
TAPS M. Welzl
Internet-Draft University of Oslo
Intended status: Informational M. Tuexen
Expires: March 24, 2016 Muenster Univ. of Appl. Sciences
 N. Khademi
 University of Oslo
 September 21, 2015

An Approach to Identify Services Provided by IETF Transport Protocols
and Congestion Control Mechanisms
draft-welzl-taps-transports-00

Abstract

 This document describes a method to identify services in transport
 protocols and congestion control mechanisms. It shows the approach
 using TCP and SCTP (base protocol) as examples.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 24, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Welzl, et al. Expires March 24, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Transport Services September 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. General Considerations . 3
3. Pass 1 . 4
3.1. Services Provided by TCP 4
3.1.1. Excluded Services 7

3.2. Services Provided by SCTP 7
3.2.1. Excluded Services 10

4. Pass 2 . 11
4.1. CONNECTION Related Services 11
4.2. DATA Transfer Related Services 15

5. Pass 3 . 17
5.1. CONNECTION Related Services 17
5.2. DATA Transfer Related Services 20
5.2.1. Sending Data . 20
5.2.2. Receiving Data . 21
5.2.3. Errors . 21

6. Acknowledgements . 21
7. IANA Considerations . 22
8. Security Considerations 22
9. References . 22
9.1. Normative References 22
9.2. Informative References 22

 Authors' Addresses . 23

Welzl, et al. Expires March 24, 2016 [Page 2]

Internet-Draft Transport Services September 2015

1. Introduction

 This document considers every form of defined interaction between a
 transport protocol and its user ("upper layer protocol" or
 "application") as a "service". Here, the term "service" is NOT the
 same as the term used to specify the entire "above transport"
 protocol that maps to a port number or service name (which is another
 common meaning of the term "service" in the context of transport
 protocols).

 The list of services in this document is strictly based on the parts
 of relevant protocol specifications that relate to what the protocol
 provides to an application using it and how the application interacts
 with it. It is based on text that describes what a protocol provides
 to the upper layer and how it is used (abstract API descriptions),
 given for the base protocols in [RFC0793], [RFC1122] and [RFC4960].
 It does not cover API instances, for example the one given for SCTP
 in [RFC6458]. It also does not cover parts of the protocol that are
 explicitly stated as optional to implement.

 The document presents a three-pass process to arrive at a list of
 transport protocol services. In the first pass, the relevant RFC
 text is discussed per protocol. In the second pass, this discussion
 is used to derive a list of services that are uniformly categorized
 across protocols. Here, an attempt is made to present services in a
 slightly generalized form to highlight similarities. This is, for
 example, achieved by renaming "commands" (or "transport primitives")
 of protocols or by avoiding a strict 1:1-mapping between these
 commands and services in the list. Finally, the third pass presents
 all services from pass 2, identifying which protocol implements them.

 In the list resulting from the second pass, some services are missing
 because they are implicit in some protocols, and they only become
 explicit when we consider the superset of all services offered by all
 protocols. For example, TCP's reliability includes integrity via a
 checksum, but we have to include a protocol like UDP-Lite as
 specified in [RFC3828] (which has a configurable checksum) in the
 list to consider an always-on checksum as a service (it would not be
 a service if no protocol would allow to disable / configure the
 checksum). Similar arguments apply to other protocol functions (e.g.
 congestion control). The complete list of services across all
 protocols is therefore only available after pass 3.

2. General Considerations

 This document discusses unicast [AUTHOR'S NOTE: for simplicity, for
 now. Hopefully forever, for simplicity.] transport protocols.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc3828

Welzl, et al. Expires March 24, 2016 [Page 3]

Internet-Draft Transport Services September 2015

 [AUTHOR'S NOTE: we skip "congestion control mechanisms" for now.
 This simplifies the discussion; the congestion control mechanisms
 part is about LEDBAT, which is easy to add later.] Transport
 protocols provide communication between processes that operate on
 network endpoints, which means that they allow for multiplexing of
 such communication between the same IP addresses, and normally such
 multiplexing is achieved using port numbers. Port multiplexing is
 therefore assumed to be always provided and not discussed as a
 service.

 Some protocols are connection-oriented. Connection-orientation, to
 the user of an application, means that there is state shared between
 the endpoints that persists across messages. Connection-oriented
 protocols often use an initial call to "open" a connection before
 communication can progress, and require communication to be
 explicitly terminated by issuing a "close" call. Moreover, a
 "connection" is the common state that some transport primitives refer
 to, e.g. to adjust general configuration settings. Connections
 establishment, maintenance and termination are therefore used to
 categorize certain services of connection-oriented transport
 protocols in pass 2 and 3.

3. Pass 1

 In this first iteration, the relevant text parts of the RFCs
 describing the protocols are summarized, focusing on what a protocol
 provides to the upper layer and how it is used (abstract API
 descriptions). The resulting text is somewhat heterogeneous in
 terminology - e.g. the user of the protocol is called "Application"
 in TCP and "Upper-Layer Protocol (ULP)" in SCTP, and TCP's "user
 commands" are called "ULP primitives" in SCTP.

