
NFVRG C. Meirosu
Internet Draft Ericsson
Intended status: Informational A. Manzalini
Expires: January 2017 Telecom Italia
 R. Steinert
 SICS
 G. Marchetto
 Politecnico di Torino
 K. Pentikousis
 EICT
 S. Wright
 AT&T
 P. Lynch
 Ixia
 W. John
 Ericsson

 July 8, 2016

DevOps for Software-Defined Telecom Infrastructures
draft-unify-nfvrg-devops-05.txt

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on January 8, 2016.

Meirosu, et al. Expires January 8, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft DevOps Challenges July 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Abstract

 Carrier-grade network management was optimized for environments built
 with monolithic physical nodes and involves significant deployment,
 integration and maintenance efforts from network service providers.
 The introduction of virtualization technologies, from the physical
 layer all the way up to the application layer, however, invalidates
 several well-established assumptions in this domain. This draft opens
 the discussion in NFVRG about challenges related to transforming the
 telecom network infrastructure into an agile, model-driven
 environment for communication services. We take inspiration from data
 center DevOps on the simplification and automation of management
 processes for a telecom service provider software-defined
 infrastructure (SDI). A number of challenges associated with
 operationalizing DevOps principles at scale in software-defined
 telecom networks are identified in relation to three areas related to
 key programmable management processes.

Table of Contents

1. Introduction...3
 2. Software-Defined Telecom Infrastructure: Roles and DevOps
 principles..5

2.1. Service Developer Role....................................6
2.2. VNF Developer role..6
2.3. System Integrator role....................................6
2.4. Operator role...7
2.5. Customer role...7
2.6. DevOps Principles...7

3. Continuous Integration...9
4. Continuous Delivery...10

Meirosu, et al. Expires January 8, 2017 [Page 2]

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft DevOps Challenges July 2016

5. Consistency, Availability and Partitioning Challenges.........10
6. Stability and Real-Time Change Challenges.....................11
7. Observability Challenges......................................13
8. Verification Challenges.......................................15
9. Testing Challenges..17
10. Programmable management......................................18
11. Security Considerations......................................20
12. IANA Considerations..20
13. References...20

13.1. Informative References..................................20
14. Contributors to earlier versions.............................23
15. Acknowledgments..23
16. Authors' Addresses...24

1. Introduction

 Carrier-grade network management was developed as an incremental
 solution once a particular network technology matured and came to be
 deployed in parallel with legacy technologies. This approach requires
 significant integration efforts when new network services are
 launched. Both centralized and distributed algorithms have been
 developed in order to solve very specific problems related to
 configuration, performance and fault management. However, such
 algorithms consider a network that is by and large functionally
 static. Thus, management processes related to introducing new or
 maintaining functionality are complex and costly due to significant
 efforts required for verification and integration.

 Network virtualization, by means of Software-Defined Networking (SDN)
 and Network Function Virtualization (NFV), creates an environment
 where network functions are no longer static or strictly embedded in
 physical boxes deployed at fixed points. The virtualized network is
 dynamic and open to fast-paced innovation enabling efficient network
 management and reduction of operating cost for network operators. A
 significant part of network capabilities are expected to become
 available through interfaces that resemble the APIs widespread within
 datacenters instead of the traditional telecom means of management
 such as the Simple Network Management Protocol, Command Line
 Interfaces or CORBA. Such an API-based approach, combined with the
 programmability offered by SDN interfaces [RFC7426], open
 opportunities for handling infrastructure, resources, and Virtual
 Network Functions (VNFs) as code, employing techniques from software
 engineering.

 The efficiency and integration of existing management techniques in
 virtualized and dynamic network environments are limited, however.
 Monitoring tools, e.g. based on simple counters, physical network

Meirosu, et al. Expires January 8, 2017 [Page 3]

https://datatracker.ietf.org/doc/html/rfc7426

Internet-Draft DevOps Challenges July 2016

 taps and active probing, do not scale well and provide only a small
 part of the observability features required in such a dynamic
 environment. Although huge amounts of monitoring data can be
 collected from the nodes, the typical granularity is rather static
 and coarse and management bandwidths may be limited. Debugging and
 troubleshooting techniques developed for software-defined
 environments are a research topic that has gathered interest in the
 research community in the last years. Still, it is yet to be explored
 how to integrate them into an operational network management system.
 Moreover, research tools developed in academia (such as NetSight
 [H2014], OFRewind [W2011], FlowChecker [S2010], etc.) were limited to
 solving very particular, well-defined problems, and oftentimes are
 not built for automation and integration into carrier-grade network
 operations workflows. As the virtualized network functions,
 infrastructure software and infrastructure hardware become more
 dynamic [NFVSWA], the monitoring, management and testing approaches
 also need to change.

 The topics at hand have already attracted several standardization
 organizations to look into the issues arising in this new
 environment. For example, IETF working groups have activities in the
 area of OAM and Verification for Service Function Chaining
 [I-D.aldrin-sfc-oam-framework] [I-D.lee-sfc-verification] for Service
 Function Chaining. At IRTF, [RFC7149] asks a set of relevant
 questions regarding operations of SDNs. The ETSI NFV ISG defines the
 MANO interfaces [NFVMANO], and TMForum investigates gaps between
 these interfaces and existing specifications in [TR228]. The need for
 programmatic APIs in the orchestration of compute, network and
 storage resources is discussed in [I-D.unify-nfvrg-challenges].

 From a research perspective, problems related to operations of
 software-defined networks are in part outlined in [SDNsurvey] and
 research referring to both cloud and software-defined networks are
 discussed in [D4.1].

 The purpose of this first version of this document is to act as a
 discussion opener in NFVRG by describing a set of principles that are
 relevant for applying DevOps ideas to managing software-defined
 telecom network infrastructures. We identify a set of challenges
 related to developing tools, interfaces and protocols that would
 support these principles and how can we leverage standard APIs for
 simplifying management tasks.

