
SALUD D. Worley
Internet-Draft Ariadne
Intended status: Standards Track April 18, 2016
Expires: October 20, 2016

Simpler Algorithms for Processing Alert-Info URNs
draft-worley-alert-info-fsm-00

Abstract

 The "alert" namespace of uniform resource names (URNs) can be used in
 the Alert-Info header field of Session Initiation Protocol (SIP)
 requests and responses to inform a VoIP telephone (user agent) of the
 characteristics of the call that the user agent has originated or
 terminated. Based on the URNs in the Alert-Info header field, the
 user agent must select an the best available signal to present to its
 user to indicate the characteristics of the call. This document
 describes a method of constructing a finite state machine (FSM) to do
 this selection. In many situations, the resulting FSM is simpler and
 faster than previously described selection algorithms. The designer
 must construct the FSM so that its behavior will satisfy the
 requirements given in the definition of the "alert" URN namespace.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 20, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Worley Expires October 20, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Outline of the Algorithm 3
3. A Very Simple Example . 6
4. Example 1 of RFC 7462 . 8
5. Example with "source" and "priority" URNs 12
6. Examples 2, 3, and 4 of RFC 7462 15
7. Normative References . 18

 Author's Address . 18

1. Introduction

 A SIP user agent server determines an alerting signal (the ring tone)
 to present to its user (the called user) by processing the Alert-Info
 header field(s) in the incoming INVITE request. Similarly, a SIP
 user agent client determines an alerting signal (the ringback tone)
 to present to its user (the calling user) by processing the Alert-
 Info header field(s) in the incoming provisional response to its
 outgoing INVITE request.

 [RFC3261] envisioned that the Alert-Info header field value would be
 a URL that the user agent could use to retrieve a ringing signal.
 This usage has security problems and is inconvenient to implement in
 practice. [RFC7462] introduced an alternative practice: The values
 could be URNs in the "alert" URN namespace which specify features of
 the call or of the signal that should be signaled to the user.
 [RFC7462] defined a large set of "alert" URNs and procedures for
 extending the set.

 However, a user agent is not expected to provide alerting signals
 that can render more than a small subset of the possible combinations
 of "alert" URNs, so the user agent is frequently required to select
 one alerting signal which renders only a subset of the information in
 the Alert-Info header field(s). The requirements for the process of
 selecting an alerting signal based on "alert" URNs are given in

section 11.1 of [RFC7462].

Section 12 of [RFC7462] gives one possible algorithm for selecting a
 signal which satisfies section 11.1. This algorithm can be used

http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc7462
https://datatracker.ietf.org/doc/html/rfc7462
https://datatracker.ietf.org/doc/html/rfc7462
https://datatracker.ietf.org/doc/html/rfc7462
https://datatracker.ietf.org/doc/html/rfc7462#section-11.1
https://datatracker.ietf.org/doc/html/rfc7462#section-12

Worley Expires October 20, 2016 [Page 2]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

 regardless of the set of alerting signals that the user agent
 provides and their specified meanings. This demonstrates that the
 rules can always be satisfied. However, the algorithm is complex and
 slow.

 The purpose of this document is to describe an easier method for user
 agent designers to construct an algorithm for selecting alerting
 signals based on the Alert-Info header fields in a SIP message. The
 concept of this algorithm is that the user agent processes the Alert-
 Info URNs left-to-right using a finite state machine (FSM), and the
 state of the FSM after processing the URNs determines which signal
 the user agent will present to the user. If the FSM is correctly
 constructed by the designer, the constraints of section 11.1 will be
 satisfied.

2. Outline of the Algorithm

 The user agent processes the Alert-Info URNs left-to-right using a
 finite state machine (FSM), with each successive URN causing the FSM
 to transition to a new state. The state of the FSM after processing
 the URNs determines which signal the user agent will present to the
 user. Each state of the FSM describes the information which has so
 far been extracted from the URNs.

 Note that the values in an Alert-Info header field are allowed to be
 URIs of any schema.[RFC3261] The processing of URIs that are not
 "alert" URNs is not considered by this document, nor is it specified
 by [RFC7462]. But the algorithm designer must consider what to do
 with such URIs. The simplest choice is to simply ignore them.
 Alternatively, the algorithm may examine the URI to determine if it
 names an alerting signal or describes how to retrieve an alerting
 signal, and if so, choose to render that signal, rather than
 processing the "alert" URNs to select a signal. In any case, the
 remainder of this document assumes that all Alert-Info URIs that are
 not "alert" URNs have been removed.