3.1. Services Provided by TCP

 [RFC0793] states: "TCP is a connection-oriented, end-to-end reliable
 protocol (..)". Section 3.8 in [RFC0793] further specifies the
 interaction with the application by listing several user commands.
 It is also assumed that the Operating System provides a means for TCP
 to asynchronously signal the user program. Here, we describe the
 relevant user commands and notifications to the application.

 open: this is either active or passive, to initiate a connection or
 listen for incoming connections. All other commands are
 associated with a specific connection, which is assumed to first
 have been opened. An active open call contains a fully specified
 foreign socket (IP address + port number). A passive open call
 with a fully specified foreign socket waits for a particular

https://datatracker.ietf.org/doc/html/rfc0793#section-3.8

Welzl, et al. Expires March 24, 2016 [Page 4]

Internet-Draft Transport Services September 2015

 connection; alternatively, a passive open call can leave the
 foreign socket unspecified to accept any incoming connection. A
 fully specified passive call can later be made active by executing
 'send'. Optionally, a timeout can be specified, after which TCP
 will abort the connection if data is not successfully delivered to
 the destination (else a default timeout value is used). [RFC1122]
 describes a procedure for aborting the connection that must be
 used to avoid excessive retransmissions, and states that an
 application must be able to control the threshold used to
 determine the condition for aborting -- and that this threshold
 may be measured in time units or as a count of retransmission.
 This indicates that the timeout could also be specified as a count
 of retransmission.

 Also optional, for multihomed hosts, the local IP address can be
 provided [RFC1122]. If it is not provided, a default choice will
 be made in case of active open calls. A passive open call will
 await incoming connection requests to all local addresses and then
 maintain usage of the local IP address where the incoming
 connection request has arrived. Finally, the 'options' parameter
 is explained in [RFC1122] to let the application specify IP
 options such as source route, record route, or timestamp. (It is
 not stated on which segments of a connection these options should
 be applied, but probably all segments, as this is also stated in a
 specification given for the usage of source route (section 4.2.3.8
 of [RFC1122]). As the only non-optional IP option in this
 parameter, an application can specify a source route when it
 actively opens a TCP connection.

 send: this command hands over a provided number of bytes that TCP
 should reliably send to the other side of the connection. The
 PUSH flag, if set, requires data to be promptly transmitted to the
 receiver without delaying it. Conversely, not using PUSH can
 reduce the number of unnecessary wakeup calls to the receiving
 application process. [RFC1122] states that "Generally, an
 interactive application protocol must set the PUSH flag at least
 in the last SEND call in each command or response sequence. A
 bulk transfer protocol like FTP should set the PUSH flag on the
 last segment of a file or when necessary to prevent buffer
 deadlock." An optional timeout parameter can be provided that
 updates the connection's timeout (see "open").

 receive: This command allocates a receiving buffer for a provided
 number of bytes. It returns the number of received bytes provided
 in the buffer when these bytes have been received and written into
 the buffer by TCP.

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.8
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.3.8
https://datatracker.ietf.org/doc/html/rfc1122

Welzl, et al. Expires March 24, 2016 [Page 5]

Internet-Draft Transport Services September 2015

 close: This command closes one side of a connection. It is
 semantically equivalent to "I have no more data to send" but does
 not mean "I will not receive any more", as the other side may
 still have data to send. This call reliably delivers any data
 that has already been handed over to TCP (and if that fails,
 'close' becomes 'abort'). Close also implies push function.

 abort: This command causes all pending SENDs and RECEIVES to be
 aborted, the TCB to be removed, and a special RESET message to be
 sent to the TCP on the other side of the connection. See
 [RFC0793].

 close event: TCP will signal a user, even if no RECEIVEs are
 outstanding, that the other side has closed, so the user can
 terminate his/her side gracefully. See [RFC0793], Section 3.5.

 abort event: When TCP aborts a connection upon receiving a "Reset"
 from the peer, it "advises the user and goes to the CLOSED state."
 See [RFC0793], Section 3.4.

 USER TIMEOUT event: This event, described in Section 3.9 of
 [RFC0793], is executed when the user timeout expires (see 'open').
 All queues are flushed and the user is signaled "error: connection
 aborted due to user timeout".

 ERROR_REPORT event: This event, described in Section 4.2.4.1 of
 [RFC1122], informs the application of "soft errors" that can be
 safely ignored, including the arrival of an ICMP error message or
 excessive retransmissions (reaching a threshold below the
 threshold where the connection is aborted).

 Type-of-Service: Section 4.2.4.2 of [RFC1122] states that the
 application layer MUST be able to specify the Type-of-Service
 (TOS) for segments that are sent on a connection. The application
 should be able to change the TOS during the connection lifetime,
 and the TOS value should be passed to the IP layer unchanged.
 Since then, parts of the TOS field have been assigned to ECN
 [RFC3168] and the six most significant bits have been assigned to
 DiffServ by the name of DSField [RFC3260]. Staying with the
 intention behind the application's ability to specify the "Type of
 Service", this should probably be interpreted to mean the value in
 the DSField, which is the Differentiated Services Codepoint
 (DSCP). [AUTHOR's NOTE: text trying to "read between the lines"
 of RFCs here... this perhaps calls for an update to [RFC1122]?]

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793#section-3.5
https://datatracker.ietf.org/doc/html/rfc0793#section-3.4
https://datatracker.ietf.org/doc/html/rfc0793#section-3.9
https://datatracker.ietf.org/doc/html/rfc0793#section-3.9
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.4.1
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.4.1
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.4.2
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3260
https://datatracker.ietf.org/doc/html/rfc1122

Welzl, et al. Expires March 24, 2016 [Page 6]

Internet-Draft Transport Services September 2015

 Nagle: An application can disable the Nagle algorithm on an
 individual connection. This algorithm delays sending data for
 some time to increase the likelihood of sending a full-sized
 segment.

