
Network Working Group W. Ladd
Internet-Draft Grad Student UC Berkley
Intended status: Informational R. Salz
Expires: February 13, 2015 Akamai Technologies
 S. Turner
 IECA, Inc.
 August 12, 2014

The Curve25519 Function
draft-turner-thecurve25519function-01

Abstract

 This document specifies the Curve25519 function, an ECDH (Elliptic-
 Curve Diffie-Hellman) key-agreement scheme for use in cryptographic
 applications. It was designed with performance and security in mind.
 This document is based on information in the public domain.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 13, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Ladd, et al. Expires February 13, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft The Curve25519 Function August 2014

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 This document specifies the Curve25519 function, an ECDH (Elliptic-
 curve Diffie-Hellman) key-agreement scheme for use in cryptographic
 applications. It was designed with performance and security in mind.
 This document is based on information in the public domain.

 This document provides a stable reference for the Curve25519 function
 [Curve25519] to which other specifications may refer when defining
 their use of Curve25519. It specifies how to use Curve25519 for key
 exchange. This document defines the algorithm, the "wire format"
 (how to serialize and parse bytes sent over a network, for example),
 and provides some implementation guidance to avoid known side-channel
 timing exposures.

 This document does not specify the use of Curve25519 in any other
 specific protocol, such as TLS (Transport Layer Security) or IPsec
 (Internet Protocol Security). It does not specify how to use
 Curve25519 for digital signatures.

 Readers are assumed to be familiar with the concepts of elliptic
 curves, modular arithmetic, group operations, and finite fields
 [RFC6090] as well as rings [Curve25519].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Notation and Definitions

 The following notation and definitions are used in this document
 (notation is to the left of the ":"):

 A: A value used in the elliptic-curve equation E.

 E: An elliptic-curve equation.

 p: A prime.

 GF(p): The field with p elements.

 _#: Subscript notation, where # is a number or letter.

Ladd, et al. Expires February 13, 2015 [Page 2]

https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft The Curve25519 Function August 2014
Q

 =: Assignment.

 ^: Exponentiation.

 +, -, *, /: Addition, subtraction, multiplication, and division,
 respectively.

 Note that all operations are performed modulo p.

3. The Curve25519 Function

 Let p = 2^255 - 19. Let E be the elliptic curve with the equation
 y^2 = x^3 + 486662 * x^2 + x over GF(p).

 Each element x of GF(p) has a unique little-endian representation as
 32 bytes x[0] ... x[31], such that x[0] + 256 * x[1] + 256^2 * x[2] +
 ... + 256^31 * x[31] is congruent to x modulo p, and x[31] is
 minimal. Implementations MUST only produce points in this form. On
 receiving a point, implementations MUST mask the leftmost bit of byte
 31 to zero. This is done to preserve compatibility with point
 formats which reserve the sign bit for use in other protocols and
 increase resistance to implementation fingerprinting.
 Implementations MUST reject numbers in the range [2^255-19, 2^255-1],
 inclusive.

 Let X denote the projection map from a point (x,y) on E, to x,
 extended so that X of the point at infinity is zero. X is surjective
 onto GF(p) if the y coordinate takes on values in GF(p) and in a
 quadratic extension of GF(p).

 Then Curve25519(s, X(Q)) = X(sQ) is a function defined for all
 integers s and elements X(Q) of GF(p). Proper implementations use a
 restricted set of integers for s and only x-coordinates of points Q
 defined over GF(p). The remainder of this document describes how to
 compute this function quickly and securely, and use it in a Diffie-
 Hellman scheme.

4. Implementing the Curve25519 Function

 Let s be a 255 bits long integer, where
 s = sum s_i * 2^i with s_i in {0, 1}.

 Computing Curve25519(s, x) is done by the following procedure, taken
 from [Curve25519] based on formulas from [Mont]. All calculations
 are performed in GF(p), i.e., they are performed modulo p. The
 parameter a24 is a24 = (486662 - 2) / 4 = 121665.

Ladd, et al. Expires February 13, 2015 [Page 3]

Internet-Draft The Curve25519 Function August 2014

 x_1 = x
 x_2 = 0
 z_2 = 1
 x_3 = x
 z_3 = 1
 For t = 254 down to 0:
 // Conditional swap; see text below.
 (x_2, x_3) = cswap (s_t, x_2, x_3)
 (z_2, z_3) = cswap (s_t, z_2, z_3)
 A = x_2 + z_2
 AA = A^2
 B = x_2 - z_2
 BB = B^2
 E = AA - BB
 C = x_3 + z_3
 D = x_3 - z_3
 DA = D * A
 CB = C * B
 x_3 = (DA + CB)^2
 z_3 = x_1 * (DA - CB)^2
 x_2 = AA * BB
 z_2 = E * (AA + a24 * E)
 // Conditional swap; see text below.
 (x_2, x_3) = cswap (s_t, x_2, x_3)
 (z_2, z_3) = cswap (s_t, z_2, z_3)
 Return x_2 * (z_2^(p - 1))

 In implementing this procedure, due to the existence of side-channels
 in commodity hardware, it is important that the pattern of memory
 accesses and jumps not depend on the values of any of the bits of s.
 It is also important that the arithmetic used not leak information
 about the integers modulo p (such as having b * c distinguishable
 from c * c).