 In order to reduce the infinite set of possible "alert" URNs to a
 finite "alphabet" of input "letters" which cause the FSM's
 transitions, the designer must consider which URNs the user agent
 will understand. For instance, if the user agent has signals to
 represent

 urn:alert:source:external
 urn:alert:source:internal

 the FSM will have transitions for inputs urn:alert:source:external
 and urn:alert:source:internal.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc7462

Worley Expires October 20, 2016 [Page 3]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

 With each of these inputs, we implicitly include all URNs that extend
 it with with additional alert-ind-parts, such as
 urn:alert:source:external:far-out@example. We must do this because
 the user agent must ignore any trailing alert-ind-parts that it does
 not understand. To represent this clearly, we will write, e.g.,
 urn:alert:source:external:* to represent the input URN
 urn:alert:source:external and any extensions of it by further alert-
 ind-parts. For any FSM state, any of these input URNs will cause the
 same transition.

 Overall, if the user agent has a signal that represents a URN, then
 that URN and every URN formed from it by adding alert-ind-parts must
 each be contained in some letter (although in complex cases, they may
 be distributed across multiple letters).

 Now assume that the user agent has a signal for
 urn:alert:source:external. Thus, it must have
 urn:alert:source:external:* in the FSM alphabet. Though we are not
 required to by the rules of [RFC7462] section 11.1, we also want to
 distinguish all other alert-indications in the category "source", so
 that earlier "source" URNs prevent any effect from contradictory
 "source" URNs that appear later. For example, we don't want a call
 with

 Alert-Info: <urn:alert:source:unclassified>,
 <urn:alert:source:external>

 or

 Alert-Info: <urn:alert:source:special@example>,
 <urn:alert:source:external>

 or even

 Alert-Info: <urn:alert:source:special@example:a:b>,
 <urn:alert:source:external>

 from being alerted as "external source", even though the user agent
 has no specific signals for "source:unclassified" or
 "source:special@example". To achieve this, we add to the FSM
 alphabet an additional set of URNs

 urn:alert:source:(other)

 which consists of all URNs starting with urn:alert:source but whose
 next alert-ind-part the user agent does not classify specifically.

https://datatracker.ietf.org/doc/html/rfc7462#section-11.1

Worley Expires October 20, 2016 [Page 4]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

 The result of these considerations is that for any category of
 "alert" URN that the user agent understands, all possible URNs in
 that category are elements of exactly one FSM letter.

 If the user agent distinguishes both an "alert" URN and a URN that
 subsets it by adding one or more alert-ind-parts, the alphabet of
 sets of URNs is more complex. Consider a user agent that can signal
 not just "internal source" but also "internal source from a VIP",
 i.e., it has distinct signals for

 urn:alert:source:internal
 urn:alert:source:internal:vip@example
 urn:alert:source:external

 In order to properly partition all "source" URNs, there is one letter
 for each of these sets:

 urn:alert:source:(other)
 all "source" URNs that are not "internal" or "external",

 urn:alert:source:external:*
 all "source:external" URNs,

 urn:alert:source:internal
 the single URN urn:alert:source:internal,

 urn:alert:source:internal:vip@example:*
 all "source:internal:vip@example" URNs, and

 urn:alert:source:internal:(other)
 all "source:internal" URNs that have a following alert-ind-part
 that is not "vip@example".

 Each state of the FSM describes the information which has so far been
 extracted from the URNs. For our convenience, we label each state by
 one or more URN classes that have so far been processed. The
 transitions between the states are largely determined by the labels:
 a transition leads from a start state to the final state that has the
 label that adds the input URN class to the label of the start state.
 For a given state and URN class, if there is no final state with an
 appropriate label, then the transition's final state is same as the
 start state because the user agent cannot signal the new URN in
 combination with signaling the earlier URNs.

 Each state is also labeled by the signal that the user agent uses to
 indicate to the user the information recorded by that state. After
 processing the sequence of URNs in the Alert-Info header field, the
 user agent alerts using the signal labeling the final state.