3.1.1. Excluded Services

 The 'send' and 'receive' commands include usage of an "URGENT"
 mechanism, which SHOULD NOT be implemented according to [RFC6093] and
 is therefore not described here. This also concerns the notification
 "Urgent pointer advance" in the ERROR_REPORT described in Section

4.2.4.1 of [RFC1122].

 The 'open' command specified in [RFC0793] can be handed optional
 Precedence or security/compartment information according to
 [RFC0793], but this was not incuded here because it is mostly
 irrelevant today, as explained in [RFC7414]. The 'open' command also
 includes a parameter "options" that is explained in [RFC1122] to let
 the application specify IP options such as source route, record
 route, or timestamp. This parameter was not included here because it
 is not clear which segments of a connection (all?) these options
 would then be applied to.

 The 'status' command was not included because [RFC0793] calls this
 command "implementation dependent" and states that it "could be
 excluded without adverse effect". Moreover, while a data block
 containing specific information is described, it is also stated that
 not all of this information may always be available. The 'receive'
 command can (under some conditions) yield the status of the PUSH flag
 according to [RFC0793], but this TCP functionality is made optional
 in [RFC1122] and hence not considered here. Generally, section

4.2.2.2 of [RFC1122] says that PUSH on send calls MAY be implemented,
 which could be a reason not to consider it here. However, the text
 then explains that "an interactive application protocol must set the
 PUSH flag at least in the last SEND call in each command or response
 sequence", and most implementations provide some option to cause a
 behavior that is in some way similar to PUSH. Therefore PUSH is
 described as a part of SEND here. [RFC1122] also introduces keep-
 alives to TCP, but these are optional and hence not considered here.
 [RFC1122] describes that "some TCP implementations have included a
 FLUSH call", indicating that this call is optional to implement. It
 is therefore not considered here.

3.2. Services Provided by SCTP

Section 1.1 of [RFC4960] lists limitations of TCP that SCTP removes.
 Three of the four mentioned limitations directly translate into a

https://datatracker.ietf.org/doc/html/rfc6093
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.4.1
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.4.1
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc7414
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.2.2
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.2.2
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc4960#section-1.1

Welzl, et al. Expires March 24, 2016 [Page 7]

Internet-Draft Transport Services September 2015

 service that is visible to an application using SCTP: 1) it allows
 for preservation of message delineations; 2) these messages, while
 reliably transferred, do not require to be in order unless the
 application wants it; 3) multi-homing is supported. In SCTP,
 connections are called "association" and they can be between not only
 two (as in TCP) but multiple transport addresses at each end point.
 For SCTP running over IP, [RFC4960] defines a "transport address" as
 "the combination of an IP address and an SCTP port number (where SCTP
 is the transport protocol)".

Section 10 of [RFC4960] further specifies the interaction with the
 application (which RFC [RFC4960] calls the "Upper Layer Protocol"
 (ULP)). It is assumed that the Operating System provides a means for
 SCTP to asynchronously signal the user program. Here, we describe
 the relevant ULP primitives and notifications to the ULP process:

 Initialize: Initialize creates a local SCTP instance which it binds
 to a set of local addresses (and, if provided, port number).
 Initialize needs to be called only once per set of local
 addresses.

 Associate: This creates an association (the SCTP equivalent of a
 connection) between the local SCTP instance and a remote SCTP
 instance. Most primitives are associated with a specific
 association, which is assumed to first have been created.
 Associate can return a list of destination transport addresses so
 that multiple paths can later be used. One of the transport
 addresses from the returned destination addresses will be selected
 by the local endpoint as default primary path for sending SCTP
 packets to this peer, but this choice can be changed by the ULP
 using the list of destination addresses. Associate is also given
 the number of outgoing streams to request and optionally returns
 the number of outgoing streams negotiated.

 Send: This sends a message of a certain length in bytes over an
 association. A number can be provided to later refer to the
 correct message when reporting an error and a stream id is
 provided to specify the stream to be used inside an association
 (we consider this as a mandatory parameter here for simplicity: if
 not provided, the stream id defaults to 0). An optional maximum
 life time can specify the time after which the message should be
 discarded rather than sent. A choice (advisory, i.e. not
 guaranteed) of the preferred path can be made by providing a
 destination transport address, and the message can be delivered
 out-of-order if the unordered flag is set. Another advisory flag
 indicates the ULP's preference to avoid bundling user data with
 other outbound DATA chunks (i.e., in the same packet). The
 handling of this no-bundle flags is similar to the sender side

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc4960#section-10
https://datatracker.ietf.org/doc/html/rfc4960

Welzl, et al. Expires March 24, 2016 [Page 8]

Internet-Draft Transport Services September 2015

 handling of the TCP PUSH flag. A payload protocol-id can be
 provided to pass a value that indicates the type of payload
 protocol data to the peer.

 Receive: Messages are received from an association, and optionally a
 stream within the association, with their size returned. The ULP
 is notified of the availability of data via a DATA ARRIVE
 notification. If the sender has included a payload protocol-id,
 this value is also returned. If the received message is only a
 partial delivery of a whole message, a partial flag will indicate
 so, in which case the stream id and a stream sequence number are
 provided to the ULP.

 Shutdown: This primitive gracefully closes an association, reliably
 delivering any data that has already been handed over to SCTP. A
 return code informs about success or failure of this procedure.