Meirosu, et al. Expires January 8, 2017 [Page 4]

https://datatracker.ietf.org/doc/html/rfc7149

Internet-Draft DevOps Challenges July 2016

2. Software-Defined Telecom Infrastructure: Roles and DevOps principles

 There is no single list of core principles of DevOps, but it is
 generally recognized as encompassing:

 . Iterative development / Incremental feature content

 . Continuous deployment

 . Automated processes

 . Holistic/Systemic views of development and deployment/
 operation.

 With Deployment/ Operations becoming increasingly linked with
 software development, and business needs driving more rapid
 deployments, agile methodologies are assumed as a basis for DevOps.
 Agile methods used in many software focused companies are focused on
 releasing small interactions of code to implement VNFs with high
 velocity and high quality into a production environment. Similarly,
 Service providers are interested to release incremental improvements
 in the network services that they create from virtualized network
 functions. The cycle time for DevOps as applied in many open source
 projects is on the order of one quarter year or 13 weeks.

 The code needs to undergo a significant amount of automated testing
 and verification with pre-defined templates in a realistic setting.
 From the point of view of software defined telecom infrastructure
 management, the of the network and service configuration is expected
 to continuously evolve as result of network policy decomposition and
 refinement, service evolution, the updates, failovers or re-
 configuration of virtual functions, additions/upgrades of new
 infrastructure resources (e.g. whiteboxes, fibers). When
 troubleshooting the cause of unexpected behavior, fine-grained
 visibility onto all resources supporting the virtual functions
 (either compute, or network-related) is paramount to facilitating
 fast resolution times. While compute resources are typically very
 well covered by debugging and profiling toolsets based on many years
 of advances in software engineering, programmable network resources
 are a still a novelty and tools exploiting their potential are
 scarce.

Meirosu, et al. Expires January 8, 2017 [Page 5]

Internet-Draft DevOps Challenges July 2016

2.1. Service Developer Role

 We identify two dimensions of the "developer" role in software-
 defined infrastructure (SDI). The network service to be developed is
 captured in a network service descriptor (e.g. [IFA014]). One
 dimension relates to determining which high-level functions should be
 part of a particular service, deciding what logical interconnections
 are needed between these blocks and defining a set of high-level
 constraints or goals related to parameters that define, for instance,
 a Service Function Chain. This could be determined by the product
 owner for a particular family of services offered by a telecom
 provider. Or, it might be a key account representative that adapts an
 existing service template to the requirements of a particular
 customer by adding or removing a small number of functional entities.
 We refer to this person as the Service Developer and for simplicity
 (access control, training on technical background, etc.) we consider
 the role to be internal to the telecom provider.

2.2. VNF Developer role

 Another dimension of the "developer" role is a person that writes the
 software code for a new virtual network function (VNF). The VNF then
 needs to be delivered as a package (e.g.[IFA011]) that includes
 various metadata for ingestion/integration into some service. Note
 that a VNF may span multiple virtual machines to support design
 objectives (e.g. for reliability or scalability). Depending on the
 actual VNF being developed, this person might be internal or external
 (e.g. a traditional equipment vendor) to the telecom provider. We
 refer to them as VNF Developers.

2.3. System Integrator role

 The System Integrator role is to some extent similar to the Service
 Developer: people in this role need to identify the components of the
 system to be delivered. However, for the Service Developer, the
 service components are pre-integrated meaning that they have the
 right interfaces to interact with each other. In contrast, the
 Systems Integrator needs to develop the software that makes the
 system components interact with each other. As such, the Systems
 Integrator role combines aspects of the Developer roles and adds yet
 another dimension to it. Compared to the other Developer roles, the
 System Integrator might face additional challenges due to the fact
 that they might not have access to the source code of some of the
 components. This limits for example how fast they could address
 issues with components to be integrated, as well as uneven workload
 depending on the release granularity of the different components that
 need to be integrated. Some system integration activities may take

Meirosu, et al. Expires January 8, 2017 [Page 6]

Internet-Draft DevOps Challenges July 2016

 place on an industry basis in collaborative communities (e.g.
 OPNFV.org).

2.4. Network service Operator role

 The role of a Network Service Operator is to ensure that the
 deployment processes were successful and a set of performance
 indicators associated to a particular network service are met. The
 network service is supported on infrastructure specific set of
 infrastructure resources that may be owned and operated by that
 Network Service Operator, or provided under contract from some other
 infrastructure service provider. .

2.5. Customer role

 A Customer contracts a telecom operator to provide one or more
 services. In SDI, the Customer may communicate with the provider in
 real time through an online portal. From the customer perspective,
 such portal interfaces become part of the service definition just
 like the data transfer aspects of the service. Compared to the
 Service Developer, the Customer is external to the operator and may
 define changes to their own service instance only in accordance to
 policies defined by the Service Developer. In addition to the usual
 per-service utilization statistics, in SDI the portal may enable the
 customer to trigger certain performance management or troubleshooting
 tools for the service. This, for example, enables the Customer to
 determine whether the root cause of certain error or degradation
 condition that they observe is located in the telecom operator domain
 or not and may facilitate the interaction with the customer support
 teams.

2.6. DevOps Principles

 In line with the generic DevOps concept outlined in [DevOpsP], we
 consider that these four principles as important for adapting DevOps
 ideas to SDI:

 * Automated processes: Deploy with repeatable, reliable processes:
 Service and VNF Developers should be supported by automated build,
 orchestrate and deploy processes that are identical in the
 development, test and production environments. Such processes need to
 be made reliable and trusted in the sense that they should reduce the
 chance of human error and provide visibility at each stage of the
 process, as well as have the possibility to enable manual
 interactions in certain key stages.

