................................... 4 6. Acknowledgements ...................................... 21 7. References ............................................ 22 8. Security Considerations................................ 23 9. Authors' Addresses..................................... 23 1. Abstract This memo defines an experimental portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP-based internets. In particular, this memo defines managed objects used for managing subnetworks which use the IEEE 802.5 Token Ring technology described in 802.5 Token Ring Access Method and Physical Layer Specifications, IEEE Standard 802.5-1989. Transmission Working Group [Page 1] RFC 1231 IEEE 802.5 MIB May 1991 2. The Network Management Framework The Internet-standard Network Management Framework consists of three components. They are: RFC 1155 which defines the SMI, the mechanisms used for describing and naming objects for the purpose of management. RFC 1212 defines a more concise description mechanism, which is wholly consistent with the SMI. RFC 1156 which defines MIB-I, the core set of managed objects for the Internet suite of protocols. RFC 1213, defines MIB-II, an evolution of MIB-I based on implementation experience and new operational requirements. RFC 1157 which defines the SNMP, the protocol used for network access to managed objects. The Framework permits new objects to be defined for the purpose of experimentation and evaluation. 3. Objects Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) [7] defined in the SMI. In particular, each object has a name, a syntax, and an encoding. The name is an object identifier, an administratively assigned name, which specifies an object type. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the OBJECT DESCRIPTOR, to also refer to the object type. The syntax of an object type defines the abstract data structure corresponding to that object type. The ASN.1 language is used for this purpose. However, the SMI [3] purposely restricts the ASN.1 constructs which may be used. These restrictions are explicitly made for simplicity. The encoding of an object type is simply how that object type is represented using the object type's syntax. Implicitly tied to the notion of an object type's syntax and encoding is how the object type is represented when being transmitted on the network. The SMI specifies the use of the basic encoding rules of ASN.1 [8], subject to the additional requirements imposed by the SNMP. Transmission Working Group [Page 2] RFC 1231 IEEE 802.5 MIB May 1991 3.1. Format of Definitions Section 5 contains contains the specification of all object types contained in this MIB module. The object types are defined using theShow full document text