 Abort: This ungracefully closes an association, by discarding any
 locally queued data and informing the peer that the association
 was aborted. Optionally, an abort reason to be passed to the peer
 may be provided by the ULP. A return code informs about success
 or failure of this procedure.

 Change Heartbeat / Request Heartbeat: This allows the ULP to enable/
 disable heartbeats and optionally specify a heartbeat frequency as
 well as requesting a single heartbeat to be carried out upon a
 function call, with a notification about success or failure of
 transmitting the HEARTBEAT chunk to the destination.

 Set Protocol Parameters: This allows to set values for protocol
 parameters per association; for some parameters, a setting can be
 made per transport address. The set listed in [RFC4960] is:
 RTO.Initial; RTO.Min; RTO.Max; Max.Burst; RTO.Alpha; RTO.Beta;
 Valid.Cookie.Life; Association.Max.Retrans; Path.Max.Retrans;
 Max.Init.Retransmits; HB.interval; HB.Max.Burst.

 Set Primary: This allows to set a new primary default path for an
 association by providing a transport address. Optionally, a
 default source address to be used in IP datagrams can be provided.

 Status: The 'Status' primitive returns a data block with information
 about a specified association, containing: association connection
 state; destination transport address list; destination transport
 address reachability states; current receiver window size; current
 congestion window sizes; number of unacknowledged DATA chunks;
 number of DATA chunks pending receipt; primary path; most recent
 SRTT on primary path; RTO on primary path; SRTT and RTO on other
 destination addresses.

https://datatracker.ietf.org/doc/html/rfc4960

Welzl, et al. Expires March 24, 2016 [Page 9]

Internet-Draft Transport Services September 2015

 COMMUNICATION UP notification: When a lost communication to an
 endpoint is restored or when SCTP becomes ready to send or receive
 user messages, this notification informs the ULP process about the
 affected association, the type of event that has occurred, the
 complete set of transport addresses of the peer, the maximum
 number of allowed streams and the inbound stream count (the number
 of streams the peer endpoint has requested).

 DATA ARRIVE notification: When a message is ready to be retrieved
 via the Receive primitive, the ULP process is informed by this
 notification.

 SEND FAILURE notification / Receive Unsent Message / Receive
 Unacknowledged Message: When a message cannot be delivered via an
 association, the sender can be informed about it and learn whether
 the message has just not been acknowledged or (e.g. in case of
 lifetime expiry) if it has not even been sent.

 NETWORK STATUS CHANGE notification: The NETWORK STATUS CHANGE
 notification informs the ULP about a transport address becoming
 active/inactive.

 COMMUNICATION LOST notification: When SCTP loses communication to an
 endpoint (e.g. via Heartbeats or excessive retransmission) or
 detects an abort, this notification informs the ULP process of the
 affected association and the type of event (failure OR termination
 in response to a shutdown or abort request).

 SHUTDOWN COMPLETE notification: When SCTP completes the shutdown
 procedures, this notification is passed to the upper layer,
 informing it about the affected assocation.

3.2.1. Excluded Services

 For the 'Set Primary' primitive, an optional possibility to specify
 the source transport address to be used in outgoing IP datagrams is
 described, but the RFC text says "some implementations may allow you
 to", indicating that implementing this in SCTP is optional. This
 functionality is therefore not considered here. The 'Receive'
 primitive can also return certain additional information, but this is
 also left up to the implementation and therefore not considered.
 With a COMMUNICATION LOST notification, some more information may
 optionally be passed to the ULP (e.g., identification to retrieve
 unsent and unacknowledged data). SCTP "can invoke" a COMMUNICATION
 ERROR notification and "may send" a RESTART notification, making
 these two notifications optional to implement. The list provided
 under 'Status' includes "etc", indicating that more information could

Welzl, et al. Expires March 24, 2016 [Page 10]

Internet-Draft Transport Services September 2015

 be provided. The primitive 'Get SRTT Report' returns information
 that is included in what 'Status' provides and is therefore not
 discussed. Similarly, 'Set Failure Threshold' sets only one out of
 various possible parameters included in 'Set Protocol Parameters'.
 The 'Destroy SCTP Instance' primitive was excluded: it erases the
 SCTP instance that was created by 'Initialize', but this does not
 translate into a service for the ULP.

4. Pass 2

 Here we categorize the services from pass 1 based on whether they
 relate to a connection or to data transmission. Services are
 presented following the nomenclature
 "CATEGORY.[SUBCATEGORY].SERVICENAME.PROTOCOL". We present
 "connection" as a general protocol-independent concept and use it to
 refer to both TCP's connections (which are identifiable by a unique
 socket pair, where a socket is defined as an IP address and TCP port)
 and SCTP's associations (which are identifiable by multiple IP
 address and port number pairs). We define the "transport address" as
 "the combination of an IP address and a transport protocol's port
 number". The "application" is the user of the protocol (called
 "Upper-Level Protocol (ULP)" in SCTP).

 Some minor details are omitted for the sake of generalization --
 e.g., for SCTP's 'close', [RFC4960] states that success or failure is
 returned, whereas this is not described in the same way for TCP in
 [RFC0793], but this detail plays no significant role for the service
 provided by either TCP or SCTP.