Worley Expires October 20, 2016 [Page 5]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

3. A Very Simple Example

 This section shows a minimal example, where the only Alert-Info URNs
 that the user agent can signal are:

 urn:alert:source:external
 urn:alert:source:internal

 As described in Section 2, we implicitly include with these URNs all
 URNs with additional alert-ind-parts, such as
 urn:alert:source:external:far-out@example, and we write, e.g.,
 urn:alert:source:external:* for urn:alert:source:external and any
 extensions of it by further alert-ind-parts.

 We need to classify all other alert-indications in the category
 "source". To this end, we add to our alphabet:

 urn:alert:source:(other)

 which includes all URNs starting with urn:alert:source but whose next
 alert-ind-part the user agent does not classify specifically.

 This gives the following set of URN classes as the input alphabet of
 the FSM:

 urn:alert:source:external:*
 urn:alert:source:internal:*
 urn:alert:source:(other) [which includes
 urn:alert:source:unclassified]

 Each state of the FSM describes the information which has so far been
 extracted from the URNs. For our convenience, we label each state by
 one or more URN classes that have so far been processed (and which
 have some effect). The transitions between the states can be seen
 from the labels: a transition's final state has the label that adds
 the URN class which is causing the transition to the label of the
 start state. If there is no such final state, then the transition's
 final state is same as the start state. Each state is also labeled
 by the signal that the user agent uses to indicate to the user the
 information recorded by that state; after processing the sequence of
 URNs in the Alert-Info header field, the user agent alerts using the
 signal labeling the final state.

 Because the user agent can signal only one URN, the states of the FSM
 are:

Worley Expires October 20, 2016 [Page 6]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

 initial
 source:external
 source:internal
 source:(other)

 The full FSM is:

 State: initial
 Signal: default
 Transitions:
 urn:alert:source:external:* -> source:external
 urn:alert:source:internal:* -> source:internal
 urn:alert:source:(other) -> source:(other)
 other -> initial

 State: source:external
 Signal: external source
 Transitions:
 any -> source:external

 State: source:internal
 Signal: internal source
 Transitions:
 any -> source:internal

 State: source:(other)
 Signal: default
 Transitions:
 any -> source:(other)

 As you can see, once the FSM receives a URN in category "source", it
 latches that value to determine the signal.

 As an example of processing, if the user agent receives

 Alert-Info: <urn:alert:source:internal>

 then processing progresses:

 State: initial
 Process: urn:alert:source:internal
 State: source:internal
 Signal: internal source

 If the user agent receives

 Alert-Info: <urn:alert:source:external>,
 <urn:alert:source:internal>

Worley Expires October 20, 2016 [Page 7]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

 then processing progresses:

 State: initial
 Process: urn:alert:source:external
 State: source:external
 Process: urn:alert:source:internal
 State: source:external
 Signal: external source

 If the user agent receives

 Alert-Info: <urn:alert:source:unclassified>,
 <urn:alert:source:internal>

 then processing progresses:

 State: initial
 Process: urn:alert:source:(other)
 State: source:(other)
 Process: urn:alert:source:internal
 State: source:(other)
 Signal: default

 If the user agent receives

 Alert-Info: <urn:alert:priority:high>,
 <urn:alert:source:internal>

 then processing progresses:

 State: initial
 Process: urn:alert:priority:high
 State: initial
 Process: urn:alert:source:internal
 State: source:internal
 Signal: internal source

 In the trivial case where the user agent receives no Alert-Info URNs,
 then processing begins and ends with the FSM in the initial state and
 selects the default signal.

4. Example 1 of RFC 7462

 A more complicated example is in section 12.2.1 of [RFC7462], where
 the user agent can signal "external source", "internal source", "low
 priority", and "high priority" individually (but not in combination),
 was well as a default signal.

https://datatracker.ietf.org/doc/html/rfc7462
https://datatracker.ietf.org/doc/html/rfc7462#section-12.2.1

Worley Expires October 20, 2016 [Page 8]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

 We want the user agent to understand the following URNs because it
 has signals to represent them:

 urn:alert:source:external
 urn:alert:source:internal
 urn:alert:priority:low
 urn:alert:priority:high

 As before, under each of these, we implicitly include all URNs with
 additional alert-ind-parts.