Meirosu, et al. Expires January 8, 2017 [Page 7]

Internet-Draft DevOps Challenges July 2016

 * Holistis/systemic view: Develop and test against production-like
 systems: both Service Developers and VNF Developers need to have the
 opportunity to verify and debug their respective SDI code in systems
 that have characteristics which are very close to the production
 environment where the code is expected to be ultimately deployed.
 Customizations of Service Function Chains or VNFs could thus be
 released frequently to a production environment in compliance with
 policies set by the Operators. Adequate isolation and protection of
 the services active in the infrastructure from services being tested
 or debugged should be provided by the production environment.

 * Continuous: Monitor and validate operational quality: Service
 Developers, VNF Developers and Operators must be equipped with tools,
 automated as much as possible, that enable to continuously monitor
 the operational quality of the services deployed on SDI. Monitoring
 tools should be complemented by tools that allow verifying and
 validating the operational quality of the service in line with
 established procedures which might be standardized (for example,
 Y.1564 Ethernet Activation [Y1564]) or defined through best practices
 specific to a particular telecom operator.

 * Iterative/Incremental: Amplify development cycle feedback loops: An
 integral part of the DevOps ethos is building a cross-cultural
 environment that bridges the cultural gap between the desire for
 continuous change by the Developers and the demand by the Operators
 for stability and reliability of the infrastructure. Feedback from
 customers is collected and transmitted throughout the organization.
 From a technical perspective, such cultural aspects could be
 addressed through common sets of tools and APIs that are aimed at
 providing a shared vocabulary for both Developers and Operators, as
 well as simplifying the reproduction of problematic situations in the
 development, test and operations environments.

 Network operators that would like to move to agile methods to deploy
 and manage their networks and services face a different environment
 compared to typical software companies where simplified trust
 relationships between personnel are the norm. In software companies,
 it is not uncommon that the same person may be rotating between
 different roles. In contrast, in a telecom service provider, there
 are strong organizational boundaries between suppliers (whether in
 Developer roles for network functions, or in Operator roles for
 outsourced services) and the carrier's own personnel that might also
 take both Developer and Operator roles. Extending DevOps principles
 across strong organizational boundaries e.g. through co-creation or
 collaborative development in open source communities) may be a
 commercial challenge rather than a technical issue.

Meirosu, et al. Expires January 8, 2017 [Page 8]

Internet-Draft DevOps Challenges July 2016

3. Continuous Integration

 Software integration is the process of bringing together the software
 component subsystems into one software system, and ensuring that the
 subsystems function together as a system. Software integration can
 apply regardless of the size of the software components. The
 objective of Continuous Integration is to prevent integration
 problems close to the expected release of a software development
 project into a production (operations) environment. Continuous
 Integration is therefore closely coupled with the notion of DevOps as
 a mechanism to ease the transition from development to operations.

 Continuous integration may result in multiple builds per day. It is
 also typically used in conjunction with test driven development
 approaches that integrate unit testing into the build process. The
 unit testing is typically automated through build servers. Such
 servers may implement a variety of additional static and dynamic
 tests as well as other quality control and documentation extraction
 functions. The reduced cycle times of continuous enable improved
 software quality by applying small efforts frequently.

 Continuous Integration applies to developers of VNF as they integrate
 the components that they need to deliver their VNF. The VNFs may
 contain components developed by different teams within the VNF
 Provider, or may integrate code developed externally - e.g. in
 commercial code libraries or in open source communities.

 Service developers also apply continuous integration in the
 development of network services. Network services are comprised of
 various aspects including VNFs and connectivity within and between
 them as well as with various associated resource authorizations. The
 components of the networks service are all dynamic, and largely
 represented by software that must be integrated regularly to maintain
 consistency.

 Some of the software components that Service Developers integrate may
 be sourced from VNF Providers or from open source communities.
 Service Developers and Network Service Operators are increasingly
 motivated to engage with open Source communities [OSandS]. Open
 source interfaces supported by open source communities may be more
 useful than traditional paper interface specifications. Even where
 Service Providers are deeply engaged in the open source community
 (e.g. OPNFV) many service providers may prefer to obtain the code
 through some software provider as a business practice. Such software
 providers have the same interests in software integration as other

Meirosu, et al. Expires January 8, 2017 [Page 9]

Internet-Draft DevOps Challenges July 2016

 VNF providers. An open source integration community (e.g. OPNFV) may
 resolve common integration issues across the industry reducing the
 need for integration issue resolution specific to particular
 integrators.

4. Continuous Delivery

 The practice of Continuous Delivery extends Continuous Integration by
 ensuring that the software (either a VNF code or code for SDI)
 checked in on the mainline is always in a user deployable state and
 enables rapid deployment by those users. For critical systems such as
 telecommunications networks, Continuous Delivery may require the
 advantage of including a manual trigger before the actual deployment
 in the live system, compared to the Continuous Deployment methodology
 which is also part of DevOps processes in software companies.

 Automated Continuous deployment systems in may exceed 10 updates per
 day. Assuming an integration of 100 components, each with an average
 time to upgrade of 180 days then deployments on the order of every
 1.8 days might be expected. The telecom infrastructure is also very
 distributed - consider the case of cloud RAN use cases where the
 number of locations for deployment is of the order of the number of
 cell tower locations (~10^4..10^6). Deployments may need to be
 incremental across the infrastructure to reduce the risk of large-
 scale failures. Conversely, there may need to be rapid rollbacks to
 prior stable deployment configurations in the event of significant
 failures.

5. Consistency, Availability and Partitioning Challenges

 The CAP theorem [CAP] states that any networked shared-data system
 can have at most two of following three properties: 1) Consistency
 (C) equivalent to having a single up-to-date copy of the data; 2)
 high Availability (A) of that data (for updates); and 3) tolerance to
 network Partitions (P).