4.1. CONNECTION Related Services

 ESTABLISHMENT:
 Active creation of a connection from one transport address to one or
 more transport addresses.

 o CONNECT.TCP:
 Command / event: 'open' (active) or 'open' (passive) with
 destination transport address, followed by 'send'
 Parameters: 1 local IP address (optional); 1 destination transport
 address (for active open; else the destination transport address
 and the local IP address of the succeeding incoming connection
 request will be maintained); timeout (optional); options
 (optional)
 Comments: If the local IP address is not provided, a default
 choice will automatically be made. [AUTHOR'S NOTE: [RFC1122] does
 not clearly state this, but it seems to be the implication of some
 text there.] The timeout can also be a retransmission count. The

https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1122

Welzl, et al. Expires March 24, 2016 [Page 11]

Internet-Draft Transport Services September 2015

 options are IP options to be used on all segments of the
 connection. At least the Source Route option is mandatory for TCP
 to provide.

 o CONNECT.SCTP:
 Command / event: 'initialize', followed by 'associate'
 Parameters: list of local transport addresses (initialize); 1
 destination transport address; outbound stream count
 Returns: destination transport address list
 Comments: 'initialize' needs to be called only once per local
 transport address list. One destination transport address will
 automatically be chosen; it can later be changed in MAINTENANCE.

 AVAILABILITY:
 Preparing to receive incoming connection requests.

 o LISTEN.TCP:
 Command / event: 'open' (passive)
 Parameters: 1 local IP address (optional); 1 destination transport
 address (optional); timeout (optional)
 Comments: if the transport address and/or local IP address is
 provided, this waits for incoming connections from only and/or to
 only the provided address. Else this waits for incoming
 connections without this / these restraint(s). ESTABLISHMENT can
 later be done with 'send'.

 o LISTEN.SCTP:
 Command / event: 'initialize', followed by 'COMMUNICATION UP'
 notification
 Parameters: list of local transport addresses (initialize)
 Returns: destination transport address list; outbound stream
 count; inbound stream count
 Comments: initialize needs to be called only once per local
 transport address list. COMMUNICATION UP can also follow a
 COMMUNICATION LOST notification, indicating that the lost
 communication is restored.

 MAINTENANCE:
 Adjustments made to an open connection, or notifications about it.
 These are out-of-band messages to the protocol that can be issued at
 any time, at least after a connection has been established and before
 it has been terminated (with one exception: CHANGE-TIMEOUT.TCP can
 only be issued when new data are handed over for sending).

Welzl, et al. Expires March 24, 2016 [Page 12]

Internet-Draft Transport Services September 2015

 o CHANGE-TIMEOUT.TCP:
 Command / event: 'send'
 Parameters: timeout value
 Comments: when sending data, the connection's timeout value (time
 after which the connection will be aborted if data cannot be
 delivered) can be adjusted.

 o CHANGE-TIMEOUT.SCTP:
 Command / event: 'Change HeartBeat' combined with 'Set Protocol
 Parameters'
 Parameters: 'Change HeartBeat': heartbeat frequency; 'Set Protocol
 Parameters': Association.Max.Retrans (whole association) or
 Path.Max.Retrans (per transport address)
 Comments: Change Heartbeat can enable / disable heartbeats in SCTP
 as well as change their frequency. The parameter
 Association.Max.Retrans defines after how many unsuccessful
 heartbeats the connection will be terminated; thus these two
 commands / parameters together can yield a similar behavior to
 CHANGE-TIMEOUT.TCP.

 o DISABLE-NAGLE.TCP:
 Command / event: not specified
 Parameters: one boolean value
 Comments: the Nagle algorithm delays data transmission to increase
 the chance to send a full-sized segment. An application must be
 able to disable this algorithm for a connection. This is related
 to the no-bundle flag in DATA.SEND.SCTP.

 o REQUESTHEARTBEAT.SCTP:
 Command / event: 'Request HeartBeat'
 Parameters: destination transport address
 Returns: success or failure
 Comments: requests a heartbeat to be immediately carried out on a
 path, returning success or failure.

 o SETPROTOCOLPARAMETERS.SCTP:
 Command / event: 'Set Protocol Parameters'
 Parameters: RTO.Initial; RTO.Min; RTO.Max; Max.Burst; RTO.Alpha;
 RTO.Beta; Valid.Cookie.Life; Association.Max.Retrans;
 Path.Max.Retrans; Max.Init.Retransmits; HB.interval; HB.Max.Burst

 o SETPRIMARY.SCTP:
 Command / event: 'Set Primary'
 Parameters: destination transport address
 Returns: result of attempting this operation
 Comments: update the current primary address to be used, based on
 the set of available destination transport addresses of the
 association.

Welzl, et al. Expires March 24, 2016 [Page 13]

Internet-Draft Transport Services September 2015

 o ERROR.TCP:
 Command / event: 'ERROR_REPORT'
 Returns: reason (encoding not specified); subreason (encoding not
 specified)
 Comments: soft errors that can be ignored without harm by many
 applications; an application should be able to disable these
 notifications. The reported conditions include at least:
 Excessive Retransmissions and ICMP error message arrived.

 o STATUS.SCTP:
 Command / event: 'Status' and 'NETWORK STATUS CHANGE' notification
 Returns: data block with information about a specified
 association, containing: association connection state; destination
 transport address list; destination transport address reachability
 states; current receiver window size; current congestion window
 sizes; number of unacknowledged DATA chunks; number of DATA chunks
 pending receipt; primary path; most recent SRTT on primary path;
 RTO on primary path; SRTT and RTO on other destination addresses.
 The NETWORK STATUS CHANGE notification informs the application
 about a transport address becoming active/inactive.

 o CHANGE-DSCP.TCP:
 Command / event: not specified
 Parameters: DSCP value
 Comments: This allows an application to change the DSCP value. It
 was only specified for the TOS field in [RFC1122], which is here
 interpreted to refer to the DSField as per [RFC3260].