 To these, we add to the alphabet:

 urn:alert:source:(other)
 urn:alert:priority:(other)

 The alphabet of the FSM is the union of the alphabets of the two
 component FSMs:

 urn:alert:source:external:*
 urn:alert:source:internal:*
 urn:alert:source:(other) [which includes
 urn:alert:source:unclassified]
 urn:alert:priority:low:*
 urn:alert:priority:high:*
 urn:alert:priority:(other) [which includes
 urn:alert:priority:normal]

 In this example, the FSM is:

 State: initial
 Signal: default
 Transitions:
 urn:alert:source:external:* -> source:external
 urn:alert:source:internal:* -> source:internal
 urn:alert:source:(other) -> source:(other)
 urn:alert:priority:low:* -> priority:low
 urn:alert:priority:high:* -> priority:high
 urn:alert:priority:(other) -> priority:(other)
 other -> initial

 Since the user agent is not capable of signaling any additional
 information when it signals "external source", from state
 source:external, all URNs transition to itself:

Worley Expires October 20, 2016 [Page 9]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

 State: source:external
 Signal: external source
 Transitions:
 any -> source:external

 Similarly:

 State: source:internal
 Signal: internal source
 Transitions:
 any -> source:internal

 The state source:(other) records that an un-signalable "source" URN
 has been seen. But if a "priority" URN is then processed, the user
 agent may be able to signal that. So "priority" URNs can cause
 transitions to other states:

 State: source:(other)
 Signal: default
 Transitions:
 urn:alert:source:external:* -> source:(other)
 urn:alert:source:internal:* -> source:(other)
 urn:alert:source:(other) -> source:(other)
 urn:alert:priority:low:* -> priority:low
 urn:alert:priority:high:* -> priority:high
 urn:alert:priority:(other) -> source:(other)/priority:(other)
 other -> source:(other)

 The "priority" URNs generate a similar set of states:

 State: priority:low
 Signal: low priority
 Transitions:
 any -> priority:low

 State: priority:high
 Signal: high priority
 Transitions:
 any -> priority:high

Worley Expires October 20, 2016 [Page 10]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

 State: priority:(other)
 Signal: default
 Transitions:
 urn:alert:source:external:* -> source:external
 urn:alert:source:internal:* -> source:internal
 urn:alert:source:(other) -> source:(other)/priority(other)
 urn:alert:priority:low:* -> priority:(other)
 urn:alert:priority:high:* -> priority:(other)
 urn:alert:priority:(other) -> priority:(other)
 other -> priority:(other)

 And there is one further state that records that both an un-
 signalable source has been specified and an un-signalable priority, a
 state from which no URN can cause a non-default signal:

 State: source:(other)/priority:(other)
 Signal: default
 Transitions:
 any -> source:(other)/priority:(other)

 As an example of processing, if the user agent receives

 Alert-Info: <urn:alert:source:internal>

 then processing progresses:

 State: initial
 Process: urn:alert:source:internal
 State: source:internal
 Signal: internal source

 A more complicated example involves multiple "source" URNs which do
 not select a non-default signal and one "priority" URN which can be
 signaled:

 Alert-Info: <urn:alert:source:unclassified>,
 <urn:alert:source:internal>,
 <urn:alert:priority:high>

 State: initial
 Process: urn:alert:source:unclassified
 State: source:(other)
 Process: urn:alert:source:internal
 State: source:(other)
 Process: urn:alert:priority:high
 State: priority:high
 Signal: high priority

Worley Expires October 20, 2016 [Page 11]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

5. Example with "source" and "priority" URNs

 Let us add to the set of signals in the preceding example ones that
 express combinations like "internal source, high priority". This
 gives a total of 9 signals. If we have signals to express all
 combinations, the FSM is the product of two FSMs, each one like the
 FSM in Section 3: one handling the "source" URNs and one handling the
 "priority" URNs. The 16 states of the product FSM correspond to
 pairs of states, one from the simple "source" FSM and one from the
 simple "priority" FSM.

 The following alphabet of URN classes is recognized:

 urn:alert:source:external:*
 urn:alert:source:internal:*
 urn:alert:source:(other) [which includes
 urn:alert:source:unclassified]
 urn:alert:priority:low:*
 urn:alert:priority:high:*
 urn:alert:priority:(other) [which includes
 urn:alert:priority:normal]

 The 16 states are as follows, where many states have a simple
 structure because from them, no further information can be recorded.