 Looking at a telecom SDI as a distributed computational system
 (routing/forwarding packets can be seen as a computational problem),
 just two of the three CAP properties will be possible at the same
 time. The general idea is that 2 of the 3 have to be chosen. CP favor
 consistency, AP favor availability, CA there are no partition. This
 has profound implications for technologies that need to be developed
 in line with the "deploy with repeatable, reliable processes"

Meirosu, et al. Expires January 8, 2017 [Page 10]

Internet-Draft DevOps Challenges July 2016

 principle for configuring SDI states. Latency or delay and
 partitioning properties are closely related, and such relation
 becomes more important in the case of telecom service providers where
 Devs and Ops interact with widely distributed infrastructure.
 Limitations of interactions between centralized management and
 distributed control need to be carefully examined in such
 environments. Traditionally connectivity was the main concern: C and
 A was about delivering packets to destination. The features and
 capabilities of SDN and NFV are changing the concerns: for example in
 SDN, control plane Partitions no longer imply data plane Partitions,
 so A does not imply C. In practice, CAP reflects the need for a
 balance between local/distributed operations and remote/centralized
 operations.

 Furthermore to CAP aspects related to individual protocols,
 interdependencies between CAP choices for both resources and VNFs
 that are interconnected in a forwarding graph need to be considered.
 This is particularly relevant for the "Monitor and Validate
 Operational Quality" principle, as apart from transport protocols,
 most OAM functionality is generally configured in processes that are
 separated from the configuration of the monitored entities. Also,
 partitioning in a monitoring plane implemented through VNFs executed
 on compute resources does not necessarily mean that the dataplane of
 the monitored VNF was partitioned as well.

6. Stability and Real-Time Change Challenges

 The dimensions, dynamicity and heterogeneity of networks are growing
 continuously. Monitoring and managing the network behavior in order
 to meet technical and business objectives is becoming increasingly
 complicated and challenging, especially when considering the need of
 predicting and taming potential instabilities.

 In general, instability in networks may have primary effects both
 jeopardizing the performance and compromising an optimized use of
 resources, even across multiple layers: in fact, instability of end-
 to-end communication paths may depend both on the underlying
 transport network, as well as the higher level components specific to
 flow control and dynamic routing. For example, arguments for
 introducing advanced flow admission control are essentially derived
 from the observation that the network otherwise behaves in an
 inefficient and potentially unstable manner. Even with resources over
 provisioning, a network without an efficient flow admission control
 has instability regions that can even lead to congestion collapse in
 certain configurations. Another example is the instability which is

Meirosu, et al. Expires January 8, 2017 [Page 11]

Internet-Draft DevOps Challenges July 2016

 characteristic of any dynamically adaptive routing system. Routing
 instability, which can be (informally) defined as the quick change of
 network reachability and topology information, has a number of
 possible origins, including problems with connections, router
 failures, high levels of congestion, software configuration errors,
 transient physical and data link problems, and software bugs.

 As a matter of fact, the states monitored and used to implement the
 different control and management functions in network nodes are
 governed by several low-level configuration commands. There are
 several dependencies among these states and the logic updating the
 states in real time (most of which are not synchronized
 automatically). Normally, high-level network goals (such as the
 connectivity matrix, load-balancing, traffic engineering goals,
 survivability requirements, etc) are translated into low-level
 configuration commands (mostly manually) individually executed on the
 network elements (e.g., forwarding table, packet filters, link-
 scheduling weights, and queue-management parameters, as well as
 tunnels and NAT mappings). Network instabilities due to configuration
 errors can spread from node to node and propagate throughout the
 network.

 DevOps in the data center is a source of inspiration regarding how to
 simplify and automate management processes for software-defined
 infrastructure. Although the low-level configuration could be
 automated by DevOps tools such as CFEngine [C2015], Puppet [P2015]
 and Ansible [A2015], the high-level goal translation towards tool-
 specific syntax is still a manual process. In addition, while
 carrier-grade configuration tools using the NETCONF protocol support
 complex atomic transaction management (which reduces the potential
 for instability), Ansible requires third-party components to support
 rollbacks and the Puppet transactions are not atomic.

 As a specific example, automated configuration functions are expected
 to take the form of a "control loop" that monitors (i.e., measures)
 current states of the network, performs a computation, and then
 reconfigures the network. These types of functions must work
 correctly even in the presence of failures, variable delays in
 communicating with a distributed set of devices, and frequent changes
 in network conditions. Nevertheless cascading and nesting of
 automated configuration processes can lead to the emergence of non-
 linear network behaviors, and as such sudden instabilities (i.e.
 identical local dynamic can give rise to widely different global
 dynamics).

Meirosu, et al. Expires January 8, 2017 [Page 12]

Internet-Draft DevOps Challenges July 2016

7. Observability Challenges

 Monitoring algorithms need to operate in a scalable manner while
 providing the specified level of observability in the network, either
 for operation purposes (Ops part) or for debugging in a development
 phase (Dev part). We consider the following challenges:

 * Scalability - relates to the granularity of network observability,
 computational efficiency, communication overhead, and strategic
 placement of monitoring functions.

 * Distributed operation and information exchange between monitoring
 functions - monitoring functions supported by the nodes may perform
 specific operations (such as aggregation or filtering) locally on the
 collected data or within a defined data neighborhood and forward only
 the result to a management system. Such operation may require
 modifications of existing standards and development of protocols for
 efficient information exchange and messaging between monitoring
 functions. Different levels of granularity may need to be offered for
 the data exchanged through the interfaces, depending on the Dev or
 Ops role. Modern messaging systems, such as Apache Kafka [AK2015],
 widely employed in datacenter environments, were optimized for
 messages that are considerably larger than reading a single counter
 value (typical SNMP GET call usage) - note the throughput vs record
 size from [K2014]. It is also debatable to what extent properties
 such as message persistence within the bus are needed in a carrier
 environment, where MIBs practically offer already a certain level of
 persistence of management data at the node level. Also, they require
 the use of IP addressing which might not be needed when the monitored
 data is consumed by a function within the same node.

 * Common communication channel between monitoring functions and
 higher layer entities (orchestration, control or management systems)
 - a single communication channel for configuration and measurement
 data of diverse monitoring functions running on heterogeneous hard-
 and software environments. In telecommunication environments,
 infrastructure assets span not only large geographical areas, but
 also a wide range of technology domains, ranging from CPEs, access-,
 aggregation-, and transport networks, to datacenters. This
 heterogeneity of hard- and software platforms requires higher layer
 entities to utilize various parallel communication channels for
 either configuration or data retrieval of monitoring functions within
 these technology domains. To address automation and advances in
 monitoring programmability, software defined telecommunication
 infrastructures would benefit from a single flexible communication
 channel, thereby supporting the dynamicity of virtualized
 environments. Such a channel should ideally support propagation of

Meirosu, et al. Expires January 8, 2017 [Page 13]

Internet-Draft DevOps Challenges July 2016

 configuration, signalling, and results from monitoring functions;
 carrier-grade operations in terms of availability and multi-tenant
 features; support highly distributed and hierarchical architectures,
 keeping messages as local as possible; be lightweight, topology
 independent, network address agnostic; support flexibility in terms
 of transport mechanisms and programming language support.
 Existing popular state-of-the-art message queuing systems such as
 RabbitMQ [R2015] fulfill many of these requirements. However, they
 utilize centralized brokers, posing a single point-of-failure and
 scalability concerns within vastly distributed NFV environment.
 Furthermore, transport support is limited to TCP/IP. ZeroMQ [Z2015]
 on the other hard lacks any advanced features for carrier-grade
 operations, including high-availability, authentication, and tenant
 isolation.

 * Configurability and conditional observability - monitoring
 functions that go beyond measuring simple metrics (such as delay, or
 packet loss) require expressive monitoring annotation languages for
 describing the functionality such that it can be programmed by a
 controller. Monitoring algorithms implementing self-adaptive
 monitoring behavior relative to local network situations may employ
 such annotation languages to receive high-level objectives (KPIs
 controlling tradeoffs between accuracy and measurement frequency, for
 example) and conditions for varying the measurement intensity. Steps
 in this direction were taken by the DevOps tools such as Splunk
 [S2015], whose collecting agent has the ability to load particular
 apps that in turn access specific counters or log files. However,
 such apps are tool specific and may also require deploying additional
 agents that are specific to the application, library or
 infrastructure node being monitored. Choosing which objects to
 monitor in such environment means deploying a tool-specific script
 that configures the monitoring app.

 * Automation - includes mapping of monitoring functionality from a
 logical forwarding graph to virtual or physical instances executing
 in the infrastructure, as well as placement and re-placement of
 monitoring functionality for required observability coverage and
 configuration consistency upon updates in a dynamic network
 environment. Puppet [P2015] manifests or Ansible [A2015] playbooks
 could be used for automating the deployment of monitoring agents, for
 example those used by Splunk [S2015]. However, both manifests and
 playbooks were designed to represent the desired system configuration
 snapshot at a particular moment in time - they would now need to be
 generated automatically by the orchestration tools instead of a
 DevOps person.

 * Actionable data

Meirosu, et al. Expires January 8, 2017 [Page 14]

Internet-Draft DevOps Challenges July 2016

 Data produced by observability tools could be utilized in a wide
 category of processes, ranging from billing and dimensioning to real-
 time troubleshooting and optimization. In order to allow for data-
 driven automated decisions and actuations based on these decisions,
 the data needs to be actionable. We define actionable data as being
 representative for a particular context or situation and an adequate
 input towards a decision. Ensuring actionable data is challenging in
 a number of ways, including: defining adaptive correlation and
 sampling windows, filtering and aggregation methods that are adapted
 or coordinated with the actual consumer of the data, and developing
 analytical and predictive methods that account for the uncertainty or
 incompleteness of the data.

 * Data Virtualization

 Data is key in helping both Developers and Operators perform their
 tasks. Traditional Network Management Systems were optimized for
 using one database that contains the master copy of the operational
 statistics and logs of network nodes. Ensuring access to this data
 from across the organization is challenging because strict privacy
 and business secrets need to be protected. In DevOps-driven
 environments, data needs to be made available to Developers and their
 test environments. Data virtualization collectively defines a set of
 technologies that ensure that restricted copies of the partial data
 needed for a particular task may be made available while enforcing
 strict access control. Further than simple access control, data
 virtualization needs to address scalability challenges involved in
 copying large amounts of operational data as well as automatically
 disposing of it when the task authorized for using it has finished.

8. Verification Challenges

 Enabling ongoing verification of code is an important goal of
 continuous integration as part of the data center DevOps concept. In
 a telecom SDI, service definitions, decompositions and configurations
 need to be expressed in machine-readable encodings. For example,
 configuration parameters could be expressed in terms of YANG data
 models. However, the infrastructure management layers (such as
 Software-Defined Network Controllers and Orchestration functions)
 might not always export such machine-readable descriptions of the
 runtime configuration state. In this case, the management layer
 itself could be expected to include a verification process that has
 the same challenges as the stand-alone verification processes we
 outline later in this section. In that sense, verification can be
 considered as a set of features providing gatekeeper functions to

Meirosu, et al. Expires January 8, 2017 [Page 15]

Internet-Draft DevOps Challenges July 2016

 verify both the abstract service models and the proposed resource
 configuration before or right after the actual instantiation on the
 infrastructure layer takes place.

 A verification process can involve different layers of the network
 and service architecture. Starting from a high-level verification of
 the customer input (for example, a Service Graph as defined in
 [I-D.unify-nfvrg-challenges]), the verification process could go more
 in depth to reflect on the Service Function Chain configuration. At
 the lowest layer, the verification would handle the actual set of
 forwarding rules and other configuration parameters associated to a
 Service Function Chain instance. This enables the verification of
 more quantitative properties (e.g. compliance with resource
 availability), as well as a more detailed and precise verification of
 the abovementioned topological ones. Existing SDN verification tools
 could be deployed in this context, but the majority of them only
 operate on flow space rules commonly expressed using OpenFlow syntax.

 Moreover, such verification tools were designed for networks where
 the flow rules are necessary and sufficient to determine the
 forwarding state. This assumption is valid in networks composed only
 by network functions that forward traffic by analyzing only the
 packet headers (e.g. simple routers, stateless firewalls, etc.).
 Unfortunately, most of the real networks contain active network
 functions, represented by middle-boxes that dynamically change the
 forwarding path of a flow according to function-local algorithms and
 an internal state (that is based on the received packets), e.g. load
 balancers, packet marking modules and intrusion detection systems.
 The existing verification tools do not consider active network
 functions because they do not account for the dynamic transformation
 of an internal state into the verification process.

 Defining a set of verification tools that can account for active
 network functions is a significant challenge. In order to perform
 verification based on formal properties of the system, the internal
 states of an active (virtual or not) network function would need to
 be represented. Although these states would increase the verification
 process complexity (e.g., using simple model checking would not be
 feasible due to state explosion), they help to better represent the
 forwarding behavior in real networks. A way to address this challenge
 is by attempting to summarize the internal state of an active network
 function in a way that allows for the verification process to finish
 within a reasonable time interval.

Meirosu, et al. Expires January 8, 2017 [Page 16]

Internet-Draft DevOps Challenges July 2016

9. Testing Challenges

 Testing in an NFV environment does impact the methodology used. The
 main challenge is the ability to isolate the Device Under Test (DUT).
 When testing physical devices, which are dedicated to a specific
 function, isolation of this function is relatively simple: isolate
 the DUT by surrounding it with emulations from test devices. This
 achieves isolation of the DUT, in a black box fashion, for any type
 of testing. In an NFV environment, the DUT become a component of a
 software infrastructure which can't be isolated. For example, testing
 a VNF can't be achieved without the presence if the NFVI and MANO
 components. In addition, the NFVI and MANO components can greatly
 influence the behavior and the performance of the VNF under test.

 With this in mind, in NFV, the isolation of the DUT becomes a new
 concept: the VNF Under Test (VUT) becomes part of an environment that
 consists of the rest of the necessary architecture components (the
 test environment). In the previous example, the VNF becomes the VUT,
 while the MANO and NFVI become the test environment. Then, isolation
 of the VUT becomes a matter of configuration management, where the
 configuration of the test environment is kept fixed for each test of
 the VUT. So the MANO policies for instantiation, scaling, and
 placement, as well as the NFVI parameters such as HW used, CPU
 pinning, etc must remained fixed for each iterative test of the VNF.
 Only by keeping the configurations constant can the VNF tests can be
 compared to each other. If any test environment configurations are
 changed between tests, the behavior of the VNF can be impacted, thus
 negating any comparison of the results.

 Of course, there are instances of testing where the inverse is
 desired: the configuration of the test environment is changed between
 each test, while the VNF configuration is kept constant. As an
 example, this type of methodology would be used in order to discover
 the optimum configuration of the NFVI for a particular VNF workload.
 Another similar but daunting challenge is the introduction of co-
 located tenants in the same environment as the VNF under test. The
 workload on these "neighbors" can greatly influence the behavior and
 performance of the VNF under test, but the test itself is invaluable
 to understand the impact of such a configuration.

 Another challenge is the usage of test devices (traffic generator,
 emulator) that share the same infrastructure as the VNF under test.
 This can create a situation as above, where the neighbor competes for
 resources with the VUT itself, which can really negate test results.
 If a test architecture such as this is necessary (testing east-west
 traffic, for example), then care must be taken to configure the test
 devices such as they are isolated from the SUT in terms of allowed

Meirosu, et al. Expires January 8, 2017 [Page 17]

Internet-Draft DevOps Challenges July 2016

 resources, and that they don't impact the SUT's ability to acquire
 resources to operate in all conditions.

 NFV offers new features that didn't exist as such previously, or
 modifies existing mechanisms. Examples of new features are dynamic
 scaling of VNFs and network services (NS), standardized acceleration
 mechanisms and the presence of the virtualization layer, which
 includes the vSwitch. An example mechanism which changes with NFV how
 fault detection and fault recovery are handled. Fault recovery could
 now be handled by MANO in such a way to invoke mechanisms such as
 live migration or snapshots in order to recover the state of a VNF
 and restore operation quickly. While the end results are expected to
 be the same as before, since the mechanism is very different,
 rigorous testing is highly recommended to validate those results.

 Dynamic scaling of VNFs is a new concept in NFV. VNFs that require
 more resources will have them dynamically allocated on demand, and
 then subsequently released when not needed anymore. This is clearly a
 benefit arising from SDI. For each type of VNF, specific metrics will
 be used as input to conditions that will trigger a scaling operation,
 orchestrated by MANO. Testing this mechanism requires a methodology
 tailored to the specific operation of the VNF, in order to properly
 reach the monitored metrics and exercise the conditions leading to a
 scaling trigger. For example, a firewall VNF will be triggered for
 scaling on very different metrics than a 3GPP MME. Both VNFs
 accomplish different functions. Since there will normally be a
 collection of metrics that are monitored in order to trigger a
 scaling operation, the testing methodology must be constructed in
 such a way as to address all combinations of those metrics. Metrics
 for a particular VNF may include sessions, session
 instantiations/second, throughput, etc. These metrics will be
 observed in relation to the given resources for the VNF.

10. Programmable management

 The ability to automate a set of actions to be performed on the
 infrastructure, be it virtual or physical, is key to productivity
 increases following the application of DevOps principles. Previous
 sections in this document touched on different dimensions of
 programmability:

 - Section 5 approached programmability in the context of developing
 new capabilities for monitoring and for dynamically setting
 configuration parameters of deployed monitoring functions

Meirosu, et al. Expires January 8, 2017 [Page 18]

Internet-Draft DevOps Challenges July 2016

 - Section 7 reflected on the need to determine the correctness of
 actions that are to be inflicted on the infrastructure as result
 of executing a set of high-level instructions

 - Section 8 considered programmability in the perspective of an
 interface to facilitate dynamic orchestration of troubleshooting
 steps towards building workflows and for reducing the manual steps
 required in troubleshooting processes

 We expect that programmable network management - along the lines of
 [RFC7426] - will draw more interest as we move forward. For example,
 in [I-D.unify-nfvrg-challenges], the authors identify the need for
 presenting programmable interfaces that accept instructions in a
 standards-supported manner for the Two-way Active Measurement
 Protocol (TWAMP)TWAMP protocol. More specifically, an excellent
 example in this case is traffic measurements, which are extensively
 used today to determine SLA adherence as well as debug and
 troubleshoot pain points in service delivery. TWAMP is both widely
 implemented by all established vendors and deployed by most global
 operators. However, TWAMP management and control today relies solely
 on diverse and proprietary tools provided by the respective vendors
 of the equipment. For large, virtualized, and dynamically
 instantiated infrastructures where network functions are placed
 according to orchestration algorithms proprietary mechanisms for
 managing TWAMP measurements have severe limitations. For example,
 today's TWAMP implementations are managed by vendor-specific,
 typically command-line interfaces (CLI), which can be scripted on a
 platform-by-platform basis. As a result, although the control and
 test measurement protocols are standardized, their respective
 management is not. This hinders dramatically the possibility to
 integrate such deployed functionality in the SP-DevOps concept. In
 this particular case, recent efforts in the IPPM WG
 [I-D.cmzrjp-ippm-twamp-yang] aim to define a standard TWAMP data
 model and effectively increase the programmability of TWAMP
 deployments in the future.

 Data center DevOps tools, such as those surveyed in [D4.1], developed
 proprietary methods for describing and interacting through interfaces
 with the managed infrastructure. Within certain communities, they
 became de-facto standards in the same way particular CLIs became de-
 facto standards for Internet professionals. Although open-source
 components and a strong community involvement exists, the diversity
 of the new languages and interfaces creates a burden for both vendors
 in terms of choosing which ones to prioritize for support, and then
 developing the functionality and operators that determine what fits
 best for the requirements of their systems.

Meirosu, et al. Expires January 8, 2017 [Page 19]

https://datatracker.ietf.org/doc/html/rfc7426

Internet-Draft DevOps Challenges July 2016

11. Security Considerations

 DevOps principles are typically practiced within the context of a
 single organization ie a single trust domain. Extending DevOps
 practices across strong organizational boundaries (e.g. between
 commercial organizations) requires consideration of additional threat
 models. Additional validation procedures may be required to ingest
 and accept code changes arising from outside an organization.

12. IANA Considerations

 This memo includes no request to IANA.

13. References

13.1. Informative References

 [NFVMANO] ETSI, "Network Function Virtualization (NFV) Management
 and Orchestration V0.6.1 (draft)", Jul. 2014

 [I-D.aldrin-sfc-oam-framework] S. Aldrin, R. Pignataro, N. Akiya.
 "Service Function Chaining Operations, Administration and
 Maintenance Framework", draft-aldrin-sfc-oam-framework-02,
 (work in progress), July 2015.

 [I-D.lee-sfc-verification] S. Lee and M. Shin. "Service Function
 Chaining Verification", draft-lee-sfc-verification-00,
 (work in progress), February 2014.

 [RFC7426] E. Haleplidis (Ed.), K. Pentikousis (Ed.), S. Denazis, J.
 Hadi Salim, D. Meyer, and O. Koufopavlou, "Software Defined
 Networking (SDN): Layers and Architecture Terminology",

RFC 7426, January 2015

 [RFC7149] M. Boucadair and C Jaquenet. "Software-Defined Networking:
 A Perspective from within a Service Provider Environment",

RFC 7149, March 2014.

Meirosu, et al. Expires January 8, 2017 [Page 20]

https://datatracker.ietf.org/doc/html/draft-aldrin-sfc-oam-framework-02
https://datatracker.ietf.org/doc/html/draft-lee-sfc-verification-00
https://datatracker.ietf.org/doc/html/rfc7426
https://datatracker.ietf.org/doc/html/rfc7149

Internet-Draft DevOps Challenges July 2016

 [TR228] TMForum Gap Analysis Related to MANO Work. TR228, May 2014

 [I-D.unify-nfvrg-challenges] R. Szabo et al. "Unifying Carrier and
 Cloud Networks: Problem Statement and Challenges", draft-

unify-nfvrg-challenges-03 (work in progress), October 2016

 [I-D.cmzrjp-ippm-twamp-yang] Civil, R., Morton, A., Zheng, L.,
 Rahman, R., Jethanandani, M., and K. Pentikousis, "Two-Way
 Active Measurement Protocol (TWAMP) Data Model", draft-

cmzrjp-ippm-twamp-yang-02 (work in progress), October 2015.

 [D4.1] W. John et al. D4.1 Initial requirements for the SP-DevOps
 concept, universal node capabilities and proposed tools,
 August 2014.

 [SDNsurvey] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. Esteve
 Rothenberg, S. Azodolmolky, S. Uhlig. "Software-Defined
 Networking: A Comprehensive Survey." To appear in
 proceedings of the IEEE, 2015.

 [DevOpsP] "DevOps, the IBM Approach" 2013. [Online].

 [Y1564] ITU-R Recommendation Y.1564: Ethernet service activation
 test methodology, March 2011

 [CAP] E. Brewer, "CAP twelve years later: How the "rules" have
 changed", IEEE Computer, vol.45, no.2, pp.23,29, Feb. 2012.

 [H2014] N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres, N.
 McKeown; "I Know What Your Packet Did Last Hop: Using
 Packet Histories to Troubleshoot Networks", In Proceedings
 of the 11th USENIX Symposium on Networked Systems Design
 and Implementation (NSDI 14), pp.71-95

 [W2011] A. Wundsam, D. Levin, S. Seetharaman, A. Feldmann;
 "OFRewind: Enabling Record and Replay Troubleshooting for
 Networks". In Proceedings of the Usenix Anual Technical
 Conference (Usenix ATC '11), pp 327-340

 [S2010] E. Al-Shaer and S. Al-Haj. "FlowChecker: configuration
 analysis and verification of federated Openflow
 infrastructures" In Proceedings of the 3rd ACM workshop on
 Assurable and usable security configuration (SafeConfig
 '10). Pp. 37-44

Meirosu, et al. Expires January 8, 2017 [Page 21]

https://datatracker.ietf.org/doc/html/draft-unify-nfvrg-challenges-03
https://datatracker.ietf.org/doc/html/draft-unify-nfvrg-challenges-03
https://datatracker.ietf.org/doc/html/draft-cmzrjp-ippm-twamp-yang-02
https://datatracker.ietf.org/doc/html/draft-cmzrjp-ippm-twamp-yang-02

Internet-Draft DevOps Challenges July 2016

 [OSandS] S. Wright, D. Druta, "Open Source and Standards: The Role
 of Open Source in the Dialogue between Research and
 Standardization" Globecom Workshops (GC Wkshps), 2014 ,
 pp.650,655, 8-12 Dec. 2014

 [C2015] CFEngine. Online: http://cfengine.com/product/what-is-
cfengine/, retrieved Sep 23, 2015.

 [P2015] Puppet. Online: http://puppetlabs.com/puppet/what-is-puppet,
 retrieved Sep 23, 2015.

 [A2015] Ansible. Online: http://docs.ansible.com/ , retrieved Sep
 23, 2015.

 [AK2015] Apache Kafka. Online:
http://kafka.apache.org/documentation.html, retrieved Sep

 23, 2015.

 [S2015] Splunk. Online: http://www.splunk.com/en_us/products/splunk-
light.html , retrieved Sep 23, 2015.

 [K2014] J. Kreps. Benchmarking Apache Kafka: 2 Million Writes Per
 Second (On Three Cheap Machines). Online:

https://engineering.linkedin.com/kafka/benchmarking-apache-
kafka-2-million-writes-second-three-cheap-machines,

 retrieved Sep 23, 2015.

 [R2015] RabbitMQ. Online: https://www.rabbitmq.com/ , retrieved Oct
 13, 2015

 [IFA014] ETSI, Network Functions Virtualisation (NFV); Management and
 Orchestration Network Service Templates Specification ,
 DGS/NFV-IFA014, Work In Progress

 [IFA011] ETSI, Network Functions Virtualisation (NFV); Management and
 Orchestration; VNF Packaging Specification, DGS/NFV-IFA011,
 Work in Progress

 [NFVSWA] ETSI, Network functions Virtualisation; Virtual Network
 Functions Architecture, GS NFV-SWA 001 v1.1.1 (2014)

 [Z2015] ZeroMQ. Online: http://zeromq.org/ , retrieved Oct 13, 2015

Meirosu, et al. Expires January 8, 2017 [Page 22]

http://cfengine.com/product/what-is-cfengine/
http://cfengine.com/product/what-is-cfengine/
http://puppetlabs.com/puppet/what-is-puppet
http://docs.ansible.com/
http://kafka.apache.org/documentation.html
http://www.splunk.com/en_us/products/splunk-light.html
http://www.splunk.com/en_us/products/splunk-light.html
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://www.rabbitmq.com/
http://zeromq.org/

Internet-Draft DevOps Challenges July 2016

14. Contributors to earlier versions

 J. Kim (Deutsche Telekom), S. Sharma (iMinds), I. Papafili (OTE)

15. Acknowledgments

 The research leading to these results has received funding from the
 European Union Seventh Framework Programme FP7/2007-2013 under grant
 agreement no. 619609 - the UNIFY project. The views expressed here
 are those of the authors only. The European Commission is not liable
 for any use that may be made of the information in this document.

 We would like to thank in particular the UNIFY WP4 contributors, the
 internal reviewers of the UNIFY WP4 deliverables and Russ White and
 Ramki Krishnan for their suggestions.

 This document was prepared using 2-Word-v2.0.template.dot.

Meirosu, et al. Expires January 8, 2017 [Page 23]

Internet-Draft DevOps Challenges July 2016

16. Authors' Addresses

 Catalin Meirosu
 Ericsson Research
 S-16480 Stockholm, Sweden
 Email: catalin.meirosu@ericsson.com

 Antonio Manzalini
 Telecom Italia
 Via Reiss Romoli, 274
 10148 - Torino, Italy
 Email: antonio.manzalini@telecomitalia.it

 Rebecca Steinert
 SICS Swedish ICT AB
 Box 1263, SE-16429 Kista, Sweden
 Email: rebste@sics.se

 Guido Marchetto
 Politecnico di Torino
 Corso Duca degli Abruzzi 24
 10129 - Torino, Italy
 Email: guido.marchetto@polito.it

 Kostas Pentikousis
 Travelping GmbH
 Koernerstrasse 7-10
 Berlin 10785
 Germany
 Email: k.pentikousis@travelping.com

 Steven Wright
 AT&T Services Inc.
 1057 Lenox Park Blvd NE, STE 4D28
 Atlanta, GA 30319
 USA
 Email: sw3588@att.com

 Pierre Lynch
 Ixia
 800 Perimeter Park Drive, Suite A
 Morrisville, NC 27560

Meirosu, et al. Expires January 8, 2017 [Page 24]

Internet-Draft DevOps Challenges July 2016

 USA
 Email: plynch@ixiacom.com

 Wolfgang John
 Ericsson Research
 S-16480 Stockholm, Sweden
 Email: wolfgang.john@ericsson.com

Meirosu, et al. Expires January 8, 2017 [Page 25]