 TERMINATION:
 Gracefully or forcefully closing a connection, or being informed
 about this event happening.

 o CLOSE.TCP:
 Command / event: 'close'
 Comments: this terminates the sending side of a connection after
 reliably delivering all remaining data. Close also implies push
 function (see DATA.SEND.TCP).

 o CLOSE.SCTP:
 Command / event: 'Shutdown'
 Comments: this terminates a connection after reliably delivering
 all remaining data.

 o ABORT.TCP:
 Command / event: 'abort'
 Comments: this terminates a connection without delivering
 remaining data and sends an error message to the other side.

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc3260

Welzl, et al. Expires March 24, 2016 [Page 14]

Internet-Draft Transport Services September 2015

 o ABORT.SCTP:
 Command / event: 'abort'
 Parameters: abort reason to be given to the peer (optional)
 Comments: this terminates a connection without delivering
 remaining data and sends an error message to the other side.

 o TIMEOUT.TCP:
 Command / event: 'USER TIMEOUT' event
 Comments: the application is informed that the connection is
 aborted. This event is executed when the timeout set in
 CONNECTION.ESTABLISHMENT.CONNECT.TCP (and possibly adjusted in
 CONNECTION.MAINTENANCE.CHANGE-TIMEOOUT.TCP) expires.

 o TIMEOUT.SCTP:
 Command / event: 'COMMUNICATION LOST' event
 Comments: the application is informed that the connection is
 aborted. this event is executed when the timeout that should be
 enabled by default (see beginning of section 8.3 in [RFC4960]) and
 was possibly adjusted in CONNECTION.MAINTENANCE.CHANGE-
 TIMEOOUT.SCTP expires.

 o ABORT-EVENT.TCP:
 Command / event: not specified

 o ABORT-EVENT.SCTP:
 Command / event: 'COMMUNICATION LOST' event
 Returns: abort reason from the peer (if available)
 Comments: the application is informed that the other side has
 aborted the connection using CONNECTION.TERMINATION.ABORT.SCTP.

 o CLOSE-EVENT.TCP:
 Command / event: not specified

 o CLOSE-EVENT.SCTP:
 Command / event: 'SHUTDOWN COMPLETE' event
 Comments: the application is informed that
 CONNECTION.TERMINATION.CLOSE.SCTP was successfully completed.

4.2. DATA Transfer Related Services

 All commands in this section refer to an existing connection, i.e. a
 connection that was either established or made available for
 receiving data. In addition to the listed parameters, all sending
 commands contain a reference to a data block and all receiving
 commands contain a reference to available buffer space for the data.

https://datatracker.ietf.org/doc/html/rfc4960#section-8.3

Welzl, et al. Expires March 24, 2016 [Page 15]

Internet-Draft Transport Services September 2015

 o SEND.TCP:
 Command / event: 'send'
 Parameters: PUSH flag (optional); timeout (optional)
 Comments: If the push flag is set, the data block should promptly
 be transmitted to the receiver without waiting. The timeout can
 be configured with this call whenever data are sent (see also
 CONNECTION.MAINTENANCE.CHANGE-TIMEOUT.TCP).

 o SEND.SCTP:
 Command / event: 'Send'
 Parameters: stream number; context (optional); life time
 (optional); destination transport address (optional); unordered
 flag (optional); no-bundle flag (optional); payload protocol-id
 (optional)
 Comments: the 'stream number' denotes the stream to be used. The
 'context' number can later be used to refer to the correct message
 when an error is reported. The 'life time' specifies a time after
 which this data block will not be sent. The 'destination
 transport address' can be used to state which path should be
 preferred, if there are multiple paths available (see also
 CONNECTION.MAINTENANCE.SETPRIMARY.SCTP). The data block can be
 delivered out-of-order if the 'unordered flag' is set. The 'no-
 bundle flag' can be set to indicate a preference to avoid bundling
 (this is related to CONNECTION.MAINTENANCE.DISABLE-NAGLE.TCP).
 The 'payload protocol-id' is a number that will, if it was
 provided, be handed over to the receiving application.

 o RECEIVE.TCP:
 Command / event: 'receive'

 o RECEIVE.SCTP:
 Command / event: 'DATA ARRIVE' notification, followed by 'Receive'
 Parameters: stream number (optional)
 Returns: stream sequence number (optional), partial flag
 (optional)
 Comments: if the 'stream number' is provided, the call to receive
 only receives data on one particular stream. If a partial message
 arrives, this is indicated by the 'partial flag', and then the
 'stream sequence number' must be provided such that an application
 can restore the correct order of data blocks an entire message
 consists of.

 o SENDFAILURE-EVENT.SCTP:
 Command / event: 'SEND FAILURE' notification, optionally followed
 by 'Receive Unsent Message' or 'Receive Unacknowledged Message'
 Returns: cause code; context; unsent or unacknowledged message
 (optional)
 Comments: 'cause code' indicates the reason of the failure, and

Welzl, et al. Expires March 24, 2016 [Page 16]

Internet-Draft Transport Services September 2015

 'context' is the context number if such a number has been provided
 in DATA.SEND.SCTP, for later use with 'Receive Unsent Message' or
 'Receive Unacknowledged Message', respectively. These commands
 can be used to retrieve the complete unsent or unacknowledged
 message if desired.

5. Pass 3

 Here we present the superset of all services in all protocols, based
 on the list in pass 2 but also on text in pass 1 to include services
 that can be configured in one protocol and are static properties in
 another. Again, some minor details are omitted for the sake of
 generalization -- e.g., TCP may provide various different IP options
 but only supporting source route is mandatory to implement, and this
 detail is no longer visible in "Specify IP Options". The detail was
 removed because no other protocols provide this features. [AUTHOR'S
 NOTE: and if we find another one that does, we need that detail
 again.]

 [AUTHOR'S NOTE: the list here looks pretty similar to the list in
 pass 2 for now. This will change as more protocols are added. For
 example, if we add UDP, we will find that UDP does not do congestion
 control, which is relevant to the application using it. This will
 have to be reflected in pass 1 and pass 2, only for UDP. In pass 3,
 we can derive "congestion control" as a service of TCP and SCTP
 because it probably does not make much sense to write that only UDP
 provides a congestion control related service: the "service" of not
 doing it -- meaning that it may require more work from the
 application developer.]

5.1. CONNECTION Related Services

 ESTABLISHMENT:
 Active creation of a connection from one transport address to one or
 more transport addresses.

 o Specify IP Options
 Protocols: TCP

 o Request multiple streams
 Protocols: SCTP

 o Obtain multiple destination transport addresses
 Protocols: SCTP

Welzl, et al. Expires March 24, 2016 [Page 17]

Internet-Draft Transport Services September 2015

 AVAILABILITY:
 Preparing to receive incoming connection requests.

 o Listen, 1 specified local interface
 Protocols: TCP, SCTP

 o Listen, N specified local interfaces
 Protocols: SCTP

 o Listen, all local interfaces (unspecified)
 Protocols: TCP, SCTP

 o Obtain requested number of streams
 Protocols: SCTP

 MAINTENANCE:
 Adjustments made to an open connection, or notifications about it.
 NOTE: all services except "set primary path" in this category apply
 to one out of multiple possible paths (identified via destination
 transport addresses) in SCTP, whereas TCP uses only one path (one
 destination transport address).

 o Change timeout for aborting connection (using retransmit limit or
 time value)
 Protocols: TCP, SCTP

 o Disable Nagle algorithm
 Protocols: TCP
 Comments: This is available in SCTP implementations, but not
 specified in [RFC4960].

 o Request an immediate heartbeat, returning success/failure
 Protocols: SCTP

 o Set protocol parameters
 Protocols: SCTP
 SCTP parameters: RTO.Initial; RTO.Min; RTO.Max; Max.Burst;
 RTO.Alpha; RTO.Beta; Valid.Cookie.Life; Association.Max.Retrans;
 Path.Max.Retrans; Max.Init.Retransmits; HB.interval; HB.Max.Burst
 Comments: in future versions of this document, it might make sense
 to split out some of these parameters -- e.g., if a different
 protocol provides means to adjust the RTO calculation there could
 be a common service for them called "adjust RTO calculation".

 o Notification of Excessive Retransmissions (early warning below
 abortion threshold)
 Protocols: TCP

https://datatracker.ietf.org/doc/html/rfc4960

Welzl, et al. Expires March 24, 2016 [Page 18]

Internet-Draft Transport Services September 2015

 o Notification of ICMP error message arrival
 Protocols: TCP

 o Status (query or notification)
 Protocols: SCTP
 SCTP parameters: association connection state; destination
 transport address list; destination transport address reachability
 states; current receiver window size; current congestion window
 sizes; number of unacknowledged DATA chunks; number of DATA chunks
 pending receipt; primary path; most recent SRTT on primary path;
 RTO on primary path; SRTT and RTO on other destination addresses;
 transport address becoming active / inactive

 o Set primary path
 Protocols: SCTP

 o Change DSCP
 Protocols: TCP
 Comments: This is described to be changeable for SCTP too in
 [RFC6458].

 TERMINATION:
 Gracefully or forcefully closing a connection, or being informed
 about this event happening.

 o Close after reliably delivering all remaining data, causing an
 event informing the application on the other side
 Protocols: TCP, SCTP
 Comments: TCP's locally only closes the connection for sending; it
 may still receive data afterwards.

 o Abort without delivering remaining data, causing an event
 informing the application on the other side
 Protocols: TCP, SCTP
 Comments: In SCTP a reason can optionally be given by the
 application on the aborting side, which can then be received by
 the application on the other side.

 o Timeout event when data could not be delivered for too long
 Protocols: TCP, SCTP
 Comments: the timeout is configured with CONNECTION.MAINTENANCE
 "Change timeout for aborting connection (using retransmit limit or
 time value)".

https://datatracker.ietf.org/doc/html/rfc6458

Welzl, et al. Expires March 24, 2016 [Page 19]

Internet-Draft Transport Services September 2015

5.2. DATA Transfer Related Services

 All services in this section refer to an existing connection, i.e. a
 connection that was either established or made available for
 receiving data. In addition to the listed parameters, all sending
 commands contain a reference to a data block and all receiving
 commands contain a reference to available buffer space for the data.
 Reliable data transfer entails delay -- e.g. for the sender to wait
 until it can transmit data, or due to retransmission in case of
 packet loss.

5.2.1. Sending Data

 All services in this section are provided by DATA.SEND from pass 2.
 DATA.SEND is given a data block from the application, which we here
 call a "message".

 o Reliably transfer data
 Protocols: TCP, SCTP

 o Notifying the receiver to promptly hand over data to application
 Protocols: TCP
 Comments: This seems unnecessary in SCTP, where data arrival
 causes an event for the application.

 o Message identification
 Protocols: SCTP

 o Choice of stream
 Protocols: SCTP

 o Choice of path (destination address)
 Protocols: SCTP

 o Message lifetime
 Protocols: SCTP

 o Choice between unordered (potentially faster) or ordered delivery
 Protocols: SCTP

 o Request not to bundle messages
 Protocols: SCTP

 o Specifying a "payload protocol-id" (handed over as such by the
 receiver)
 Protocols: SCTP

Welzl, et al. Expires March 24, 2016 [Page 20]

Internet-Draft Transport Services September 2015

5.2.2. Receiving Data

 All services in this section are provided by DATA.RECEIVE from pass
 2. DATA.RECEIVE fills a buffer provided to the application, with
 what we here call a "message".

 o Receive data
 Protocols: TCP, SCTP

 o Choice of stream to receive on
 Protocols: SCTP

 o Message identification
 Protocols: SCTP
 Comments: In SCTP, this is optionally achieved with a "stream
 sequence number". The stream sequence number is always provided
 in case of partial message arrival.

 o Information about partial message arrival
 Protocols: SCTP
 Comments: In SCTP, partial messages are combined with a stream
 sequence number so that the application can restore the correct
 order of data blocks an entire message consists of.

5.2.3. Errors

 This section describes sending failures that are associated with a
 specific call to DATA.SEND from pass 2.

 o Notification of unsent messages
 Protocols: SCTP

 o Notification of unacknowledged messages
 Protocols: SCTP

6. Acknowledgements

 The authors would like to thank Joe Touch for comments on the TCP
 part. This work has received funding from the European Union's
 Horizon 2020 research and innovation programme under grant agreement
 No. 644334 (NEAT). The views expressed are solely those of the
 author(s).

Welzl, et al. Expires March 24, 2016 [Page 21]

Internet-Draft Transport Services September 2015

7. IANA Considerations

 XX RFC ED - PLEASE REMOVE THIS SECTION XXX

 This memo includes no request to IANA.

8. Security Considerations

 Security will be considered in future versions of this document.

9. References

9.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989,
 <http://www.rfc-editor.org/info/rfc1122>.

 [RFC4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC4960, September 2007,

 <http://www.rfc-editor.org/info/rfc4960>.

9.2. Informative References

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <http://www.rfc-editor.org/info/rfc3168>.

 [RFC3260] Grossman, D., "New Terminology and Clarifications for
 Diffserv", RFC 3260, DOI 10.17487/RFC3260, April 2002,
 <http://www.rfc-editor.org/info/rfc3260>.

 [RFC3828] Larzon, L-A., Degermark, M., Pink, S., Jonsson, L-E., Ed.,
 and G. Fairhurst, Ed., "The Lightweight User Datagram
 Protocol (UDP-Lite)", RFC 3828, DOI 10.17487/RFC3828,
 July 2004, <http://www.rfc-editor.org/info/rfc3828>.

 [RFC6093] Gont, F. and A. Yourtchenko, "On the Implementation of the
 TCP Urgent Mechanism", RFC 6093, DOI 10.17487/RFC6093,
 January 2011, <http://www.rfc-editor.org/info/rfc6093>.

Welzl, et al. Expires March 24, 2016 [Page 22]

https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122
http://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc4960
http://www.rfc-editor.org/info/rfc4960
https://datatracker.ietf.org/doc/html/rfc3168
http://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc3260
http://www.rfc-editor.org/info/rfc3260
https://datatracker.ietf.org/doc/html/rfc3828
http://www.rfc-editor.org/info/rfc3828
https://datatracker.ietf.org/doc/html/rfc6093
http://www.rfc-editor.org/info/rfc6093

Internet-Draft Transport Services September 2015

 [RFC6458] Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
 Yasevich, "Sockets API Extensions for the Stream Control
 Transmission Protocol (SCTP)", RFC 6458, DOI 10.17487/

RFC6458, December 2011,
 <http://www.rfc-editor.org/info/rfc6458>.

 [RFC7414] Duke, M., Braden, R., Eddy, W., Blanton, E., and A.
 Zimmermann, "A Roadmap for Transmission Control Protocol
 (TCP) Specification Documents", RFC 7414, DOI 10.17487/

RFC7414, February 2015,
 <http://www.rfc-editor.org/info/rfc7414>.

Authors' Addresses

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo, N-0316
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

 Michael Tuexen
 Muenster University of Applied Sciences
 Stegerwaldstrasse 39
 Steinfurt 48565
 Germany

 Email: tuexen@fh-muenster.de

 Naeem Khademi
 University of Oslo
 PO Box 1080 Blindern
 Oslo, N-0316
 Norway

 Email: naeemk@ifi.uio.no

Welzl, et al. Expires March 24, 2016 [Page 23]

https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458
http://www.rfc-editor.org/info/rfc6458
https://datatracker.ietf.org/doc/html/rfc7414
https://datatracker.ietf.org/doc/html/rfc7414
http://www.rfc-editor.org/info/rfc7414

