
SPRING F. Clad, Ed.
Internet-Draft Cisco Systems, Inc.
Intended status: Standards Track X. Xu, Ed.
Expires: September 6, 2018 Alibaba
 C. Filsfils
 Cisco Systems, Inc.
 D. Bernier
 Bell Canada
 C. Li
 Huawei
 B. Decraene
 Orange
 S. Ma
 Juniper
 C. Yadlapalli
 AT&T
 W. Henderickx
 Nokia
 S. Salsano
 Universita di Roma "Tor Vergata"
 March 5, 2018

Segment Routing for Service Chaining
draft-xuclad-spring-sr-service-chaining-01

Abstract

 This document defines data plane functionality required to implement
 service segments and achieve service chaining in SR-enabled MPLS and
 IP networks, as described in the Segment Routing architecture.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Clad, et al. Expires September 6, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Segment Routing for Service Chaining March 2018

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Classification and steering 5
4. Service Functions . 5
4.1. SR-aware SFs . 6
4.2. SR-unaware SFs . 6

5. Service function chaining 7
5.1. SR-MPLS data plane 8
5.1.1. Encoding SFP Information by an MPLS Label Stack . . . 8
5.1.2. Encoding SFC Information by an MPLS Label Stack . . . 11

5.2. SRv6 data plane . 14
5.2.1. Encoding SFP Information by an SRv6 SRH 14
5.2.2. Encoding SFC Information by an IPv6 SRH 16

6. SR proxy behaviors . 17
6.1. Static SR proxy . 20
6.1.1. SR-MPLS pseudocode 21
6.1.2. SRv6 pseudocode 22

6.2. Dynamic SR proxy . 25
6.2.1. SR-MPLS pseudocode 25
6.2.2. SRv6 pseudocode 26

6.3. Shared memory SR proxy 26
6.4. Masquerading SR proxy 27
6.4.1. SRv6 masquerading proxy pseudocode 28
6.4.2. Variant 1: Destination NAT 28

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Clad, et al. Expires September 6, 2018 [Page 2]

Internet-Draft Segment Routing for Service Chaining March 2018

6.4.3. Variant 2: Caching 29
7. Metadata . 29
7.1. MPLS data plane . 29
7.2. IPv6 data plane . 29
7.2.1. SRH TLV objects 29
7.2.2. SRH tag . 30

8. Implementation status . 30
9. Related works . 31
10. IANA Considerations . 31
11. Security Considerations 31
12. Acknowledgements . 32
13. Contributors . 32
14. References . 32
14.1. Normative References 32
14.2. Informative References 32

 Authors' Addresses . 34

1. Introduction

 Segment Routing (SR) is an architecture based on the source routing
 paradigm that seeks the right balance between distributed
 intelligence and centralized programmability. SR can be used with an
 MPLS or an IPv6 data plane to steer packets through an ordered list
 of instructions, called segments. These segments may encode simple
 routing instructions for forwarding packets along a specific network
 path, or rich behaviors to support use-cases such as Service Function
 Chaining (SFC).

 In the context of SFC, each Service Function (SF), running either on
 a physical appliance or in a virtual environment, is associated with
 a segment, which can then be used in a segment list to steer packets
 through the SF. Such service segments may be combined together in a
 segment list to achieve SFC, but also with other types of segments as
 defined in [I-D.ietf-spring-segment-routing]. SR thus provides a
 fully integrated solution for SFC, overlay and underlay optimization.
 Furthermore, the IPv6 dataplane natively supports metadata
 transportation as part of the SR information attached to the packets.

 This document describes how SR enables SFC in a simple and scalable
 manner, from the segment association to the SF up to the traffic
 classification and steering into the service chain. Several SR proxy
 behaviors are also defined to support SR SFC through legacy, SR-
 unaware, SFs in various circumstances.

 The definition of an SR Policy and the steering of traffic into an SR
 Policy is outside the scope of this document. These aspects are
 covered in [I-D.filsfils-spring-segment-routing-policy].

Clad, et al. Expires September 6, 2018 [Page 3]

Internet-Draft Segment Routing for Service Chaining March 2018

 The definition of control plane components, such as service segment
 discovery, is outside the scope of this data plane document. BGP
 extensions to support SR-based SFC are proposed in
 [I-D.dawra-idr-bgp-sr-service-chaining].

 Familiarity with the following IETF documents is assumed:

 o Segment Routing Architecture [I-D.ietf-spring-segment-routing]

 o Segment Routing with MPLS data plane
 [I-D.ietf-spring-segment-routing-mpls]

 o Segment Routing Traffic Engineering Policy
 [I-D.filsfils-spring-segment-routing-policy]

 o Segment Routing Header [I-D.ietf-6man-segment-routing-header]

 o SRv6 Network Programming
 [I-D.filsfils-spring-srv6-network-programming]

 o SR-MPLS over IP [I-D.xu-mpls-sr-over-ip]

 o Service Function Chaining Architecture [RFC7665]

2. Terminology

 This document leverages the terminology introduced in
 [I-D.ietf-spring-segment-routing],
 [I-D.filsfils-spring-segment-routing-policy] and [RFC7665]. It also
 introduces the following new terminology.

 SR-aware SF: Service Function fully capable of processing SR traffic

 SR-unaware SF: Service Function unable to process SR traffic or
 behaving incorrectly for such traffic

 SR proxy: Proxy handling the SR processing on behalf of an SR-unaware
 SF

 Service Segment: Segment associated with an SF, either directly or
 via an SR proxy

 SR SFC policy: SR policy, as defined in
 [I-D.filsfils-spring-segment-routing-policy], that includes at least
 one Service Segment. An SR SFC policy may also contain other types
 of segments, such as VPN or TE segments.

Clad, et al. Expires September 6, 2018 [Page 4]

https://datatracker.ietf.org/doc/html/rfc7665
https://datatracker.ietf.org/doc/html/rfc7665

Internet-Draft Segment Routing for Service Chaining March 2018

3. Classification and steering

 Classification and steering mechanisms are defined in section 8 of
 [I-D.filsfils-spring-segment-routing-policy] and are independent from
 the purpose of the SR policy. From a headend perspective, there is
 no difference whether a policy contains IGP, BGP, peering, VPN and
 service segments, or any combination of these.

 As documented in the above reference, traffic is classified when
 entering an SR domain. The SR policy head-end may, depending on its
 capabilities, classify the packets on a per-destination basis, via
 simple FIB entries, or apply more complex policy routing rules
 requiring to look deeper into the packet. These rules are expected
 to support basic policy routing such as 5-tuple matching. In
 addition, the IPv6 SRH tag field defined in
 [I-D.ietf-6man-segment-routing-header] can be used to identify and
 classify packets sharing the same set of properties. Classified
 traffic is then steered into the appropriate SR policy, which is
 associated with a weighted set of segment lists.

 SR traffic can be re-classified by an SR endpoint along the original
 SR policy (e.g., DPI service) or a transit node intercepting the
 traffic. This node is the head-end of a new SR policy that is
 imposed onto the packet, either as a stack of MPLS labels or as an
 IPv6 and SRH encapsulation.

4. Service Functions

 A Service Function (SF) may be a physical appliance running on
 dedicated hardware, a virtualized service inside an isolated
 environment such as a VM, container or namespace, or any process
 running on a compute element. An SF may also comprise multiple sub-
 components running in different processes or containers. Unless
 otherwise stated, this document does not make any assumption on the
 type or execution environment of an SF.

 SR enables SFC by assigning a segment identifier, or SID, to each SF
 and sequencing these service SIDs in a segment list. A service SID
 may be of local significance or directly reachable from anywhere in
 the routing domain. The latter is realized with SR-MPLS by assigning
 a SID from the global label block
 ([I-D.ietf-spring-segment-routing-mpls]), or with SRv6 by advertising
 the SID locator in the routing protocol
 ([I-D.filsfils-spring-srv6-network-programming]). It is up to the
 network operator to define the scope and reachability of each service
 SID. This decision can be based on various considerations such as
 infrastructure dynamicity, available control plane or orchestration
 system capabilities.

Clad, et al. Expires September 6, 2018 [Page 5]

Internet-Draft Segment Routing for Service Chaining March 2018

 This document categorizes SFs in two types, depending on whether they
 are able to behave properly in the presence of SR information or not.
 These are respectively named SR-aware and SR-unaware SFs. An SR-
 aware SF can process the SR information in the packets it receives.
 This means being able to identify the active segment as a local
 instruction and move forward in the segment list, but also that the
 SF own behavior is not hindered due to the presence of SR
 information. For example, an SR-aware firewall filtering SRv6
 traffic based on its final destination must retrieve that information
 from the last entry in the SRH rather than the Destination Address
 field of the IPv6 header. Any SF that does not meet these criteria
 is considered as SR-unaware.