 The cswap instruction SHOULD be implemented in constant time
 (independent of s_t) as follows:

 cswap(s_t, x_2, x_3) dummy = s_t * (x_2 - x_3) x_2 = x_2 - dummy x_3
 = x_3 + dummy Return (x_2, x_3)

 where s_t is 1 or 0. Alternatively, an implementation MAY use the
 following:

 dummy = mask(s_t) AND (x_2 XOR x_3)
 x_2 = x_2 XOR dummy
 x_3 = x_3 XOR dummy

Ladd, et al. Expires February 13, 2015 [Page 4]

Internet-Draft The Curve25519 Function August 2014

 where mask(s_t) is the all-1 or all-0 word of the same length as x_2
 and x_3, computed, e.g., as mask(s_t) = 1 - s_t. The latter version
 is often more efficient.

5. Use of the Curve25519 function

 The Curve25519 function can be used in an ECDH protocol as follows:

 Alice generates 32 random bytes in f[0] to f[31]. She masks the
 three rightmost bits of f[0] and the leftmost bit of f[31] to zero
 and sets the second leftmost bit of f[31] to 1. This means that f is
 of the form 2^254 + 8 * {0, 1, ..., 2^(251) - 1} as a little-endian
 integer.

 Alice then transmits K_A = Curve25519(f, 9) to Bob, where 9 is the
 number 9.

 Bob similarly generates 32 random bytes in g[0] to g[31], applies the
 same masks, computes K_B = Curve25519(g, 9) and transmits it to
 Alice.

 Alice computes Curve25519(f, Curve25519(g, 9)); Bob computes
 Curve25519(g, Curve25519(f, 9)) using their generated values and the
 received input.

 Both of them now share K = Curve25519(f, Curve25519(g, 9)) =
 Curve25519(g, Curve25519(f, 9)) as a shared secret. Alice and Bob
 can then use a key-derivation function, such as hashing K, to compute
 a key.

6. Test Vectors

 The following test vectors are taken from [NaCl]. All numbers are
 shown as little-endian hexadecimal byte strings:

 Alice's private key, f:

 77 07 6d 0a 73 18 a5 7d 3c 16 c1 72 51 b2 66 45
 df 4c 2f 87 eb c0 99 2a b1 77 fb a5 1d b9 2c 2a

 Alice's public key, Curve25519(f, 9):

 85 20 f0 09 89 30 a7 54 74 8b 7d dc b4 3e f7 5a
 0d bf 3a 0d 26 38 1a f4 eb a4 a9 8e aa 9b 4e 6a

 Bob's private key, g:

Ladd, et al. Expires February 13, 2015 [Page 5]

Internet-Draft The Curve25519 Function August 2014

 5d ab 08 7e 62 4a 8a 4b 79 e1 7f 8b 83 80 0e e6
 6f 3b b1 29 26 18 b6 fd 1c 2f 8b 27 ff 88 e0 eb

 Bob's public key, Curve25519(g, 9):

 de 9e db 7d 7b 7d c1 b4 d3 5b 61 c2 ec e4 35 37
 3f 83 43 c8 5b 78 67 4d ad fc 7e 14 6f 88 2b 4f

 Their shared secret, K:

 4a 5d 9d 5b a4 ce 2d e1 72 8e 3b f4 80 35 0f 25
 e0 7e 21 c9 47 d1 9e 33 76 f0 9b 3c 1e 16 17 42

7. Security Considerations

 Curve25519 meets all standard assumptions on DH and DLP difficulty.

 In addition, Curve25519 is twist secure: the co-factor of the curve
 is 8, that of the twist is 4. Protocols that require contributory
 behavior must ban outputs K_A = 0, K_B = 0 or K = 0.

 Curve25519 is designed to enable very high performance software
 implementations, thus reducing the cost of highly secure cryptography
 to a point where it can be used more widely.

8. IANA Considerations

 None.

9. Acknowledgements

 We would like to thank Tanja Lange (Technische Universiteit
 Eindhoven) for her review and comments.

10. References

10.1. Normative References

 [Curve25519]
 Bernstein, D., "Curve25519 - new Diffie-Hellman speed
 records", April 2006,
 <http://www.iacr.org/cryptodb/archive/2006/

PKC/3351/3351.pdf>.

 [Mont] Montgomery, P., "Speeding the Pollard and elliptic curve
 methods of factorization", 1983,
 <http://www.ams.org/journals/mcom/1987-48-177/

S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf>.

Ladd, et al. Expires February 13, 2015 [Page 6]

http://www.iacr.org/cryptodb/archive/2006/PKC/3351/3351.pdf
http://www.iacr.org/cryptodb/archive/2006/PKC/3351/3351.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf

Internet-Draft The Curve25519 Function August 2014

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090, February 2011.

10.2. Informative References

 [NaCl] Bernstein, D., "Cryptography in NaCl", 2013,
 <http://cr.yp.to/highspeed/naclcrypto-20090310.pdf>.

Authors' Addresses

 Watson Ladd
 Grad Student UC Berkley

 Email: watsonbladd@gmail.com

 Rich Salz
 Akamai Technologies
 8 Cambridge Center
 Cambridge, MA 02142
 USA

 Phone: +1-617-714-6169
 Email: rsalz@akamai.com

 Sean Turner
 IECA, Inc.
 Suite 106
 Fairfax, VA 22031
 USA

 Phone: +1-703-628-3180
 Email: turners@ieca.com

Ladd, et al. Expires February 13, 2015 [Page 7]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6090
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf

