
Independent Submission U. Carion
Internet-Draft August 22, 2019
Intended status: Informational
Expires: February 23, 2020

JSON Data Definition Format (JDDF)
draft-ucarion-jddf-00

Abstract

 JSON Data Definition Format (JDDF) is a portable method for
 describing the format of JavaScript Object Notation (JSON) data and
 the errors associated with ill-formed data. JDDF is designed to
 enable code generation from schemas.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 23, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Carion Expires February 23, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft JSON Data Definition Format (JDDF) August 2019

Table of Contents

1. Introduction . 2
1.1. Terminology . 4

2. Syntax . 4
2.1. Extending JDDF's syntax 11

3. Semantics . 12
3.1. Allowing additional properties 12
3.2. Errors . 13
3.3. Forms . 13
3.3.1. Empty . 14
3.3.2. Ref . 14
3.3.3. Type . 15
3.3.4. Enum . 18
3.3.5. Elements . 18
3.3.6. Properties . 19
3.3.7. Values . 22
3.3.8. Discriminator . 23

4. IANA Considerations . 26
5. Security Considerations 27
6. References . 27
6.1. Normative References 27
6.2. Informative References 28

Appendix A. Comparison with CDDL 28
Appendix B. Examples . 30

 Acknowledgments . 31
 Author's Address . 31

1. Introduction

 This document describes a schema language for JSON [RFC8259] called
 JSON Data Definition Format (JDDF). The name JDDF is chosen to avoid
 confusion with "JSON Schema" from [I-D.handrews-json-schema].

 There exist many options for describing JSON data. JDDF's niche is
 to focus on enabling code generation from schemas; to this end,
 JDDF's expressiveness is intentionally limited to be no more powerful
 than what can be expressed in the type systems of mainstream
 languages.

 The goals of JDDF are to:

 o Provide an unambiguous description of the overall structure of a
 JSON document.

 o Be able to describe common JSON datatypes and structures.

https://datatracker.ietf.org/doc/html/rfc8259

Carion Expires February 23, 2020 [Page 2]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 o Provide a single format that is readable and editable by both
 humans and machines, and which can be embedded within other JSON
 documents.

 o Enable code generation from JDDF schemas.

 o Provide a standardized format for errors when data does not
 conform with a schema.

 JDDF is intentionally designed as a rather minimal schema language.
 For example, JDDF is homoiconic (it both describes, and is written
 in, JSON) yet is incapable of describing in detail its own structure.
 By keeping the expressiveness of the schema language minimal, JDDF
 makes code generation and standardized errors easier to implement.

 JDDF's feature set is designed to represent common patterns in JSON-
 using applications, while still having a clear correspondence to
 programming languages in widespread use. Thus, JDDF supports:

 o Signed and unsigned 8, 16, and 32-bit integers. A tool which
 converts JDDF schemas into code can use "int8_t", "uint8_t",
 "int16_t", etc., or their equivalents in the target language, to
 represent these JDDF types.

 o A distinction between "float32" and "float64". Code generators
 can use "float" and "double", or their equivalents, for these JDDF
 types.

 o A "properties" form of JSON objects, corresponding to some sort of
 struct.

 o A "values" form of JSON objects, corresponding to some sort of
 dictionary or associative array.

 o A "discriminator" form of JSON objects, corresponding to a
 discriminated (or "tagged") union.

 The principle of common patterns in JSON is why JDDF does not support
 64-bit integers, as these are usually transmitted over JSON in a non-
 interoperable (i.e., ignoring the recommendations in Section 2.2 of
 [RFC7493]) or mutually inconsistent (e.g., using hexadecimal versus
 base64) ways.

 The principle of clear correspondence to common programming languages
 is why JDDF does not support, for example, a data type for numbers up
 to 2**53-1.

https://datatracker.ietf.org/doc/html/rfc7493#section-2.2
https://datatracker.ietf.org/doc/html/rfc7493#section-2.2

Carion Expires February 23, 2020 [Page 3]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 It is expected that for many use-cases, a schema language of JDDF's
 expressiveness is sufficient. Where a more expressive language is
 required, alternatives exist in CDDL ([RFC8610], Concise Data
 Definition Language) and others.

 This document has the following structure:

 The syntax of JDDF is defined in Section 2. Section 3 describes the
 semantics of JDDF; this includes determining whether some data
 satisfies a schema and what errors should be produced when the data
 is unsatisfactory. Appendix A presents various JDDF schemas and
 their CDDL equivalents.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here. These words may also appear in this
 document in lower case as plain English words, absent their normative
 meanings.

 The term "JSON Pointer", when it appears in this document, is to be
 understood as it is defined in [RFC6901].

 The terms "object", "member", "array", "number", "name", and "string"
 in this document are to be interpreted as described in [RFC8259].

 The term "instance", when it appears in this document, refers to a
 JSON value being validated against a JDDF schema.

2. Syntax

 This section describes when a JSON document is a correct JDDF schema.

 JDDF schemas may recursively contain other schemas. In this
 document, a "root schema" is one which is not contained within
 another schema, i.e. it is "top level".

 A correct JDDF schema MUST match the "schema" CDDL rule described in
 this section. A JDDF schema is a JSON object taking on an
 appropriate form. It may optionally contain definitions (a mapping
 from names to schemas) and additional data.

https://datatracker.ietf.org/doc/html/rfc8610
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/rfc8259

Carion Expires February 23, 2020 [Page 4]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 schema = {
 form,
 ? definitions: { * tstr => schema },
 ? additionalProperties: bool,
 * non-keyword => *
 }

 ; This definition prohibits non-keyword from matching any of the
 ; keywords defined later.
 non-keyword =
 (((((((((tstr .ne "definitions")
 .ne "additionalProperties")
 .ne "ref")
 .ne "type")
 .ne "enum")
 .ne "elements")
 .ne "properties")
 .ne "optionalProperties")
 .ne "values")
 .ne "discriminator"

 Figure 1: CDDL Definition of a Schema

 This is not a correct JDDF schema, as its "definitions" object
 contains a number, which is not a schema:

 { "definitions": { "foo": 3 }}

 Here is an example of a valid schema using the "properties", "type",
 and "ref" forms, which will be described later in this section:

 {
 "strict": false,
 "definitions": {
 "user": {
 "properties": {
 "name": { "type": "string" },
 "create_time": { "type": "timestamp" }
 }
 }
 },
 "elements": {
 "ref": "user"
 }
 }

Carion Expires February 23, 2020 [Page 5]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 JDDF schemas can take on one of eight forms. These forms are defined
 so as to be mutually exclusive; a schema cannot satisfy multiple
 forms at once.

 form = empty /
 ref /
 type /
 enum /
 elements /
 properties /
 values /
 discriminator

 Figure 2: CDDL Definition of the Schema Forms

 The first form, "empty", is trivial. It is meant for matching any
 instance:

 empty = {}

 Figure 3: CDDL Definition of the Empty Form

 Thus, this is a correct schema:

 {}

 The second form, "ref", is for when a schema is meant to be defined
 in terms of something in "definitions":

 ref = { ref: tstr }

 Figure 4: CDDL Definition of the Ref Form

 For a schema to be correct, the "ref" value must refer to one of the
 definitions found at the root level of the schema it appears in.
 More formally, for a schema _S_ of the "ref" form:

 o Let _B_ be the root schema containing the schema, or the schema
 itself if it is a root schema.

 o Let _R_ be the value of the member of _S_ with the name "ref".

 If the schema is correct, then _B_ must have a member _D_ with the
 name "definitions", and _D_ must contain a member whose name equals
 R.

 Here is a correct example of "ref" being used to avoid re-defining
 the same thing twice:

Carion Expires February 23, 2020 [Page 6]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 {
 "definitions": {
 "coordinates": {
 "properties": {
 "lat": { "type": "float32" },
 "lng": { "type": "float32" }
 }
 }
 },
 "properties": {
 "user_location": { "ref": "coordinates" },
 "server_location": { "ref": "coordinates" }
 }
 }

 However, this schema is incorrect, as it refers to a definition that
 doesn't exist:

 {
 "definitions": { "foo": { "type": "float32" }},
 "ref": "bar"
 }

 This schema is incorrect as well, as it refers to a definition that
 doesn't exist at the root level. The non-root definition is
 immaterial:

 {
 "definitions": { "foo": { "type": "float32" }},
 "elements": {
 "definitions": { "bar": { "type": "float32" }},
 "ref": "bar"
 }
 }

 The third form, "type", constrains instances to have a particular
 primitive type. The precise meaning of each of the primitive types
 is described in Section 3.

 type = { type: "boolean" / num-type / "string" / "timestamp" }
 num-type = "float32" / "float64" /
 "int8" / "uint8" / "int16" / "uint16" / "int32" / "uint32"

 Figure 5: CDDL Definition of the Type Form

 For example, this schema constrains instances to be strings that are
 correct [RFC3339] timestamps:

https://datatracker.ietf.org/doc/html/rfc3339

Carion Expires February 23, 2020 [Page 7]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 { "type": "timestamp" }

 The fourth form, "enum", describes instances whose value must be one
 of a finite, predetermined set of values:

 enum = { enum: [+ tstr] }

 Figure 6: CDDL Definition of the Enum Form

 The values within "[+ tstr]" MUST NOT contain duplicates. Thus, the
 following is a correct schema:

 { "enum": ["IN_PROGRESS", "DONE", "CANCELED"] }

 But this is not a correct schema, as "B" is duplicated:

 { "enum": ["A", "B", "B"] }

 The fifth form, "elements", describes instances that must be arrays.
 A further sub-schema describes the elements of the array.

 elements = { elements: schema }

 Figure 7: CDDL Definition of the Elements Form

 Here is a schema describing an array of [RFC3339] timestamps:

 { "elements": { "type": "timestamp" }}

 The sixth form, "properties", describes JSON objects being used as a
 "struct". A schema of this form specifies the names of required and
 optional properties, as well as the schemas each of those properties
 must satisfy:

Carion Expires February 23, 2020 [Page 8]

https://datatracker.ietf.org/doc/html/rfc3339

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 ; One of properties or optionalProperties may be omitted,
 ; but not both.
 properties = with-properties / with-optional-properties

 with-properties = {
 properties: * tstr => schema,
 ? optionalProperties * tstr => schema
 }

 with-optional-properties = {
 ? properties: * tstr => schema,
 optionalProperties: * tstr => schema
 }

 Figure 8: CDDL Definition of the Properties Form

 If a schema has both a member named "properties" (with value _P_) and
 another member named "optionalProperties" (with value _O_), then _O_
 and _P_ MUST NOT have any member names in common. This is to prevent
 ambiguity as to whether a property is optional or required.

 Thus, this is not a correct schema, as "confusing" appears in both
 "properties" and "optionalProperties":

 {
 "properties": { "confusing": {} },
 "optionalProperties": { "confusing": {} }
 }

 Here is a correct schema, describing a paginated list of users:

 {
 "properties": {
 "users": {
 "elements": {
 "properties": {
 "id": { "type": "string" },
 "name": { "type": "string" },
 "create_time": { "type": "timestamp" }
 },
 "optionalProperties": {
 "delete_time": { "type": "timestamp" }
 }
 }
 },
 "next_page_token": { "type": "string" }
 }
 }

Carion Expires February 23, 2020 [Page 9]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 The seventh form, "values", describes JSON objects being used as an
 associative array. A schema of this form specifies the form all
 member values must satisfy, but places no constraints on the member
 names:

 values = { values: * tstr => schema }

 Figure 9: CDDL Definition of the Values Form

 Thus, this is a correct schema, describing a mapping from strings to
 numbers:

 { "values": { "type": "float32" }}

 Finally, the eighth form, "discriminator", describes JSON objects
 being used as a discriminated union. A schema of this form specifies
 the "tag" (or "discriminator") of the union, as well as a mapping
 from tag values to the appropriate schema to use.

 ; Note well: the values of mapping are of the properties form.
 discriminator = { tag: tstr, mapping: * tstr => properties }

 Figure 10: CDDL Definition of the Discriminator Form

 To prevent ambiguous or unsatisfiable contstraints on the "tag" of a
 discriminator, an additional constraint on schemas of the
 discriminator form exists. For schemas of the discriminator form:

 o Let _D_ be the schema member with the name "discriminator".

 o Let _T_ be the member of _D_ with the name "tag".

 o Let _M_ be the member of _D_ with the name "mapping".

 If the schema is correct, then all member values _S_ of _M_ will be
 schemas of the "properties" form. For each member _P_ of _S_ whose
 name equals "properties" or "optionalProperties", _P_'s value, which
 must be an object, MUST NOT contain any members whose name equals
 T's value.

 Thus, this is an incorrect schema, as "event_type" is both the value
 of "tag" and a member name in one of the "mapping" member
 "properties":

Carion Expires February 23, 2020 [Page 10]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 {
 "tag": "event_type",
 "mapping": {
 "is_event_type_a_string_or_a_float32?": {
 "properties": { "event_type": { "type": "float32" }}
 }
 }
 }

 However, this is a correct schema, describing a pattern of data
 common in JSON-based messaging systems:

 {
 "tag": "event_type",
 "mapping": {
 "account_deleted": {
 "properties": {
 "account_id": { "type": "string" }
 }
 },
 "account_payment_plan_changed": {
 "properties": {
 "account_id": { "type": "string" },
 "payment_plan": { "enum": ["FREE", "PAID"] }
 },
 "optionalProperties": {
 "upgraded_by": { "type": "string" }
 }
 }
 }
 }

2.1. Extending JDDF's syntax

 This document does not describe any extension mechanisms for JDDF
 schema validation, which is described in Section 3. However, schemas
 (through the "non-keyword" CDDL rule in {{syntax}) are defined to
 allow members whose names are not equal to any of the specially-
 defined keywords (i.e. "definitions", "elements", etc.). Call these
 members "non-keyword members".

 Users MAY add additional, non-keyword members to JDDF schemas to
 convey information that is not pertinent to validation. For example,
 such non-keyword members could provide hints to code generators, or
 trigger some special behavior for a library that generates user
 interfaces from schemas.

Carion Expires February 23, 2020 [Page 11]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 Users SHOULD NOT expect non-keyword members to be understood by other
 parties. As a result, if consistent validation with other parties is
 a requirement, users SHOULD NOT use non-keyword members to affect how
 schema validation, as described in Section 3, works.

3. Semantics

 This section describes when an instance is valid against a correct
 JDDF schema, and the standardized errors to produce when an instance
 is invalid.

3.1. Allowing additional properties

 Users will have different desired behavior with respect to
 "unspcecified" members in an instance. For example:

 { "properties": { "a": { "type": "string" }}}

 Some users may expect that {"a": "foo", "b": "bar"} satisfies the
 above schema. Others may disagree, as "b" is not one of the
 properties described in the schema. In this document, allowing such
 "unspecified" members happens when evaluation is in "allow additional
 properties" mode.

 Evaluation of a schema does not allow additional properties by
 default, but can be overridden by setting "additionalProperties:
 true" on the schema.

 More formally, evaluation of a schema _S_ is in "allow additional
 properties" mode if there exists a member of _S_ whose name equals
 "additionalProperties", and whose value is a boolean "true".
 Otherwise, evaluation of _S_ is not in "allow additional properties"
 mode.

 See Section 3.3.6 for how allowing unknown properties affects schema
 evaluation, but briefly, the following schema:

 { "properties": { "a": { "type": "string" }}}

 Rejects {"a": "foo", "b": "bar"}, but the schema:

 {
 "additionalProperties": true,
 "properties": { "a": { "type": "string" }}
 }

 Accepts {"a": "foo", "b": "bar"}.

Carion Expires February 23, 2020 [Page 12]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 Note that "additionalProperties" does not get "inherited" by sub-
 schemas. For example, this schema:

 {
 "additionalProperties": true,
 "elements": {
 "properties": {
 "a": { "type": "string" }
 }
 }
 }

 Rejects [{"a": "foo", "b": "bar"}]. The "additionalProperties" at
 the root level does not affect the behavior of the sub-schema within
 "elements".

3.2. Errors

 To facilitate consistent validation error handling, this document
 specifies a standard error format. Implementations SHOULD support
 producing errors in this standard form.

 The standard error format is a JSON array. The order of the elements
 of this array is not specified. The elements of this array are JSON
 objects with two members:

 o A member with the name "instancePath", whose value is a JSON
 string encoding a JSON Pointer. This JSON Pointer will point to
 the part of the instance that was rejected.

 o A member with the name "schemaPath", whose value is a JSON string
 encoding a JSON Pointer. This JSON Pointer will point to the part
 of the schema that rejected the instance.

 The values for "instancePath" and "schemaPath" depend on the form of
 the schema, and are described in detail in Section 3.3.

3.3. Forms

 This section describes, for each of the eight JDDF schema forms, the
 rules dictating whether an instance is accepted, as well as the
 standardized errors to produce when an instance is invalid.

 The forms a correct schema may take on are formally described in
Section 2.

Carion Expires February 23, 2020 [Page 13]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

3.3.1. Empty

 The empty form is meant to describe instances whose values are
 unknown, unpredictable, or otherwise unconstrained by the schema.

 If a schema is of the empty form, then it accepts all instances. A
 schema of the empty form will never produce any errors.

3.3.2. Ref

 The ref form is for when a schema is meant to be defined in terms of
 something in the "definitions" of the root schema. The ref form
 enables schemas to be less repetitive, and also enables describing
 recursive structures.

 If a schema is of the ref form, then:

 o Let _B_ be the root schema containing the schema, or the schema
 itself if it is a root schema.

 o Let _D_ be the member of _B_ with the name "definitions". By
Section 2, _D_ exists.

 o Let _R_ be the value of the schema member with the name "ref".

 o Let _S_ be the value of the member of _D_ whose name equals _R_.
 By Section 2, _S_ exists, and is a schema.

 The schema accepts the instance if and only if _S_ accepts the
 instance. Otherwise, the standard errors to return in this case are
 the union of the errors from evaluating _S_ against the instance.

 For example, the schema:

 {
 "definitions": { "a": { "type": "float32" }},
 "ref": "a"
 }

 Accepts 123 but not false. The standard errors to produce when
 evaluting false against this schema are:

 [{ "instancePath": "", "schemaPath": "/definitions/a/type" }]

 Note that the ref form is defined to only look up definitions at the
 root level. Thus, with the schema:

Carion Expires February 23, 2020 [Page 14]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 {
 "definitions": { "a": { "type": "float32" }},
 "elements": {
 "definitions": { "a": { "type": "boolean" }},
 "ref": "foo"
 }
 }

 The instance 123 is accepted, and false is rejected. The standard
 errors to produce when evaluating false against this schema are:

 [{ "instancePath": "", "schemaPath": "/definitions/a/type" }]

 Though non-root definitions are not syntactically disallowed in
 correct schemas, they are entirely immaterial to evaluating
 references.

3.3.3. Type

 The type form is meant to describe instances whose value is a
 boolean, number, string, or timestamp ([RFC3339]).

 If a schema is of the type form, then let _T_ be the value of the
 member with the name "type". The following table describes whether
 the instance is accepted, as a function of _T_'s value:

Carion Expires February 23, 2020 [Page 15]

https://datatracker.ietf.org/doc/html/rfc3339

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 +-------------------+--+
 | If _T_ equals ... | then the instance is accepted if it is ... |
 +-------------------+--+
boolean	equal to "true" or "false"
float32	a JSON number
float64	a JSON number
int8	See Table 2
uint8	See Table 2
int16	See Table 2
uint16	See Table 2
int32	See Table 2
uint32	See Table 2
string	a JSON string
timestamp	a JSON string encoding a [RFC3339] timestamp
 +-------------------+--+

 Table 1: Accepted Values for Type

 "float32" and "float64" are distinguished from each other in their
 intent. "float32" indicates data intended to be processed as an IEEE
 754 single-precision float, whereas "float64" indicates data intended
 to be processed as an IEEE 754 double-precision float. Tools which
 generate code from JDDF schemas will likely produce different code
 for "float32" than for "float64".

 If _T_ starts with "int" or "uint", then the instance is accepted if
 and only if it is a JSON number encoding a value with zero fractional
 part. Depending on the value of _T_, this encoded number must
 additionally fall within a particular range:

https://datatracker.ietf.org/doc/html/rfc3339

Carion Expires February 23, 2020 [Page 16]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 +--------+---------------------------+---------------------------+
 | _T_ | Minimum Value (Inclusive) | Maximum Value (Inclusive) |
 +--------+---------------------------+---------------------------+
 | int8 | -128 | 127 |
 | | | |
 | uint8 | 0 | 255 |
 | | | |
 | int16 | -32,768 | 32,767 |
 | | | |
 | uint16 | 0 | 65,535 |
 | | | |
 | int32 | -2,147,483,648 | 2,147,483,647 |
 | | | |
 | uint32 | 0 | 4,294,967,295 |
 +--------+---------------------------+---------------------------+

 Table 2: Ranges for Integer Types

 Note that 10, 10.0, and 1.0e1 encode values with zero fractional
 part. 10.5 encodes a number with a non-zero fractional part. Thus
 {"type": "int8"} accepts 10, 10.0, and 1.0e1, but not 10.5.

 If the instance is not accepted, then the standard error for this
 case shall have an "instancePath" pointing to the instance, and a
 "schemaPath" pointing to the schema member with the name "type".

 For example:

 o The schema {"type": "boolean"} accepts false, but rejects 127.

 o The schema {"type": "float32"} accepts 10.5, 127 and 128, but
 rejects false.

 o The schema {"type": "int8"} accepts 127, but rejects 10.5, 128 and
 false.

 o The schema {"type": "string"} accepts "1985-04-12T23:20:50.52Z"
 and "foo", but rejects 127.

 o The schema {"type": "timestamp"} accepts
 "1985-04-12T23:20:50.52Z", but rejects "foo" and 127.

 In all of the rejected examples just given, the standard error to
 produce is:

 [{ "instancePath": "", "schemaPath": "/type" }]

Carion Expires February 23, 2020 [Page 17]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

3.3.4. Enum

 The enum form is meant to describe instances whose value must be one
 of a finite, predetermined set of string values.

 If a schema is of the enum form, then let _E_ be the value of the
 schema member with the name "enum". The instance is accepted if and
 only if it is equal to one of the elements of _E_.

 If the instance is not accepted, then the standard error for this
 case shall have an "instancePath" pointing to the instance, and a
 "schemaPath" pointing to the schema member with the name "enum".

 For example, the schema:

 { "enum": ["PENDING", "DONE", "CANCELED"] }

 Accepts "PENDING", "DONE", and "CANCELED", but it rejects both 123
 and "UNKNOWN" with the standard errors:

 [{ "instancePath": "", "schemaPath": "/enum" }]

3.3.5. Elements

 The elements form is meant to describe instances that must be arrays.
 A further sub-schema describes the elements of the array.

 If a schema is of the elements form, then let _S_ be the value of the
 schema member with the name "elements". The instance is accepted if
 and only if all of the following are true:

 o The instance is an array. Otherwise, the standard error for this
 case shall have an "instancePath" pointing to the instance, and a
 "schemaPath" pointing to the schema member with the name
 "elements".

 o If the instance is an array, then every element of the instance
 must be accepted by _S_. Otherwise, the standard errors for this
 case are the union of all the errors arising from evaluating _S_
 against elements of the instance.

 For example, if we have the schema:

 {
 "elements": {
 "type": "float32"
 }
 }

Carion Expires February 23, 2020 [Page 18]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 Then the instances [] and [1, 2, 3] are accepted. If instead we
 evaluate false against that schema, the standard errors are:

 [{ "instancePath": "", "schemaPath": "/elements" }]

 Finally, if we evaluate the instance:

 [1, 2, "foo", 3, "bar"]

 The standard errors are:

 [
 { "instancePath": "/2", "schemaPath": "/elements/type" },
 { "instancePath": "/4", "schemaPath": "/elements/type" }
]

3.3.6. Properties

 The properties form is meant to describe JSON objects being used as a
 "struct".

 If a schema is of the properties form, then the instance is accepted
 if and only if all of the following are true:

 o The instance is an object.

 Otherwise, the standard error for this case shall have an
 "instancePath" pointing to the instance, and a "schemaPath"
 pointing to the schema member with the name "properties" if such a
 schema member exists; if such a member doesn't exist, "schemaPath"
 shall point to the schema member with the name
 "optionalProperties".

 o If the instance is an object and the schema has a member named
 "properties", then let _P_ be the value of the schema member named
 "properties". _P_, by Section 2, must be an object. For every
 member name in _P_, a member of the same name in the instance must
 exist.

 Otherwise, the standard error for this case shall have an
 "instancePath" pointing to the instance, and a "schemaPath"
 pointing to the member of _P_ failing the requirement just
 described.

 o If the instance is an object, then let _P_ be the value of the
 schema member named "properties" (if it exists), and _O_ be the
 value of the schema member named "optionalProperties" (if it
 exists).

Carion Expires February 23, 2020 [Page 19]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 For every member _I_ of the instance, find a member with the same
 name as _I_'s in _P_ or _O_. By Section 2, it is not possible for
 both _P_ and _O_ to have such a member. If the "discriminator tag
 exemption" is in effect on _I_ (see Section 3.3.8), then ignore
 I. Otherwise:

 * If no such member in _P_ or _O_ exists and validation is not in
 "allow additional properties" mode (see Section 3.1), then the
 instance is rejected.

 The standard error for this case has an "instancePath" pointing
 to _I_, and a "schemaPath" pointing to the schema.

 * If such a member in _P_ or _O_ does exist, then call this
 member _S_. If _S_ rejects _I_'s value, then the instance is
 rejected.

 The standard error for this case is the union of the errors
 from evaluating _S_ against _I_'s value.

 An instance may have multiple errors arising from the second and
 third bullet in the above. In this case, the standard errors are the
 union of the errors.

 For example, if we have the schema:

 {
 "properties": {
 "a": { "type": "string" },
 "b": { "type": "string" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "string" }
 }
 }

 Then each of the following instances (one on each line) are accepted:

 { "a": "foo", "b": "bar" }
 { "a": "foo", "b": "bar", "c": "baz" }
 { "a": "foo", "b": "bar", "c": "baz", "d": "quux" }
 { "a": "foo", "b": "bar", "d": "quux" }

 If we evaluate the instance 123 against this schema, then the
 standard errors are:

 [{ "instancePath": "", "schemaPath": "/properties" }]

Carion Expires February 23, 2020 [Page 20]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 If instead we evalute the instance:

 { "b": 3, "c": 3, "e": 3 }

 The standard errors are:

 [
 { "instancePath": "",
 "schemaPath": "/properties/a" },
 { "instancePath": "/b",
 "schemaPath": "/properties/b/type" },
 { "instancePath": "/c",
 "schemaPath": "/optionalProperties/c/type" },
 { "instancePath": "/e",
 "schemaPath": "" }
]

 If instead the schema had "additionalProperties: true", but was
 otherwise the same:

 {
 "properties": {
 "a": { "type": "string" },
 "b": { "type": "string" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "string" }
 },
 "additionalProperties": true
 }

 And the instance remained the same:

 { "b": 3, "c": 3, "e": 3 }

 Then the errors from evaluating the instance against that
 "additionalProperties: true" schema would be:

 [
 { "instancePath": "",
 "schemaPath": "/properties/a" },
 { "instancePath": "/b",
 "schemaPath": "/properties/b/type" },
 { "instancePath": "/c",
 "schemaPath": "/optionalProperties/c/type" },
]

Carion Expires February 23, 2020 [Page 21]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 These are the same errors as before, except the final error
 (associated with the additional member named "e" in the instance) is
 no longer present. This is because "additionalProperties: true"
 enables "allow additional properties" mode on the schema.

3.3.7. Values

 The elements form is meant to describe instances that are JSON
 objects being used as an associative array.

 If a schema is of the values form, then let _S_ be the value of the
 schema member with the name "values". The instance is accepted if
 and only if all of the following are true:

 o The instance is an object. Otherwise, the standard error for this
 case shall have an "instancePath" pointing to the instance, and a
 "schemaPath" pointing to the schema member with the name "values".

 o If the instance is an object, then every member value of the
 instance must be accepted by _S_. Otherwise, the standard errors
 for this case are the union of all the errors arising from
 evaluating _S_ against member values of the instance.

 For example, if we have the schema:

 {
 "values": {
 "type": "float32"
 }
 }

 Then the instances {} and {"a": 1, "b": 2} are accepted. If instead
 we evaluate false against that schema, the standard errors are:

 [{ "instancePath": "", "schemaPath": "/values" }]

 Finally, if we evaluate the instance:

 { "a": 1, "b": 2, "c": "foo", "d": 3, "e": "bar" }

 The standard errors are:

 [
 { "instancePath": "/c", "schemaPath": "/values/type" },
 { "instancePath": "/e", "schemaPath": "/values/type" }
]

Carion Expires February 23, 2020 [Page 22]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

3.3.8. Discriminator

 The discriminator form is meant to describe JSON objects being used
 in a fashion similar to a discriminated union construct in C-like
 languages. When a schema is of the "discriminator" form, it
 validates:

 o That the instance is an object,

 o That the instance has a particular "tag" property,

 o That this "tag" property's value is a string within a set of valid
 values, and

 o That the instance satisfies another schema, where this other
 schema is chosen based on the value of the "tag" property.

 The behavior of the discriminator form is more complex than the other
 keywords. Readers familiar with CDDL may find the final example in

Appendix A helpful in understanding its behavior. What follows in
 this section is a description of the discriminator form's behavior,
 as well as some examples.

 If a schema is of the "discriminator" form, then:

 o Let _D_ be the schema member with the name "discriminator".

 o Let _T_ be the member of _D_ with the name "tag".

 o Let _M_ be the member of _D_ with the name "mapping".

 o Let _I_ be the instance member whose name equals _T_'s value. _I_
 may, for some rejected instances, not exist.

 o Let _S_ be the member of _M_ whose name equals _I_'s value. _S_
 may, for some rejected instances, not exist.

 The instance is accepted if and only if:

 o The instance is an object.

 Otherwise, the standard error for this case shall have an
 "instancePath" pointing to the instance, and a "schemaPath"
 pointing to _D_.

 o If the instance is a JSON object, then _I_ must exist.

Carion Expires February 23, 2020 [Page 23]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 Otherwise, the standard error for this case shall have an
 "instancePath" pointing to the instance, and a "schemaPath"
 pointing to _T_.

 o If the instance is a JSON object and _I_ exists, _I_'s value must
 be a string.

 Otherwise, the standard error for this case shall have an
 "instancePath" pointing to _I_, and a "schemaPath" pointing to
 T.

 o If the instance is a JSON object and _I_ exists and has a string
 value, then _S_ must exist.

 Otherwise, the standard error for this case shall have an
 "instancePath" pointing to _I_, and a "schemaPath" pointing to
 M.

 o If the instance is a JSON object, _I_ exists, and _S_ exists, then
 the instance must satisfy _S_'s value. By Section 2, _S_'s value
 must have the properties form. Apply the "discriminator tag
 exemption" afforded in Section 3.3.6 to _I_ when evaluating
 whether the instance satisfies _S_'s value.

 Otherwise, the standard errors for this case shall be standard
 errors from evaluating _S_'s value against the instance, with the
 "discriminator tag exemption" applied to _I_.

 Each of the list items above are defined to be mutually exclusive.
 For the same instance and schema, only one of the list items above
 will apply.

 To illustrate the discriminator form, if we have the schema:

Carion Expires February 23, 2020 [Page 24]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 {
 "discriminator": {
 "tag": "version",
 "mapping": {
 "v1": {
 "properties": {
 "a": { "type": "float32" }
 }
 },
 "v2": {
 "properties": {
 "a": { "type": "string" }
 }
 }
 }
 }
 }

 Then if we evaluate the instance:

 "example"

 Against this schema, the standard errors are:

 [{ "instancePath": "", "schemaPath": "/discriminator" }]

 (This is the case of the instance not being an object.)

 If we instead evaluate the instance:

 {}

 Then the standard errors are:

 [{ "instancePath": "", "schemaPath": "/discriminator/tag" }]

 (This is the case of _I_ not existing.)

 If we instead evaluate the instance:

 { "version": 1 }

 Then the standard errors are:

 [{ "instancePath": "/version", "schemaPath": "/discriminator/tag" }]

 (This is the case of _I_ existing, but having a string value.)

Carion Expires February 23, 2020 [Page 25]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 If we instead evaluate the instance:

 { "version": "v3" }

 Then the standard errors are:

 [
 { "instancePath": "/version",
 "schemaPath": "/discriminator/mapping" }
]

 (This is the case of _I_ existing and having a string value, but _S_
 not existing.)

 If the instance evaluated were:

 { "version": "v2", "a": 3 }

 Then the standard errors are:

 [
 {
 "instancePath": "/a",
 "schemaPath": "/discriminator/mapping/v2/properties/a/type"
 }
]

 (This is the case of _I_ and _S_ existing, but the instance not
 satisfying _S_'s value.)

 Finally, if instead the instance were:

 { "version": "v2", "a": "foo" }

 Then the instance satisfies the schema. No standard errors are
 returned. This is the case despite the fact that "version" is not
 mentioned by "/discriminator/mapping/v2/properties"; the
 "discriminator tag exemption" ensures that "version" is not treated
 as an additional property when evaluating the instance against _S_'s
 value.

4. IANA Considerations

 No IANA considerations.

Carion Expires February 23, 2020 [Page 26]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

5. Security Considerations

 Implementations of JDDF will necessarily be manipulating JSON data.
 Therefore, the security considerations of [RFC8259] are all relevant
 here.

 Implementations which evaluate user-inputted schemas SHOULD implement
 mechanisms to detect, and abort, circular references which might
 cause a naive implementation to go into an infinite loop. Without
 such mechanisms, implementations may be vulnerable to denial-of-
 service attacks.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://datatracker.ietf.org/doc/html/rfc8610
https://www.rfc-editor.org/info/rfc8610

Carion Expires February 23, 2020 [Page 27]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

6.2. Informative References

 [I-D.handrews-json-schema]
 Wright, A. and H. Andrews, "JSON Schema: A Media Type for
 Describing JSON Documents", draft-handrews-json-schema-01
 (work in progress), March 2018.

 [RFC7071] Borenstein, N. and M. Kucherawy, "A Media Type for
 Reputation Interchange", RFC 7071, DOI 10.17487/RFC7071,
 November 2013, <https://www.rfc-editor.org/info/rfc7071>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

Appendix A. Comparison with CDDL

 This appendix is not normative.

 To aid the reader familiar with CDDL, this section illustrates how
 JDDF works by presenting JDDF schemas and CDDL schemas which accept
 and reject the same instances.

 The JDDF schema {} accepts the same instances as the CDDL rule:

 root = any

 The JDDF schema:

 {
 "definitions": {
 "a": { "elements": { "ref": "b" }},
 "b": { "type": "float32" }
 },
 "elements": {
 "ref": "a"
 }
 }

 Corresponds to the CDDL schema:

 root = [* a]

 a = [* b]
 b = number

 The JDDF schema:

https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-01
https://datatracker.ietf.org/doc/html/rfc7071
https://www.rfc-editor.org/info/rfc7071
https://datatracker.ietf.org/doc/html/rfc7493
https://www.rfc-editor.org/info/rfc7493

Carion Expires February 23, 2020 [Page 28]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 { "enum": ["PENDING", "DONE", "CANCELED"]}

 Accepts the same instances as the CDDL rule:

 root = "PENDING" / "DONE" / "CANCELED"

 The JDDF schema {"type": "boolean"} corresponds to the CDDL rule:

 root = bool

 The JDDF schemas {"type": "float32"} and {"type": "float64"} both
 correspond to the CDDL rule:

 root = number

 The JDDF schema {"type": "string"} corresponds to the CDDL rule:

 root = tstr

 The JDDF schema {"type": "timestamp"} corresponds to the CDDL rule:

 root = tdate

 The JDDF schema:

 { "elements": { "type": "float32" }}

 Corresponds to the CDDL rule:

 root = [* number]

 The JDDF schema:

 {
 "properties": {
 "a": { "type": "boolean" },
 "b": { "type": "float32" }
 },
 "optionalProperties": {
 "c": { "type": "string" },
 "d": { "type": "timestamp" }
 }
 }

 Corresponds to the CDDL rule:

 root = { a: bool, b: number, ? c: tstr, ? d: tdate }

Carion Expires February 23, 2020 [Page 29]

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 The JDDF schema:

 { "values": { "type": "float32" }}

 Corresponds to the CDDL rule:

 root = { * tstr => number }

 Finally, the JDDF schema:

 {
 "discriminator": {
 "tag": "a",
 "mapping": {
 "foo": {
 "properties": {
 "b": { "type": "float32" }
 }
 },
 "bar": {
 "properties": {
 "b": { "type": "string" }
 }
 }
 }
 }
 }

 Corresponds to the CDDL rule:

 root = { a: "foo", b: number } / { a: "bar", b: tstr }

Appendix B. Examples

 This appendix is not normative.

 As a demonstration of JDDF, here is a JDDF schema closely equivalent
 to the plain-English definition "reputation-object" described in

Section 6.2.2 of [RFC7071]:

Carion Expires February 23, 2020 [Page 30]

https://datatracker.ietf.org/doc/html/rfc7071#section-6.2.2

Internet-Draft JSON Data Definition Format (JDDF) August 2019

 {
 "properties": {
 "application": { "type": "string" },
 "reputons": {
 "elements": {
 "additionalProperties": true,
 "properties": {
 "rater": { "type": "string" },
 "assertion": { "type": "string" },
 "rated": { "type": "string" },
 "rating": { "type": "float32" },
 },
 "optionalProperties": {
 "confidence": { "type": "float32" },
 "normal-rating": { "type": "float32" },
 "sample-size": { "type": "float64" },
 "generated": { "type": "float64" },
 "expires": { "type": "float64" }
 }
 }
 }
 }
 }

 This schema does not enforce the requirement that "sample-size",
 "generated", and "expires" be unbounded positive integers. It does
 not express the limitation that "rating", "confidence", and "normal-
 rating" should not have more than three decimal places of precision.

 This can be compared against the equivalent example in Appendix H of
 [RFC8610].

Acknowledgments

 Thanks to Gary Court, Francis Galiegue, Kris Zyp, Geraint Luff, Jason
 Desrosiers, Daniel Perrett, Erik Wilde, Ben Hutton, Evgeny
 Poberezkin, Brad Bowman, Gowry Sankar, Donald Pipowitch, Dave Finlay,
 Denis Laxalde, Henry Andrews, and Austin Wright for their work on the
 initial drafts of JSON Schema, which inspired JSON Data Definition
 Format.

 Thanks to Tim Bray, Carsten Bormann, and James Manger for their help.

Author's Address

 Ulysse Carion

 Email: ulyssecarion@gmail.com

https://datatracker.ietf.org/doc/html/rfc8610#appendix-H
https://datatracker.ietf.org/doc/html/rfc8610#appendix-H

Carion Expires February 23, 2020 [Page 31]