4.1. SR-aware SFs

 An SR-aware SF is associated with a locally instantiated service
 segment, which is used to steer traffic through it.

 If the SF is configured to intercept all the packets passing through
 the appliance, the underlying routing system only has to implement a
 default SR endpoint behavior (SR-MPLS node segment or SRv6 End
 function), and the corresponding SID will be used to steer traffic
 through the SF.

 If the SF requires the packets to be directed to a specific virtual
 interface, networking queue or process, a dedicated SR behavior may
 be required to steer the packets to the appropriate location. The
 definition of such SF-specific functions is out of the scope of this
 document.

 An SRv6-aware SF may also retrieve, store or modify information in
 the SRH TLVs.

4.2. SR-unaware SFs

 An SR-unaware SF is not able to process the SR information in the
 traffic that it receives. It may either drop the traffic or take
 erroneous decisions due to the unrecognized routing information. In
 order to include such SFs in an SR SC policy, it is thus required to
 remove the SR information as well as any other encapsulation header
 before the SF receives the packet, or to alter it in such a way that
 the SF can correctly process the packet.

 In this document, we define the concept of an SR proxy as an entity,
 separate from the SF, that performs these modifications and handle
 the SR processing on behalf of an SF. The SR proxy can run as a
 separate process on the SF appliance, on a virtual switch or router

Clad, et al. Expires September 6, 2018 [Page 6]

Internet-Draft Segment Routing for Service Chaining March 2018

 on the compute node or on a remote host. In this document, we only
 assume that the proxy is connected to the SF via a layer-2 link.

 An SR-unaware SF is associated with a service segment instantiated on
 the SR proxy, which is used to steer traffic through the SF.

Section 6 describes several SR proxy behaviors to handle the
 encapsulation headers and SR information under various circumstances.

5. Service function chaining

 When applying a particular Service Function Chain (SFC) [RFC7665] to
 the traffic selected by a service classifier, the traffic need to be
 steered through an ordered set of Service Functions (SF) in the
 network. This ordered set of SFs in the network indicates the
 Service Function Path (SFP) associated with the above SFC. In order
 to steer the selected traffic through the required ordered list of
 SFs, the service classifier needs to attach information to the packet
 specifying exactly which Service Function Forwarders (SFFs) and which
 SFs are to be visited by traffic, the SFC, or the partially specified
 SFP which is in between the former two extremes.

 The SR source routing mechanisms can be used to steer traffic through
 an ordered set of devices (i.e., an explicit path) and instruct those
 nodes to execute specific operations on the packet.

 This section describes how to leverage SR to realize a transport-
 independent service function chaining by encoding the service
 function path information or service function chain information as an
 MPLS label stack or an IPv6 SRH.

 +---+
 | SR network |
 | +---------+ +---------+ |
 | | SF1 | | SF2 | |
 | +----+----+ +----+----+ |
 | ^ | |(3) ^ | |(6) |
 | (1) (2)| | V (4) (5)| | V (7) |
 +----+-----+ ---> +----+----+ ----> +----+----+ ---> +----+-----+
 | A +------+ SFF1 +-------+ SFF2 +-------+ B |
 | Head-end | | | | | | Tail-end |
 +----------+ +---------+ +---------+ +----+-----+
 | |
 +---+

 Figure 1: Service Function Chaining in SR networks

 As shown in Figure 1, SFF1 and SFF2 are two SR-capable nodes. They
 are also SFFs, each with one SF attached. In addition, they have

https://datatracker.ietf.org/doc/html/rfc7665

Clad, et al. Expires September 6, 2018 [Page 7]

Internet-Draft Segment Routing for Service Chaining March 2018

 allocated and advertised segments for their locally attached SFs.
 For example, SFF1 allocates and advertises a SID (i.e., S(SF1)) for
 SF1 while SFF2 allocates and advertises a SID (i.e., S(SF2)) for SF2.
 These SIDs, which are used to indicate SFs, are referred to as
 service segments, while the SFFs are identified by either node or
 adjacency segments depending on how strictly the network path needs
 to be specified. In this example, we assume that the traffic is
 steered to both SFFs using their node segments S(SFF1) and S(SFF2),
 respectively.

 Now assume that a given traffic flow is steered in an SR policy
 instantiated on node A with an endpoint B, hereafter referred to as
 the SR policy head-end and tail-end respectively, and associated with
 particular SFC requirements (i.e., SF1-> SF2). From an SR policy
 perspective, SFC is only a particular case of traffic engineering
 where the SR path includes service functions. An SR-SFC policy
 inherits all the properties of SR-TE policies as defined in
 [I-D.filsfils-spring-segment-routing-policy]. Section 5.1 and

Section 5.2 describe approaches of leveraging the SR-MPLS and SRv6
 mechanisms to realize stateless service function chaining. The
 complete SFP and SFC information is encoded within an MPLS label
 stack or an IPv6 SRH carried by the packets, so that no per-chain
 state is required at the intermediate hops. Since the encoding of
 the partially specified SFP is just a simple combination of the
 encoding of the SFP and the encoding of the SFC, this document would
 not describe how to encode the partially specified SFP anymore.

5.1. SR-MPLS data plane

5.1.1. Encoding SFP Information by an MPLS Label Stack

Clad, et al. Expires September 6, 2018 [Page 8]

Internet-Draft Segment Routing for Service Chaining March 2018

 +---+
 | SR-MPLS network |
 | +---------+ +---------+ |
 | | SF1 | | SF2 | |
 | +----+----+ +----+----+ |
 | +---------+ | | +---------+ | | | | | |
 | | S(SFF2) | | | | S(T) | |
 | +---------+ | | +---------+ |
 | | S(SF2) | | | |Inner pkt| |
 | +---------+ | | +---------+ |
 | | S(T) | | | |
 | +---------+ | ^ | | |
 | |Inner pkt| ^ | | | | | |
 | +---------+ | | | (5)| | |(6) |
 | (2)| | |(3) | | V |
 | (1) | | V (4) | (7) |
 +----+-----+ ---> +----+----+ ----> +----+----+ ---> +----+-----+
 | Head-end +------+ SFF1 +-------+ SFF2 +-------+ Tail-end |
 +----------+ +---------+ +---------+ +----+-----+
 | +---------+ +---------+ +---------+ |
 | | S(SFF1) | | S(SFF2) | | S(T) | |
 | +---------+ +---------+ +---------+ |
 | | S(SF1) | | S(SF2) | |Inner pkt| |
 | +---------+ +---------+ +---------+ |
 | | S(SFF2) | | S(T) | |
 | +---------+ +---------+ |
 | | S(SF2) | |Inner pkt| |
 | +---------+ +---------+ |
 | | S(T) | |
 | +---------+ |
 | |Inner pkt| |
 | +---------+ |
 +---+

 Figure 2: Packet walk in MPLS underlay

 As shown in Figure 2, the head-end, acting as a service classifier,
 determines that the selected packet needs to travel through an SFC
 (SF1->SF2) and steers this packet into the appropriate SR policy as
 described in [I-D.filsfils-spring-segment-routing-policy]. As a
 result, the packet is encapsulated with an MPLS label stack
 containing the segment list <SFF1, SF1, SFF2, SF2, T>. This segment
 list encodes in a stateless manner the SFP corresponding to the above
 SFC as an MPLS label stack where each service segment is a local MPLS
 label allocated from SFFs' label spaces. To some extent, the MPLS
 label stack here could be looked as a specific implementation of the
 SFC encapsulation used for containing the SFP information [RFC7665],
 which does not require the SFF to maintain per-chain state.

https://datatracker.ietf.org/doc/html/rfc7665

Clad, et al. Expires September 6, 2018 [Page 9]

Internet-Draft Segment Routing for Service Chaining March 2018

 When the encapsulated packet arrives at SFF1, SFF1 knows how to send
 the packet to SF1 based on the top label (i.e., S(SF1)) of the
 received MPLS packet. We first consider the case where SF1 is an SR-
 aware SF, i.e., it understands how to process a packet with a pre-
 pended SR-MPLS label stack. In this case the packet would be sent to
 SF1 by SFF1 with the label stack S(SFF2)->S(SF2). SF1 would perform
 the required service function on the received MPLS packet where the
 payload type is determined using the first nibble of the MPLS
 payload. After the MPLS packet is returned from SF1, SFF1 would send
 it to SFF2 according to the top label (i.e., S(SFF2)).

 If SF1 is an SR-unaware SF, i.e. one that is unable to process the
 MPLS label stack, the remaining MPLS label stack (i.e.,
 S(SFF2)->S(SF2)) MUST be stripped from the packet before sending the
 packet to SF1. When the packet is returned from SF1, SFF1 would re-
 impose the MPLS label stack which had been previously stripped and
 then send the packet to SFF2 according to the current top label
 (i.e., S(SFF2)). Proxy mechanisms to support SR-unaware SFs are
 proposed in section 6 of this document.

 When the encapsulated packet arrives at SFF2, SFF2 would perform the
 similar action to that described above.

 By leveraging the SR-MPLS data plane, [I-D.xu-mpls-sr-over-ip]
 describes a source routing instruction which works across both IPv4
 and IPv6 underlays in addition to the MPLS underlay. As shown in
 Figure 3, if there is no MPLS LSP towards the next node segment
 (i.e., the next SFF identified by the current top label), the
 corresponding IP-based tunnel for MPLS (e.g., MPLS-in-IP/GRE tunnel
 [RFC4023], MPLS-in-UDP tunnel [RFC7510] or MPLS-in-L2TPv3 tunnel
 [RFC4817]) would be used.

Clad, et al. Expires September 6, 2018 [Page 10]

https://datatracker.ietf.org/doc/html/rfc4023
https://datatracker.ietf.org/doc/html/rfc7510
https://datatracker.ietf.org/doc/html/rfc4817

Internet-Draft Segment Routing for Service Chaining March 2018

 +---+
 | IP network |
 | +---------+ +---------+ |
 | | SF1 | | SF2 | |
 | +----+----+ +----+----+ |
 | +---------+ | | +---------+ | | | | | |
 | | S(SFF2) | | | | S(T) | |
 | +---------+ | | +---------+ |
 | | S(SF2) | | | |Inner pkt| |
 | +---------+ | | +---------+ |
 | | S(T) | | | |
 | +---------+ | ^ | | |
 | |Inner pkt| ^ | | | | | |
 | +---------+ | | | (5)| | |(6) |
 | (2)| | |(3) | | V |
 | (1) | | V (4) | (7) |
 +----+-----+ ---> +----+----+ ----> +----+----+ ---> +----+-----+
 | Head-end +------+ SFF1 +-------+ SFF2 +-------+ Tail-end |
 +----------+ +---------+ +---------+ +----+-----+
 | +---------+ +---------+ |
 | |IP Tunnel| |IP Tunnel| +---------+ |
 | |to SFF1 | | to SFF2 | | S(T) | |
 | +---------+ +---------+ +---------+ |
 | | S(SF1) | | S(SF2) | |Inner pkt| |
 | +---------+ +---------+ +---------+ |
 | | S(SFF2) | | S(T) | |
 | +---------+ +---------+ |
 | | S(SF2) | |Inner pkt| |
 | +---------+ +---------+ |
 | | S(T) | |
 | +---------+ |
 | |Inner pkt| |
 | +---------+ |
 +---+

 Figure 3: Packet walk in IP underlay

 Since the transport (i.e., the underlay) could be IPv4, IPv6 or even
 MPLS networks, the above approach of encoding the SFP information by
 an MPLS label stack is fully transport-independent which is one of
 the major requirements for the SFC encapsulation [RFC7665].

5.1.2. Encoding SFC Information by an MPLS Label Stack

 The head-end, acting as a service classifier, determines that the
 selected packet needs to travel through an SFC (SF1->SF2) and steers
 this packet into the appropriate SR policy as described in
 [I-D.filsfils-spring-segment-routing-policy]. This results in the

https://datatracker.ietf.org/doc/html/rfc7665

Clad, et al. Expires September 6, 2018 [Page 11]

Internet-Draft Segment Routing for Service Chaining March 2018

 packet being encapsulated with an MPLS label stack containing the
 segment list <SF1, SF2, T>, which encodes that SFC. Those SF labels
 MUST be domain-wide unique MPLS labels. Since it is known to the
 service classifier that SFF1 is attached with an instance of SF1, the
 service classifier would therefore send the MPLS encapsulated packet
 through either an MPLS LSP tunnel or an IP-based tunnel towards SFF1
 (as shown in Figure 4 and Figure 5 respectively). When the MPLS
 encapsulated packet arrives at SFF1, SFF1 would know which SF should
 be performed according to the current top label (i.e., S(SF1)).
 Similarly, SFF1 would send the packet returned from SF1 to SFF2
 through either an MPLS LSP tunnel or an IP-based tunnel towards SFF2
 since it's known to SFF1 that SFF2 is attached with an instance of
 SF2. When the encapsulated packet arrives at SFF2, SFF2 would do the
 similar action as what has been done by SFF1. Since the transport
 (i.e., the underlay) could be IPv4, IPv6 or even MPLS networks, the
 above approach of encoding the SFC information by an MPLS label stack
 is fully transport-independent which is one of the major requirements
 for the SFC encapsulation [RFC7665].

Clad, et al. Expires September 6, 2018 [Page 12]

https://datatracker.ietf.org/doc/html/rfc7665

Internet-Draft Segment Routing for Service Chaining March 2018

 +---+
 | MPLS Network |
 | +---------+ +---------+ |
 | | SF1 | | SF2 | |
 | +----+----+ +----+----+ |
 | +---------+ | | +---------+ | | | | | |
 | | S(SF2) | | | | S(T) | |
 | +---------+ | | +---------+ |
 | | S(T) | | | |Inner pkt| |
 | +---------+ | ^ | | +---------+ |
 | |Inner pkt| ^ | | | | | |
 | +---------+ | | | (5)| | |(6) |
 | (2)| | |(3) | | V |
 | (1) | | V (4) | (7) |
 +----+-----+ ---> +----+----+ ----> +----+----+ ---> +----+-----+
 | Head-end +------+ SFF1 +-------+ SFF2 +-------+ Tail-end |
 +----------+ +---------+ +---------+ +----+-----+
 | +---------+ +---------+ +---------+ |
 | | S(SFF1) | | S(SFF2) | | S(T) | |
 | +---------+ +---------+ +---------+ |
 | | S(SF1) | | S(SF2) | |Inner pkt| |
 | +---------+ +---------+ +---------+ |
 | | S(SF2) | | S(T) | |
 | +---------+ +---------+ |
 | | S(T) | |Inner pkt| |
 | +---------+ +---------+ |
 | |Inner pkt| |
 | +---------+ |
 +---+

 Figure 4: Packet walk in MPLS underlay

Clad, et al. Expires September 6, 2018 [Page 13]

Internet-Draft Segment Routing for Service Chaining March 2018

 +---+
 | IP Network |
 | +---------+ +---------+ |
 | | SF1 | | SF2 | |
 | +----+----+ +----+----+ |
 | +---------+ | | +---------+ | | | | | |
 | | S(SF2) | | | | S(T) | |
 | +---------+ | | +---------+ |
 | | S(T) | | | |Inner pkt| |
 | +---------+ | ^ | | +---------+ |
 | |Inner pkt| ^ | | | | | |
 | +---------+ | | | (5)| | |(6) |
 | (2)| | |(3) | | V |
 | (1) | | V (4) | (7) |
 +----+-----+ ---> +----+----+ ----> +----+----+ ---> +----+-----+
 | Head-end +------+ SFF1 +-------+ SFF2 +-------+ Tail-end |
 +----------+ +---------+ +---------+ +----+-----+
 | +---------+ +---------+ |
 | |IP Tunnel| |IP Tunnel| +---------+ |
 | |to SFF1 | | to SFF2 | | S(T) | |
 | +---------+ +---------+ +---------+ |
 | | S(SF1) | | S(SF2) | |Inner pkt| |
 | +---------+ +---------+ +---------+ |
 | | S(SF2) | | S(T) | |
 | +---------+ +---------+ |
 | | S(T) | |Inner pkt| |
 | +---------+ +---------+ |
 | |Inner pkt| |
 | +---------+ |
 +---+

 Figure 5: Packet walk in IP underlay

5.2. SRv6 data plane

5.2.1. Encoding SFP Information by an SRv6 SRH

Clad, et al. Expires September 6, 2018 [Page 14]

Internet-Draft Segment Routing for Service Chaining March 2018

 +--+
 | SRv6 network |
 | +---------+ +---------+ |
 | | SF1 | | SF2 | |
 | +----+----+ +----+----+ |
 | ^ | |(3) ^ | |(6) |
 | (1) (2)| | V (4) (5)| | V (7) |
 +----+-----+ ---> +----+----+ ----> +----+----+ ---> +----+-----+
 | Head-end +------+ SFF1 +-------+ SFF2 +------+ Tail-end |
 +----------+ +---------+ +---------+ +----+-----+
 | +---------+ +---------+ +---------+ |
 | |IP6 (H, | |IP6 (H, | |IP6 (H,T)| |
 | | SFF1)| | SFF2)| +---------+ |
 | +---------+ +---------+ |SRH (T, | |
 | |SRH (T, | |SRH (T, | |SFF2:SF2,| |
 | |SFF2:SF2,| |SFF2:SF2,| |SFF1:SF1;| |
 | |SFF1:SF1;| |SFF1:SF1;| |SL=0) | |
 | |SL=2) | |SL=1) | +---------+ |
 | +---------+ +---------+ |Inner pkt| |
 | |Inner pkt| |Inner pkt| +---------+ |
 | +---------+ +---------+ |
 +--+

 Figure 6: Packet walk in SRv6 network

 As shown in Figure 6, the head-end, acting as a service classifier,
 determines that the selected packet needs to travel through an SFC
 (SF1->SF2) and steers this packet into the appropriate SR policy as
 described in [I-D.filsfils-spring-segment-routing-policy]. As a
 result, the packet is encapsulated with an IPv6 header and an SRH
 containing the segment list <SFF1:SF1, SFF2:SF2, T>. The
 intermediate segments in this list leverage the SRv6 locator-function
 concept introduced in [I-D.filsfils-spring-srv6-network-programming]
 to encode both the SFF and the SF in a single IPv6 SID. The traffic
 is steered via regular IPv6 forwarding up to the SFF represented in
 the locator part of the SID and then passed to the SF identified by
 the SID function. This SRH thus indicates in a stateless manner the
 SFP corresponding to the above SFC. To some extent, the SRH here
 could be looked as a specific implementation of the SFC encapsulation
 used for containing the SFP information [RFC7665], which does not
 require the SFF to maintain per-chain state.

 When the encapsulated packet arrives at SFF1, SFF1 knows how to send
 the packet to the SF based on the active segment. We first consider
 the case where SF1 is an SR-aware SF, i.e., it understands how to
 process an IPv6 encapsulated packet with an SRH. In this case the
 packet is sent to SF1 by SFF1 with the IP and SR headers
 (H,SFF2:SF2)(T,SFF2:SF2,SFF1:SF1;SL=1). SF1 performs the required

https://datatracker.ietf.org/doc/html/rfc7665

Clad, et al. Expires September 6, 2018 [Page 15]

Internet-Draft Segment Routing for Service Chaining March 2018

 service function on the received packet, where the payload is
 determined based on the Next Header field value of last extension
 header and/or the active segment. After the packet is returned from
 SF1, SFF1 simply forwards it to SFF2 according to the IPv6
 destination address.

 If SF1 is an SR-unaware SF, i.e. one that is unable to process IPv6
 encapsulated packets with an SRH, the encapsulation headers (i.e.,
 outer IPv6 with any extension header) MUST be stripped from the
 packet before it is sent to SF1. When the packet is returned from
 SF1, SFF1 would re-encapsulate the packet with the IPv6 and SR
 headers that had been previously stripped and then send the packet to
 SFF2 according to the IPv6 destination address. Proxy mechanisms to
 support SR-unaware SFs are proposed in section 6 of this document.

 When the encapsulated packet arrives at SFF2, SFF2 would perform the
 similar action to that described above.

5.2.2. Encoding SFC Information by an IPv6 SRH

 The head-end, acting as a service classifier, determines that the
 selected packet needs to travel through an SFC (SF1->SF2) and steers
 this packet into the appropriate SR policy. This results in the
 packet being encapsulated with an IPv6 header and an SRH containing
 the segment list <A1:SF1, A2:SF2, T>. In this case, the locator
 parts A1 and A2 of the intermediate service segments are anycast
 prefixes advertised by several SFFs attached to SF1 and SF2,
 respectively. The policy head-end may thus let the traffic be
 steered to the closest instance of each SF or add intermediate
 segments to select a particular SF instance. Furthermore, since it
 is known to the head-end that SFF1 is attached to an instance of SF1,
 the encapsulated packet may be sent to SFF1 through an MPLS LSP or an
 IP-based tunnel. Similar tunneling can then be performed between
 SFF1 and SFF1, and between SFF2 and the tail-end, as illustrated on
 Figure 7. Since the transport (i.e., the underlay) could be IPv4,
 IPv6 or even MPLS, the above approach of encoding the SFC information
 by an IPv6 SRH is fully transport-independent which is one of the
 major requirements for the SFC encapsulation [RFC7665].

https://datatracker.ietf.org/doc/html/rfc7665

Clad, et al. Expires September 6, 2018 [Page 16]

Internet-Draft Segment Routing for Service Chaining March 2018

 +--+
 | Underlay network |
 | +---------+ +---------+ |
 | | SF1 | | SF2 | |
 | +----+----+ +----+----+ |
 | ^ | |(3) ^ | |(6) |
 | (1) (2)| | V (4) (5)| | V (7) |
 +----+-----+ ---> +----+----+ ----> +----+----+ ---> +----+-----+
 | Head-end +------+ SFF1 +-------+ SFF2 +------+ Tail-end |
 +----------+ +---------+ +---------+ +----+-----+
 | +---------+ +---------+ +---------+ |
 | |Tunnel to| |Tunnel to| |Tunnel to| |
 | |SFF1 | |SFF2 | |T | |
 | +---------+ +---------+ +---------+ |
 | |IP6 (H, | |IP6 (H, | |IP6 (H,T)| |
 | | SF1)| | SFF2)| +---------+ |
 | +---------+ +---------+ |SRH (T, | |
 | |SRH (T, | |SRH (T, | |SF2, SF1;| |
 | |SF2, SF1;| |SF2, SF1;| |SL=0) | |
 | |SL=2) | |SL=1) | +---------+ |
 | +---------+ +---------+ |Inner pkt| |
 | |Inner pkt| |Inner pkt| +---------+ |
 | +---------+ +---------+ |
 +--+

 Figure 7: Packet walk in underlay network

6. SR proxy behaviors

 This section describes several SR proxy behaviors designed to enable
 SR SFC through SR-unaware SFs. A system implementing one of these
 functions may handle the SR processing on behalf of an SR-unaware SF
 and allows the SF to properly process the traffic that is steered
 through it.

 An SF may be located at any hop in an SR policy, including the last
 segment. However, the SR proxy behaviors defined in this section are
 dedicated to supporting SR-unaware SFs at intermediate hops in the
 segment list. In case an SR-unaware SF is at the last segment, it is
 sufficient to ensure that the SR information is ignored (IPv6 routing
 extension header with Segments Left equal to 0) or removed before the
 packet reaches the SF (MPLS PHP, SRv6 End.D or PSP).

 As illustrated on Figure 8, the generic behavior of an SR proxy has
 two parts. The first part is in charge of passing traffic from the
 network to the SF. It intercepts the SR traffic destined for the SF
 via a locally instantiated service segment, modifies it in such a way
 that it appears as non-SR traffic to the SF, then sends it out on a

Clad, et al. Expires September 6, 2018 [Page 17]

Internet-Draft Segment Routing for Service Chaining March 2018

 given interface, IFACE-OUT, connected to the SF. The second part
 receives the traffic coming back from the SF on IFACE-IN, restores
 the SR information and forwards it according to the next segment in
 the list. IFACE-OUT and IFACE-IN are respectively the proxy
 interface used for sending traffic to the SF and the proxy interface
 that receives the traffic coming back from the SF. These can be
 physical interfaces or sub-interfaces (VLANs) and, unless otherwise
 stated, IFACE-OUT and IFACE-IN can represent the same interface.

 +----------------------------+
 | |
 | Service Function |
 | |
 +----------------------------+
 ^ Non SR |
 | traffic |
 | v
 +-----------+----------+
 +--| IFACE OUT | IFACE IN |--+
 SR traffic | +-----------+----------+ | SR traffic
 ---------->| SR proxy |---------->
 | |
 +----------------------------+

 Figure 8: Generic SR proxy

 In the next subsections, the following SR proxy mechanisms are
 defined:

 o Static proxy

 o Dynamic proxy

 o Shared-memory proxy

 o Masquerading proxy

 Each mechanism has its own characteristics and constraints, which are
 summarized in the below table. It is up to the operator to select
 the best one based on the proxy node capabilities, the SF behavior
 and the traffic type. It is also possible to use different proxy
 mechanisms within the same service chain.

Clad, et al. Expires September 6, 2018 [Page 18]

Internet-Draft Segment Routing for Service Chaining March 2018

 +-----+-----+-----+-----+
 | | | | M |
 | | | S | a |
 | | | h | s |
 | | | a | q |
 | | | r | u |
 | | D | e | e |
 | S | y | d | r |
 | t | n | | a |
 | a | a | m | d |
 | t | m | e | i |
 | i | i | m | n |
 | c | c | . | g |
 +---------------------------------------+-----+-----+-----+-----+
 | | SR-MPLS | Y | Y | Y | - |
 | | | | | | |
 | SR flavors | SRv6 insertion | P | P | P | Y |
 | | | | | | |
 | | SRv6 encapsulation | Y | Y | Y | - |
 +----------------+----------------------+-----+-----+-----+-----+
 | | Ethernet | Y | Y | Y | - |
 | | | | | | |
 | Inner header | IPv4 | Y | Y | Y | - |
 | | | | | | |
 | | IPv6 | Y | Y | Y | - |
 +----------------+----------------------+-----+-----+-----+-----+
 | Chain agnostic configuration | N | N | Y | Y |
 +---------------------------------------+-----+-----+-----+-----+
 | Transparent to chain changes | N | Y | Y | Y |
 +----------------+----------------------+-----+-----+-----+-----+
 | | DA modification | Y | Y | Y | NAT |
 | | | | | | |
 | | Payload modification | Y | Y | Y | Y |
 | | | | | | |
 | SF support | Packet generation | Y | Y |cache|cache|
 | | | | | | |
 | | Packet deletion | Y | Y | Y | Y |
 | | | | | | |
 | | Transport endpoint | Y | Y |cache|cache|
 +----------------+----------------------+-----+-----+-----+-----+

 Figure 9: SR proxy summary

 Note: The use of a shared memory proxy requires both the SF and the
 proxy to be running on the same node.

Clad, et al. Expires September 6, 2018 [Page 19]

Internet-Draft Segment Routing for Service Chaining March 2018

6.1. Static SR proxy

 The static proxy is an SR endpoint behavior for processing SR-MPLS or
 SRv6 encapsulated traffic on behalf of an SR-unaware SF. This proxy
 thus receives SR traffic that is formed of an MPLS label stack or an
 IPv6 header on top of an inner packet, which can be Ethernet, IPv4 or
 IPv6.

 A static SR proxy segment is associated with the following mandatory
 parameters:

 o INNER-TYPE: Inner packet type

 o S-ADDR: Ethernet or IP address of the SF (only for inner type IPv4
 and IPv6)

 o IFACE-OUT: Local interface for sending traffic towards the SF

 o IFACE-IN: Local interface receiving the traffic coming back from
 the SF

 o CACHE: SR information to be attached on the traffic coming back
 from the SF, including at least

 * CACHE.SA: IPv6 source address (SRv6 only)

 * CACHE.LIST: Segment list expressed as MPLS labels or IPv6
 address

 A static SR proxy segment is thus defined for a specific SF, inner
 packet type and cached SR information. It is also bound to a pair of
 directed interfaces on the proxy. These may be both directions of a
 single interface, or opposite directions of two different interfaces.
 The latter is recommended in case the SF is to be used as part of a
 bi-directional SR SC policy. If the proxy and the SF both support
 802.1Q, IFACE-OUT and IFACE-IN can also represent sub-interfaces.

 The first part of this behavior is triggered when the proxy node
 receives a packet whose active segment matches a segment associated
 with the static proxy behavior. It removes the SR information from
 the packet then sends it on a specific interface towards the
 associated SF. This SR information corresponds to the full label
 stack for SR-MPLS or to the encapsulation IPv6 header with any
 attached extension header in the case of SRv6.

 The second part is an inbound policy attached to the proxy interface
 receiving the traffic returning from the SF, IFACE-IN. This policy
 attaches to the incoming traffic the cached SR information associated

Clad, et al. Expires September 6, 2018 [Page 20]

Internet-Draft Segment Routing for Service Chaining March 2018

 with the SR proxy segment. If the proxy segment uses the SR-MPLS
 data plane, CACHE contains a stack of labels to be pushed on top the
 packets. With the SRv6 data plane, CACHE is defined as a source
 address, an active segment and an optional SRH (tag, segments left,
 segment list and metadata). The proxy encapsulates the packets with
 an IPv6 header that has the source address, the active segment as
 destination address and the SRH as a routing extension header. After
 the SR information has been attached, the packets are forwarded
 according to the active segment, which is represented by the top MPLS
 label or the IPv6 Destination Address.

 In this scenario, there are no restrictions on the operations that
 can be performed by the SF on the stream of packets. It may operate
 at all protocol layers, terminate transport layer connections,
 generate new packets and initiate transport layer connections. This
 behavior may also be used to integrate an IPv4-only SF into an SRv6
 policy. However, a static SR proxy segment can be used in only one
 service chain at a time. As opposed to most other segment types, a
 static SR proxy segment is bound to a unique list of segments, which
 represents a directed SR SC policy. This is due to the cached SR
 information being defined in the segment configuration. This
 limitation only prevents multiple segment lists from using the same
 static SR proxy segment at the same time, but a single segment list
 can be shared by any number of traffic flows. Besides, since the
 returning traffic from the SF is re-classified based on the incoming
 interface, an interface can be used as receiving interface (IFACE-IN)
 only for a single SR proxy segment at a time. In the case of a bi-
 directional SR SC policy, a different SR proxy segment and receiving
 interface are required for the return direction.

6.1.1. SR-MPLS pseudocode

6.1.1.1. Static proxy for inner type Ethernet

 Upon receiving an MPLS packet with top label L, where L is an MPLS L2
 static proxy segment, a node N does:

 1. IF payload type is Ethernet THEN
 2. Pop all labels
 3. Forward the exposed frame on IFACE-OUT
 4. ELSE
 5. Drop the packet

 Upon receiving on IFACE-IN an Ethernet frame with a destination
 address different than the interface address, a node N does:

 1. Push labels in CACHE on top of the frame Ethernet header
 2. Lookup the top label and proceed accordingly

Clad, et al. Expires September 6, 2018 [Page 21]

Internet-Draft Segment Routing for Service Chaining March 2018

 The receiving interface must be configured in promiscuous mode in
 order to accept those Ethernet frames.

6.1.1.2. Static proxy for inner type IPv4

 Upon receiving an MPLS packet with top label L, where L is an MPLS
 IPv4 static proxy segment, a node N does:

 1. IF payload type is IPv4 THEN
 2. Pop all labels
 3. Forward the exposed packet on IFACE-OUT towards S-ADDR
 4. ELSE
 5. Drop the packet

 Upon receiving a non link-local IPv4 packet on IFACE-IN, a node N
 does:

 1. Decrement TTL and update checksum
 2. Push labels in CACHE on top of the packet IPv4 header
 3. Lookup the top label and proceed accordingly

6.1.1.3. Static proxy for inner type IPv6

 Upon receiving an MPLS packet with top label L, where L is an MPLS
 IPv6 static proxy segment, a node N does:

 1. IF payload type is IPv6 THEN
 2. Pop all labels
 3. Forward the exposed packet on IFACE-OUT towards S-ADDR
 4. ELSE
 5. Drop the packet

 Upon receiving a non link-local IPv6 packet on IFACE-IN, a node N
 does:

 1. Decrement Hop Limit
 2. Push labels in CACHE on top of the packet IPv6 header
 3. Lookup the top label and proceed accordingly

6.1.2. SRv6 pseudocode

6.1.2.1. Static proxy for inner type Ethernet

 Upon receiving an IPv6 packet destined for S, where S is an IPv6
 static proxy segment for Ethernet traffic, a node N does:

Clad, et al. Expires September 6, 2018 [Page 22]

Internet-Draft Segment Routing for Service Chaining March 2018

 1. IF ENH == 59 THEN ;; Ref1
 2. Remove the (outer) IPv6 header and its extension headers
 3. Forward the exposed frame on IFACE-OUT
 4. ELSE
 5. Drop the packet

 Ref1: 59 refers to "no next header" as defined by IANA allocation for
 Internet Protocol Numbers.

 Upon receiving on IFACE-IN an Ethernet frame with a destination
 address different than the interface address, a node N does:

 1. Retrieve CACHE entry matching IFACE-IN and traffic type
 2. Push SRH with CACHE.LIST on top of the Ethernet header ;; Ref2
 3. Push IPv6 header with
 SA = CACHE.SA
 DA = CACHE.LIST[0] ;; Ref3
 Next Header = 43 ;; Ref4
 4. Set outer payload length and flow label
 5. Lookup outer DA in appropriate table and proceed accordingly

 Ref2: Unless otherwise specified, the segments in CACHE.LIST should
 be encoded in reversed order, Segment Left and Last Entry values
 should be set of the length of CACHE.LIST minus 1, and Next Header
 should be set to 59.

 Ref3: CACHE.LIST[0] represents the first IPv6 SID in CACHE.LIST.

 Ref4: If CACHE.LIST contains a single entry, the SRH can be omitted
 and the Next Header value must be set to 59.

 The receiving interface must be configured in promiscuous mode in
 order to accept those Ethernet frames.

6.1.2.2. Static proxy for inner type IPv4

 Upon receiving an IPv6 packet destined for S, where S is an IPv6
 static proxy segment for IPv4 traffic, a node N does:

 1. IF ENH == 4 THEN ;; Ref1
 2. Remove the (outer) IPv6 header and its extension headers
 3. Forward the exposed packet on IFACE-OUT towards S-ADDR
 4. ELSE
 5. Drop the packet

 Ref1: 4 refers to IPv4 encapsulation as defined by IANA allocation
 for Internet Protocol Numbers.

Clad, et al. Expires September 6, 2018 [Page 23]

Internet-Draft Segment Routing for Service Chaining March 2018

 Upon receiving a non link-local IPv4 packet on IFACE-IN, a node N
 does:

 1. Decrement TTL and update checksum
 2. IF CACHE.SRH THEN ;; Ref2
 3. Push CACHE.SRH on top of the existing IPv4 header
 4. Set NH value of the pushed SRH to 4
 5. Push outer IPv6 header with SA, DA and traffic class from CACHE
 6. Set outer payload length and flow label
 7. Set NH value to 43 if an SRH was added, or 4 otherwise
 8. Lookup outer DA in appropriate table and proceed accordingly

 Ref2: CACHE.SRH represents the SRH defined in CACHE, if any, for the
 static SR proxy segment associated with IFACE-IN.

6.1.2.3. Static proxy for inner type IPv6

 Upon receiving an IPv6 packet destined for S, where S is an IPv6
 static proxy segment for IPv6 traffic, a node N does:

 1. IF ENH == 41 THEN ;; Ref1
 2. Remove the (outer) IPv6 header and its extension headers
 3. Forward the exposed packet on IFACE-OUT towards S-ADDR
 4. ELSE
 5. Drop the packet

 Ref1: 41 refers to IPv6 encapsulation as defined by IANA allocation
 for Internet Protocol Numbers.

 Upon receiving a non-link-local IPv6 packet on IFACE-IN, a node N
 does:

 1. Decrement Hop Limit
 2. IF CACHE.SRH THEN ;; Ref2
 3. Push CACHE.SRH on top of the existing IPv6 header
 4. Set NH value of the pushed SRH to 41
 5. Push outer IPv6 header with SA, DA and traffic class from CACHE
 6. Set outer payload length and flow label
 7. Set NH value to 43 if an SRH was added, or 41 otherwise
 8. Lookup outer DA in appropriate table and proceed accordingly

 Ref2: CACHE.SRH represents the SRH defined in CACHE, if any, for the
 static SR proxy segment associated with IFACE-IN.

Clad, et al. Expires September 6, 2018 [Page 24]

Internet-Draft Segment Routing for Service Chaining March 2018

6.2. Dynamic SR proxy

 The dynamic proxy is an improvement over the static proxy that
 dynamically learns the SR information before removing it from the
 incoming traffic. The same information can then be re-attached to
 the traffic returning from the SF. As opposed to the static SR
 proxy, no CACHE information needs to be configured. Instead, the
 dynamic SR proxy relies on a local caching mechanism on the node
 instantiating this segment. Therefore, a dynamic proxy segment
 cannot be the last segment in an SR SC policy. As mentioned at the
 beginning of Section 6, a different SR behavior should be used if the
 SF is meant to be the final destination of an SR SC policy.

 Upon receiving a packet whose active segment matches a dynamic SR
 proxy function, the proxy node pops the top MPLS label or applies the
 SRv6 End behavior, then compares the updated SR information with the
 cache entry for the current segment. If the cache is empty or
 different, it is updated with the new SR information. The SR
 information is then removed and the inner packet is sent towards the
 SF.

 The cache entry is not mapped to any particular packet, but instead
 to an SR SC policy identified by the receiving interface (IFACE-IN).
 Any non-link-local IP packet or non-local Ethernet frame received on
 that interface will be re-encapsulated with the cached headers as
 described in Section 6.1. The SF may thus drop, modify or generate
 new packets without affecting the proxy.

6.2.1. SR-MPLS pseudocode

 The dynamic proxy SR-MPLS pseudocode is obtained by inserting the
 following instructions between lines 1 and 2 of the static SR-MPLS
 pseudocode.

 1. IF top label S bit is 0 THEN
 2. Pop top label
 3. IF C(IFACE-IN) different from remaining labels THEN ;; Ref1
 4. Copy all remaining labels into C(IFACE-IN) ;; Ref2
 5. ELSE
 6. Drop the packet

 Ref1: A TTL margin can be configured for the top label stack entry to
 prevent constant cache updates when multiple equal-cost paths with
 different hop counts are used towards the SR proxy node. In that
 case, a TTL difference smaller than the configured margin should not
 trigger a cache update (provided that the labels are the same).

Clad, et al. Expires September 6, 2018 [Page 25]

Internet-Draft Segment Routing for Service Chaining March 2018

 Ref2: C(IFACE-IN) represents the cache entry associated to the
 dynamic SR proxy segment. It is identified with IFACE-IN in order to
 efficiently retrieve the right SR information when a packet arrives
 on this interface.

 In addition, the inbound policy should check that C(IFACE-IN) has
 been defined before attempting to restore the MPLS label stack, and
 drop the packet otherwise.

6.2.2. SRv6 pseudocode

 The dynamic proxy SRv6 pseudocode is obtained by inserting the
 following instructions between lines 1 and 2 of the static proxy SRv6
 pseudocode.

 1. IF NH=SRH & SL > 0 THEN
 2. Decrement SL and update the IPv6 DA with SRH[SL]
 3. IF C(IFACE-IN) different from IPv6 encaps THEN ;; Ref1
 4. Copy the IPv6 encaps into C(IFACE-IN) ;; Ref2
 5. ELSE
 6. Drop the packet

 Ref1: "IPv6 encaps" represents the IPv6 header and any attached
 extension header.

 Ref2: C(IFACE-IN) represents the cache entry associated to the
 dynamic SR proxy segment. It is identified with IFACE-IN in order to
 efficiently retrieve the right SR information when a packet arrives
 on this interface.

 In addition, the inbound policy should check that C(IFACE-IN) has
 been defined before attempting to restore the IPv6 encapsulation, and
 drop the packet otherwise.

6.3. Shared memory SR proxy

 The shared memory proxy is an SR endpoint behavior for processing SR-
 MPLS or SRv6 encapsulated traffic on behalf of an SR-unaware SF.
 This proxy behavior leverages a shared-memory interface with the SF
 in order to hide the SR information from an SR-unaware SF while
 keeping it attached to the packet. We assume in this case that the
 proxy and the SF are running on the same compute node. A typical
 scenario is an SR-capable vrouter running on a container host and
 forwarding traffic to virtual SFs isolated within their respective
 container.

 More details will be added in a future revision of this document.

Clad, et al. Expires September 6, 2018 [Page 26]

Internet-Draft Segment Routing for Service Chaining March 2018

6.4. Masquerading SR proxy

 The masquerading proxy is an SR endpoint behavior for processing SRv6
 traffic on behalf of an SR-unaware SF. This proxy thus receives SR
 traffic that is formed of an IPv6 header and an SRH on top of an
 inner payload. The masquerading behavior is independent from the
 inner payload type. Hence, the inner payload can be of any type but
 it is usually expected to be a transport layer packet, such as TCP or
 UDP.

 A masquerading SR proxy segment is associated with the following
 mandatory parameters:

 o S-ADDR: Ethernet or IPv6 address of the SF

 o IFACE-OUT: Local interface for sending traffic towards the SF

 o IFACE-IN: Local interface receiving the traffic coming back from
 the SF

 A masquerading SR proxy segment is thus defined for a specific SF and
 bound to a pair of directed interfaces or sub-interfaces on the
 proxy. As opposed to the static and dynamic SR proxies, a
 masquerading segment can be present at the same time in any number of
 SR SC policies and the same interfaces can be bound to multiple
 masquerading proxy segments. The only restriction is that a
 masquerading proxy segment cannot be the last segment in an SR SC
 policy.

 The first part of the masquerading behavior is triggered when the
 proxy node receives an IPv6 packet whose Destination Address matches
 a masquerading proxy segment. The proxy inspects the IPv6 extension
 headers and substitutes the Destination Address with the last segment
 in the SRH attached to the IPv6 header, which represents the final
 destination of the IPv6 packet. The packet is then sent out towards
 the SF.

 The SF receives an IPv6 packet whose source and destination addresses
 are respectively the original source and final destination. It does
 not attempt to inspect the SRH, as RFC8200 specifies that routing
 extension headers are not examined or processed by transit nodes.
 Instead, the SF simply forwards the packet based on its current
 Destination Address. In this scenario, we assume that the SF can
 only inspect, drop or perform limited changes to the packets. For
 example, Intrusion Detection Systems, Deep Packet Inspectors and non-
 NAT Firewalls are among the SFs that can be supported by a
 masquerading SR proxy. Variants of the masquerading behavior are

https://datatracker.ietf.org/doc/html/rfc8200

Clad, et al. Expires September 6, 2018 [Page 27]

Internet-Draft Segment Routing for Service Chaining March 2018

 defined in Section 6.4.2 and Section 6.4.3 to support a wider range
 of SFs.

 The second part of the masquerading behavior, also called de-
 masquerading, is an inbound policy attached to the proxy interface
 receiving the traffic returning from the SF, IFACE-IN. This policy
 inspects the incoming traffic and triggers a regular SRv6 endpoint
 processing (End) on any IPv6 packet that contains an SRH. This
 processing occurs before any lookup on the packet Destination Address
 is performed and it is sufficient to restore the right active segment
 as the Destination Address of the IPv6 packet.

6.4.1. SRv6 masquerading proxy pseudocode

 Masquerading: Upon receiving a packet destined for S, where S is an
 IPv6 masquerading proxy segment, a node N processes it as follows.

 1. IF NH=SRH & SL > 0 THEN
 2. Update the IPv6 DA with SRH[0]
 3. Forward the packet on IFACE-OUT
 4. ELSE
 5. Drop the packet

 De-masquerading: Upon receiving a non-link-local IPv6 packet on
 IFACE-IN, a node N processes it as follows.

 1. IF NH=SRH & SL > 0 THEN
 2. Decrement SL
 3. Update the IPv6 DA with SRH[SL] ;; Ref1
 4. Lookup DA in appropriate table and proceed accordingly

 Ref2: This pseudocode can be augmented to support the Penultimate
 Segment Popping (PSP) endpoint flavor. The exact pseudocode
 modification are provided in
 [I-D.filsfils-spring-srv6-network-programming].

6.4.2. Variant 1: Destination NAT

 SFs modifying the destination address in the packets they process,
 such as NATs, can be supported by a masquerading proxy with the
 following modification to the de-masquerading pseudocode.

 De-masquerading - NAT: Upon receiving a non-link-local IPv6 packet on
 IFACE-IN, a node N processes it as follows.

Clad, et al. Expires September 6, 2018 [Page 28]

Internet-Draft Segment Routing for Service Chaining March 2018

 1. IF NH=SRH & SL > 0 THEN
 2. Update SRH[0] with the IPv6 DA
 3. Decrement SL
 4. Update the IPv6 DA with SRH[SL]
 5. Lookup DA in appropriate table and proceed accordingly

6.4.3. Variant 2: Caching

 SFs generating packets or acting as endpoints for transport
 connections can be supported by adding a dynamic caching mechanism
 similar to the one described in Section 6.2.

 More details will be added in a future revision of this document.

7. Metadata

7.1. MPLS data plane

 Since the MPLS encapsulation has no explicit protocol identifier
 field to indicate the protocol type of the MPLS payload, how to
 indicate the presence of metadata (i.e., the NSH which is only used
 as a metadata containner) in an MPLS packet is a potential issue to
 be addressed. One possible way to address the above issue is: SFFs
 allocate two different labels for a given SF, one indicates the
 presence of NSH while the other indicates the absence of NSH. This
 approach has no change to the current MPLS architecture but it would
 require more than one label binding for a given SF. Another possible
 way is to introduce a protocol identifier field within the MPLS
 packet as described in [I-D.xu-mpls-payload-protocol-identifier].

 More details about how to contain metadata within an MPLS packet
 would be considered in the future version of this draft.

7.2. IPv6 data plane

7.2.1. SRH TLV objects

 The IPv6 SRH TLV objects are designed to carry all sorts of metadata.
 In particular, [I-D.ietf-6man-segment-routing-header] defines the NSH
 carrier TLV as a container for NSH metadata.

 TLV objects can be imposed by the ingress edge router that steers the
 traffic into the SR SC policy.

 An SR-aware SF may impose, modify or remove any TLV object attached
 to the first SRH, either by directly modifying the packet headers or
 via a control channel between the SF and its forwarding plane.

Clad, et al. Expires September 6, 2018 [Page 29]

Internet-Draft Segment Routing for Service Chaining March 2018

 An SR-aware SF that re-classifies the traffic and steers it into a
 new SR SC policy (e.g. DPI) may attach any TLV object to the new
 SRH.

 Metadata imposition and handling will be further discussed in a
 future version of this document.

7.2.2. SRH tag

 The SRH tag identifies a packet as part of a group or class of
 packets [I-D.ietf-6man-segment-routing-header].

 In an SFC context, this field can be used to encode basic metadata in
 the SRH.

8. Implementation status

 The static SR proxy is available for SR-MPLS and SRv6 on various
 Cisco hardware and software platforms. Furthermore, the following
 proxies are available on open-source software.

 +-------------+-------------+
 | VPP | Linux |
 +---+-----------------------------------+-------------+-------------+
M	Static proxy	Available	In progress
P			
L	Dynamic proxy	In progress	In progress
S			
	Shared memory proxy	In progress	In progress
+---+-----------------------------------+-------------+-------------+			
	Static proxy	Available	In progress
	Dynamic proxy - Inner type Ethernet	In progress	In progress
	Dynamic proxy - Inner type IPv4	Available	Available
S			
R	Dynamic proxy - Inner type IPv6	Available	Available
v			
6	Shared memory proxy	In progress	In progress
	Masquerading proxy	Available	Available
	Masquerading proxy - NAT variant	In progress	In progress
	Masquerading proxy - Cache variant	In progress	In progress
 +---+-----------------------------------+-------------+-------------+

 Open-source implementation status table

Clad, et al. Expires September 6, 2018 [Page 30]

Internet-Draft Segment Routing for Service Chaining March 2018

9. Related works

 The Segment Routing solution addresses a wide problem that covers
 both topological and service chaining policies. The topological and
 service instructions can be either deployed in isolation or in
 combination. SR has thus a wider applicability than the architecture
 defined in [RFC7665]. Furthermore, the inherent property of SR is a
 stateless network fabric. In SR, there is no state within the fabric
 to recognize a flow and associate it with a policy. State is only
 present at the ingress edge of the SR domain, where the policy is
 encoded into the packets. This is completely different from other
 proposals such as [RFC8300] and the MPLS label swapping mechanism
 described in [I-D.farrel-mpls-sfc], which rely on state configured at
 every hop of the service chain.

10. IANA Considerations

 This I-D requests the IANA to allocate, within the "SRv6 Endpoint
 Types" sub-registry belonging to the top-level "Segment-routing with
 IPv6 dataplane (SRv6) Parameters" registry, the following
 allocations:

 +-------------+-----+-----------------------------------+-----------+
 | Value/Range | Hex | Endpoint function | Reference |
 +-------------+-----+-----------------------------------+-----------+
TBA	TBA	End.AN - SR-aware function	[This.ID]
		(native)	
TBA	TBA	End.AS - Static proxy	[This.ID]
TBA	TBA	End.AD - Dynamic proxy	[This.ID]
TBA	TBA	End.AM - Masquerading proxy	[This.ID]
 +-------------+-----+-----------------------------------+-----------+

 Table 1: SRv6 SFC Endpoint Types

11. Security Considerations

 The security requirements and mechanisms described in
 [I-D.ietf-spring-segment-routing] and
 [I-D.ietf-6man-segment-routing-header] also apply to this document.

 Furthermore, it is fundamental to the SFC design that the classifier
 is a trusted resource which determines the processing that the packet
 will be subject to, including for example the firewall. Where an SF
 is not SR-aware the packet may exist as an IP packet, however this is
 an intrinsic part of the SFC design which needs to define how a
 packet is protected in that environment. Where a tunnel is used to
 link two non-MPLS domains, the tunnel design needs to specify how it
 is secured.

https://datatracker.ietf.org/doc/html/rfc7665
https://datatracker.ietf.org/doc/html/rfc8300

Clad, et al. Expires September 6, 2018 [Page 31]

Internet-Draft Segment Routing for Service Chaining March 2018

 Thus the security vulnerabilities are addressed in the underlying
 technologies used by this design, which itself does not introduce any
 new security vulnerabilities.

12. Acknowledgements

 The authors would like to thank Loa Andersson, Andrew G. Malis,
 Adrian Farrel, Alexander Vainshtein and Joel M. Halpern for their
 valuable comments and suggestions on the document.

13. Contributors

 P. Camarillo (Cisco), B. Peirens (Proximus), D. Steinberg
 (Steinberg Consulting), A. AbdelSalam (Gran Sasso Science
 Institute), G. Dawra (Cisco), S. Bryant (Huawei), H. Assarpour
 (Broadcom), H. Shah (Ciena), L. Contreras (Telefonica I+D), J.
 Tantsura (Individual), M. Vigoureux (Nokia) and J. Bhattacharya
 (Cisco) substantially contributed to the content of this document.

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

14.2. Informative References

 [I-D.dawra-idr-bgp-sr-service-chaining]
 Dawra, G., Filsfils, C., daniel.bernier@bell.ca, d.,
 Uttaro, J., Decraene, B., Elmalky, H., Xu, X., Clad, F.,
 and K. Talaulikar, "BGP Control Plane Extensions for
 Segment Routing based Service Chaining", draft-dawra-idr-

bgp-sr-service-chaining-02 (work in progress), January
 2018.

 [I-D.farrel-mpls-sfc]
 Farrel, A., Bryant, S., and J. Drake, "An MPLS-Based
 Forwarding Plane for Service Function Chaining", draft-

farrel-mpls-sfc-04 (work in progress), March 2018.

Clad, et al. Expires September 6, 2018 [Page 32]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-dawra-idr-bgp-sr-service-chaining-02
https://datatracker.ietf.org/doc/html/draft-dawra-idr-bgp-sr-service-chaining-02
https://datatracker.ietf.org/doc/html/draft-farrel-mpls-sfc-04
https://datatracker.ietf.org/doc/html/draft-farrel-mpls-sfc-04

Internet-Draft Segment Routing for Service Chaining March 2018

 [I-D.filsfils-spring-segment-routing-policy]
 Filsfils, C., Sivabalan, S., Raza, K., Liste, J., Clad,
 F., Talaulikar, K., Ali, Z., Hegde, S.,
 daniel.voyer@bell.ca, d., Lin, S., bogdanov@google.com,
 b., Krol, P., Horneffer, M., Steinberg, D., Decraene, B.,
 Litkowski, S., and P. Mattes, "Segment Routing Policy for
 Traffic Engineering", draft-filsfils-spring-segment-

routing-policy-05 (work in progress), February 2018.

 [I-D.filsfils-spring-srv6-network-programming]
 Filsfils, C., Leddy, J., daniel.voyer@bell.ca, d.,
 daniel.bernier@bell.ca, d., Steinberg, D., Raszuk, R.,
 Matsushima, S., Lebrun, D., Decraene, B., Peirens, B.,
 Salsano, S., Naik, G., Elmalky, H., Jonnalagadda, P.,
 Sharif, M., Ayyangar, A., Mynam, S., Henderickx, W.,
 Bashandy, A., Raza, K., Dukes, D., Clad, F., and P.
 Camarillo, "SRv6 Network Programming", draft-filsfils-

spring-srv6-network-programming-03 (work in progress),
 December 2017.

 [I-D.ietf-6man-segment-routing-header]
 Previdi, S., Filsfils, C., Raza, K., Dukes, D., Leddy, J.,
 Field, B., daniel.voyer@bell.ca, d.,
 daniel.bernier@bell.ca, d., Matsushima, S., Leung, I.,
 Linkova, J., Aries, E., Kosugi, T., Vyncke, E., Lebrun,
 D., Steinberg, D., and R. Raszuk, "IPv6 Segment Routing
 Header (SRH)", draft-ietf-6man-segment-routing-header-08
 (work in progress), January 2018.

 [I-D.ietf-spring-segment-routing]
 Filsfils, C., Previdi, S., Ginsberg, L., Decraene, B.,
 Litkowski, S., and R. Shakir, "Segment Routing
 Architecture", draft-ietf-spring-segment-routing-15 (work
 in progress), January 2018.

 [I-D.ietf-spring-segment-routing-mpls]
 Bashandy, A., Filsfils, C., Previdi, S., Decraene, B.,
 Litkowski, S., and R. Shakir, "Segment Routing with MPLS
 data plane", draft-ietf-spring-segment-routing-mpls-12
 (work in progress), February 2018.

 [I-D.xu-mpls-payload-protocol-identifier]
 Xu, X., Assarpour, H., and S. Ma, "MPLS Payload Protocol
 Identifier", draft-xu-mpls-payload-protocol-identifier-04
 (work in progress), January 2018.

https://datatracker.ietf.org/doc/html/draft-filsfils-spring-segment-routing-policy-05
https://datatracker.ietf.org/doc/html/draft-filsfils-spring-segment-routing-policy-05
https://datatracker.ietf.org/doc/html/draft-filsfils-spring-srv6-network-programming-03
https://datatracker.ietf.org/doc/html/draft-filsfils-spring-srv6-network-programming-03
https://datatracker.ietf.org/doc/html/draft-ietf-6man-segment-routing-header-08
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-15
https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-routing-mpls-12
https://datatracker.ietf.org/doc/html/draft-xu-mpls-payload-protocol-identifier-04

Clad, et al. Expires September 6, 2018 [Page 33]

Internet-Draft Segment Routing for Service Chaining March 2018

 [I-D.xu-mpls-sr-over-ip]
 Xu, X., Bryant, S., Farrel, A., Bashandy, A., Henderickx,
 W., and Z. Li, "SR-MPLS over IP", draft-xu-mpls-sr-over-

ip-00 (work in progress), February 2018.

 [RFC4023] Worster, T., Rekhter, Y., and E. Rosen, Ed.,
 "Encapsulating MPLS in IP or Generic Routing Encapsulation
 (GRE)", RFC 4023, DOI 10.17487/RFC4023, March 2005,
 <https://www.rfc-editor.org/info/rfc4023>.

 [RFC4817] Townsley, M., Pignataro, C., Wainner, S., Seely, T., and
 J. Young, "Encapsulation of MPLS over Layer 2 Tunneling
 Protocol Version 3", RFC 4817, DOI 10.17487/RFC4817, March
 2007, <https://www.rfc-editor.org/info/rfc4817>.

 [RFC7510] Xu, X., Sheth, N., Yong, L., Callon, R., and D. Black,
 "Encapsulating MPLS in UDP", RFC 7510,
 DOI 10.17487/RFC7510, April 2015,
 <https://www.rfc-editor.org/info/rfc7510>.

 [RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <https://www.rfc-editor.org/info/rfc7665>.

 [RFC8300] Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
 "Network Service Header (NSH)", RFC 8300,
 DOI 10.17487/RFC8300, January 2018,
 <https://www.rfc-editor.org/info/rfc8300>.

Authors' Addresses

 Francois Clad (editor)
 Cisco Systems, Inc.
 France

 Email: fclad@cisco.com

 Xiaohu Xu (editor)
 Alibaba

 Email: xiaohu.xxh@alibaba-inc.com

https://datatracker.ietf.org/doc/html/draft-xu-mpls-sr-over-ip-00
https://datatracker.ietf.org/doc/html/draft-xu-mpls-sr-over-ip-00
https://datatracker.ietf.org/doc/html/rfc4023
https://www.rfc-editor.org/info/rfc4023
https://datatracker.ietf.org/doc/html/rfc4817
https://www.rfc-editor.org/info/rfc4817
https://datatracker.ietf.org/doc/html/rfc7510
https://www.rfc-editor.org/info/rfc7510
https://datatracker.ietf.org/doc/html/rfc7665
https://www.rfc-editor.org/info/rfc7665
https://datatracker.ietf.org/doc/html/rfc8300
https://www.rfc-editor.org/info/rfc8300

Clad, et al. Expires September 6, 2018 [Page 34]

Internet-Draft Segment Routing for Service Chaining March 2018

 Clarence Filsfils
 Cisco Systems, Inc.
 Belgium

 Email: cf@cisco.com

 Daniel Bernier
 Bell Canada
 Canada

 Email: daniel.bernier@bell.ca

 Cheng Li
 Huawei

 Email: chengli13@huawei.com

 Bruno Decraene
 Orange
 France

 Email: bruno.decraene@orange.com

 Shaowen Ma
 Juniper

 Email: mashaowen@gmail.com

 Chaitanya Yadlapalli
 AT&T
 USA

 Email: cy098d@att.com

 Wim Henderickx
 Nokia
 Belgium

 Email: wim.henderickx@nokia.com

Clad, et al. Expires September 6, 2018 [Page 35]

Internet-Draft Segment Routing for Service Chaining March 2018

 Stefano Salsano
 Universita di Roma "Tor Vergata"
 Italy

 Email: stefano.salsano@uniroma2.it

Clad, et al. Expires September 6, 2018 [Page 36]