 State: initial/initial
 Signal: default
 Transitions:
 urn:alert:source:external:* -> source:external/initial
 urn:alert:source:internal:* -> source:internal/initial
 urn:alert:source:(other) -> source:(other)/initial
 urn:alert:priority:high:* -> initial/priority:high
 urn:alert:priority:low:* -> initial/priority:low
 urn:alert:priority:(other):* -> initial/priority:(other)
 other -> initial/initial

 State: source:external/initial
 Signal: external source
 Transitions:
 urn:alert:priority:high:* -> source:external/priority:high
 urn:alert:priority:low:* -> source:external/priority:low
 urn:alert:priority:(other):* -> source:external/priority:(other)
 other -> source:external/initial

Worley Expires October 20, 2016 [Page 12]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

 State: source:internal/initial
 Signal: internal source
 Transitions:
 urn:alert:priority:high:* -> source:internal/priority:high
 urn:alert:priority:low:* -> source:internal/priority:low
 urn:alert:priority:(other):* -> source:internal/priority:(other)
 other -> source:internal/initial

 State: source:(other)/initial
 Signal: default
 Transitions:
 urn:alert:priority:high:* -> source:(other)/priority:high
 urn:alert:priority:low:* -> source:(other)/priority:low
 urn:alert:priority:(other):* -> source:(other)/priority:(other)
 other -> source:(other)/initial

 State: initial/priority:high
 Signal: high priority
 Transitions:
 urn:alert:source:external:* -> source:external/priority:high
 urn:alert:source:internal:* -> source:internal/priority:high
 urn:alert:source:(other) -> source:(other)/priority:high
 other -> initial/priority:high

 State: source:external/priority:high
 Signal: external source/high priority
 Transitions:
 any -> source:external/priority:high

 State: source:internal/priority:high
 Signal: internal source/high priority
 Transitions:
 any -> source:internal/priority:high

 State: source:(other)/priority:high
 Signal: high priority
 Transitions:
 any -> source:(other)/priority:high

 State: initial/priority:low
 Signal: low priority
 Transitions:
 urn:alert:source:external:* -> source:external/priority:low
 urn:alert:source:internal:* -> source:internal/priority:low
 urn:alert:source:(other) -> source:(other)/priority:low
 other -> initial/priority:low

Worley Expires October 20, 2016 [Page 13]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

 State: source:external/priority:low
 Signal: external source/low priority
 Transitions:
 any -> source:external/priority:low

 State: source:internal/priority:low
 Signal: internal source/low priority
 Transitions:
 any -> source:internal/priority:low

 State: source:(other)/priority:low
 Signal: low priority
 Transitions:
 any -> source:(other)/priority:low

 State: initial/priority:(other)
 Signal: default
 Transitions:
 any -> initial/priority:(other)

 State: source:external/priority:(other)
 Signal: external source
 Transitions:
 any -> source:external/priority:(other)

 State: source:internal/priority:(other)
 Signal: internal source
 Transitions:
 any -> source:internal/priority:(other)

 State: source:(other)/priority:(other)
 Signal: default
 Transitions:
 any -> source:(other)/priority:(other)

 An example of processing that involves multiple "source" URNs and one
 "priority" URN:

Worley Expires October 20, 2016 [Page 14]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

 Alert-Info: <urn:alert:source:internal>,
 <urn:alert:source:unclassified>,
 <urn:alert:priority:high>

 State: initial/initial
 Process: urn:alert:source:internal
 State: source:internal/initial
 Process: urn:alert:source:unclassified
 State: source:internal/initial
 Process: urn:alert:priority:high
 State: source:internal/priority:high
 Signal: internal source/high priority

6. Examples 2, 3, and 4 of RFC 7462

 Example 2 of [RFC7462] is similar to the example in Section 5, but it
 does not include a signal for the combination "internal source, low
 priority" so as to set up some tricky resolution examples.

 The FSM for this example has the same alphabet as the FSM of the
 preceding example. Most of the states of this FSM are the same as
 the states of the preceding example, but the state "source:internal/
 priority:low" is missing because there is no signal for that
 combination. It is replaced by two states: One state we label
 "source:internal/[priority:low]"; it records that "source:internal"
 was specified first (and is to be signaled) and that "priority:low"
 was specified later (and can not be signaled -- but it still prevents
 any further "priority" URN from having an effect). The other state
 we label "[source:internal]/priority:low"; it records the reverse
 sequence of events.

 The changes in the FSM are:

 State: source:internal/initial
 Signal: internal source
 Transitions:
 urn:alert:priority:low:* -> source:internal/[priority:low]
 (other transitions unchanged)

 State: initial/priority:low
 Signal: low priority
 Transitions:
 urn:alert:source:internal:* -> [source:internal]/priority:low
 (other transitions unchanged)

https://datatracker.ietf.org/doc/html/rfc7462
https://datatracker.ietf.org/doc/html/rfc7462

Worley Expires October 20, 2016 [Page 15]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

 State: source:internal/[priority:low]
 Signal: internal source
 Transitions:
 any -> source:internal/[priority:low]

 State: [source:internal]/priority:low
 Signal: low priority
 Transitions:
 any -> [source:internal]/priority:low

 An example of processing that involves multiple "source" URNs and one
 "priority" URN:

 Alert-Info: <urn:alert:source:internal>,
 <urn:alert:source:unclassified>,
 <urn:alert:priority:high>
 State: initial/initial
 Process: urn:alert:source:internal
 State: source:internal/initial
 Process: urn:alert:source:unclassified
 State: source:internal/initial
 Process: urn:alert:priority:high
 State: source:internal/priority:high
 Signal: internal source/high priority

 If the user agent receives

 Alert-Info: <urn:alert:source:internal>

 State: initial/initial
 Process: urn:alert:source:internal
 State: source:internal/initial
 Signal: internal source

 If the user agent receives

 Alert-Info: <urn:alert:source:external>,
 <urn:alert:priority:low>

 State: initial/initial
 Process: urn:alert:source:external
 State: source:external/initial
 Process: urn:alert:priority:low
 State: source:external/priority:low
 Signal: external source/low priority

 Suppose the same user agent receives

Worley Expires October 20, 2016 [Page 16]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

 Alert-Info: <urn:alert:source:internal>,
 <urn:alert:priority:low>

 Note that there is no signal that corresponds to this combination.
 In that case, the processing is:

 State: initial/initial
 Process: urn:alert:source:internal
 State: source:internal/initial
 Process: urn:alert:priority:low
 State: source:internal/[priority:low]
 Signal: internal source

 If the order of the URNs is reversed, what is signaled is still the
 the meaning of now different first URN:

 Alert-Info: <urn:alert:priority:low>,
 <urn:alert:source:internal>

 State: initial/initial
 Process: urn:alert:priority:low
 State: initial/priority:low
 Process: urn:alert:source:internal
 State: [source:internal]/priority:low
 Signal: low priority

 Notice that the existence of the new states prevents later URNs of a
 category from overriding earlier URNs of that category, even if the
 earlier one was not itself signalable:

 Alert-Info: <urn:alert:priority:low>,
 <urn:alert:source:internal>,
 <urn:alert:source:external>

 State: initial/initial
 Process: urn:alert:priority:low
 State: initial/priority:low
 Process: urn:alert:source:internal
 State: [source:internal]/priority:low
 Process: urn:alert:source:external
 State: [source:internal]/priority:low
 Signal: low priority

 whereas if the second transition had been to the state "initial/
 priority:low" (on the basis that there is no proper state
 "source:internal/priority:low"), then the third transition would have
 been to the state "source:external/priority:low", and the signal
 would have been "external source/low priority".

Worley Expires October 20, 2016 [Page 17]

Internet-Draft Simpler Algorithms for Alert-Info URNs April 2016

7. Normative References

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <http://www.rfc-editor.org/info/rfc3261>.

 [RFC7462] Liess, L., Ed., Jesske, R., Johnston, A., Worley, D., and
 P. Kyzivat, "URNs for the Alert-Info Header Field of the
 Session Initiation Protocol (SIP)", RFC 7462,
 DOI 10.17487/RFC7462, March 2015,
 <http://www.rfc-editor.org/info/rfc7462>.

Author's Address

 Dale R. Worley
 Ariadne Internet Services
 738 Main St.
 Waltham, MA 02451
 US

 Email: worley@ariadne.com

Worley Expires October 20, 2016 [Page 18]

https://datatracker.ietf.org/doc/html/rfc3261
http://www.rfc-editor.org/info/rfc3261
https://datatracker.ietf.org/doc/html/rfc7462
http://www.rfc-editor.org/info/rfc7462

