
Network Working Group Keith Sklower
INTERNET DRAFT University of California, Berkeley
Expires: December 31, 1995

Getconninfo(): An alternative to Gethostbyname()
draft-sklower-ipv6-getconninfo-03.txt

Status of This Memo

 This document is an Internet Draft. Internet Drafts are working
 documents of the Internet Engineering Task Force (IETF), its Areas,
 and its Working Groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six
 months. Internet Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet
 Drafts as reference material or to cite them other than as a "working
 draft" or "work in progress."

 Please check the 1id-abstracts.txt listing contained in the internet-
 drafts Shadow Directories to learn the current status of any Internet
 Draft.

Abstract

 This document proposes a uniform programmatic interface to the
 Internet name resolution system, in which differences between IPv4,
 IPv6, IPX, and CLNP are irrelevant to the applications programmer.
 This work was originally motivated by the desire to minimize the
 impact on standard BSD utilities to support TUBA, but work equally
 well for IPv6.

Acknowledgements

 The author specifically wishes to thank William Durst of the MITRE
 coporation, Steven Wise of IBM, Michael Karels of BSDI, and Eric
 Allman of the University of California at Berkeley for many useful
 discussions of the subject, and thorough review of early versions of
 the proposal, and especially thank Eric Allman for implementing a
 prototype. The observation that specifying the pair of name and
 service would suffice for connecting to a service independent of
 protocol details was made by Marshall Rose in a proposal to X/Open

Sklower [Page 1]

Draft Getconninfo June 1995

 for a "Uniform Network Interface".

1. Introduction

 Although the IETF normally concerns itself with the details of how
 information is exchanged between computers, the advent of a revision
 to the IP protocol has implications for application writers, and a
 series of comments and suggestions have been made concerning this.

 In the present BSD programming environment, and in the internet
 protocol context, an applications writer must perform a name-to-
 address and service-to-port translation before issuing socket
 primitives to initiate a connection to service, or to offer a
 service. The programmer then combines this information into a
 protocol specific addressing structure.

 Aside from the process of combining the information, it may be
 possible to code up the rest of the service in a way that makes no
 other reference IP specific details. Our experience with
 implementing TCP serivces over CLNP has given us a few cases-in-
 point.

 We give the description of a prototype interface done at Berkeley,
 which allows an application writer to obtain all the information
 necessary to establish a connection or offer a service without having
 to explicitly glue the network address and service parts together.

2. Host to address info

 The C-language interface is provided by two routines:
 #include <netdb.h>

 int
 getconninfo(host, service, clues, results);
 char *host, *service;
 struct conninfo *clues, **results;

 void
 freeconninfo(nuked);
 struct conninfo *nuked;

 where the conninfo structure is defined below.

 This structure contains either the information obtained from the name
 server, and/or broken-out fields from a line in /etc/hosts, and
 /etc/services. If the local name server is not running these routines
 do a lookup in those static files and possibly others.

Sklower [Page 2]

Draft Getconninfo June 1995

 The getconninfo() function returns a value of 0 (indicating success)
 or an error code giving the reason for failure. The results paramter
 is a pointer to a variable which will be overwritten with a pointer
 to a linked list of objects.

 The ``clues'' parameter may be omitted, in which case all possible
 matches in all address families are returned; or it may be used to
 limit the queries to return a prespecified set of protocols, with or
 without aliasing.

 If a ``clue'' parameter is provided, it may still be possible to
 wildcard some of the requirements; a value of AF_UNSPEC for the ci_af
 element indicates a willing to accept results in any address family,
 a value of 0 for ci_proto indications a willingness to employ any
 protocol to provide the service requested, if there is more than one
 choice in a given family.

 The ``host'' parameter may be either a null pointer or a zero length
 string, meaning to allow connections on any interface in the case of
 passive opens, or to connect to the the system itself on active
 opens. This currently works for all commonly implemented protcols.
 For future protocols where addresses are different depending on
 whether or not the connections are active or passive, the distinction
 may be drawn by using the CI_PASSIVE flag.

 The ``service'' paramter may also be null or of zero length, if it is
 desired to use only the address for network management functions such
 as assigning an address to an interface in the SIOCAIFFADDR ioctl(),
 or manually to add entires to the routing table.

 The conninfo struct is given by:

 struct conninfo {
 int ci_flags;
 #define CI_PASSIVE 0x1 /* intended for bind() + listen() */
 #define CI_CANONICAL 0x2 /* request canonical name */
 int ci_af;
 int ci_socktype;
 int ci_proto;
 int ci_namelen;
 char *ci_canon;
 struct sockaddr *ci_name;
 struct conninfo *ci_next;
 };

 Members of this structure are:

Sklower [Page 3]

Draft Getconninfo June 1995

 ci_flags
 This modifies the behavior of getconninfo in ways described
 above;

 ci_af
 The type of address being returned.

 ci_socktype
 The socket type required as the second argument in a call to
 socket().

 ci_proto
 The specific protocol required as the third argument in a call
 to socket().

 ci_name
 The binary address, suitable for use as an argument to connect()
 or bind().

 ci_namelen
 The length, in bytes, of the address.

 ci_canon
 The canonical name for the host. This is an output of the
 function, and is only provided if the CI_CANNONICAL flag is set
 on the clues paramater.

 When using the Internet nameserver, getconninfo() would search for
 the named host in the current domain and its parents unless the name
 ends in a dot. If the name contains no dot, and if the environment
 variable ``HOSTALIASES'' contains the name of an alias file, the
 alias file will first be searched for an alias matching the input
 name. Getconninfo() will also translate hosts specified in internet
 dotted-quad notation according to the syntax ``[a.b.c.d]'', and will
 accept ascii renditions of integers for service names, eg. ``6''.

 A non-zero error return can have the following values:

 HOST_NOT_FOUND
 No such host is known.

 TRY_AGAIN
 This is usually a temporary error and means that the local
 server did not receive a response from an authoritative server.
 A retry at some later time may succeed.

 NO_RECOVERY
 Some unexpected server failure was encountered. This is a non-

Sklower [Page 4]

Draft Getconninfo June 1995

 recoverable error.

 NO_DATA
 The requested name is valid but does not have an IP address;
 this is not a temporary error. This means that the name is
 known to the name server but there is no address associated with
 this name. Another type of request to the name server using
 this domain name will result in an answer; for example, a mail-
 forwarder may be registered for this domain.

3. Address to Host Translation

 It is sometimes useful to be able to do the reverse translation, i.e.
 given a binary network address, determine a human readable string or
 pair of strings which when fed to getconninfo(), would yield the
 starting result.

 The most common use of this is for record keeping purposes, although
 the mechanism is used in weak verification in SMTP ("you are a
 charlatan"), and was employed in the Berkeley remote shell services.
 A reverse name lookup is also done to better effect in the Kerberos
 code.

 We propose a function
 int
 getinfobysockaddr(sa, hostlen, host, servlen, serv)
 struct sockaddr *sa;
 int hostlen, servlen;
 char *host, *serv;

 As above, a zero value indicates sucess, and a non-zero value gives
 some indication of the cause of the failure.

 The user would allocate space for human readable versions of the
 hostname and service to be derived from the sockaddr. a length value
 of zero indicates the application is not interested in having that
 aspect of the address translated.

 Otherwise sufficient space including a trailing zero must be provided
 for the translation.

Sklower [Page 5]

Draft Getconninfo June 1995

4. Author's Address

 Keith Sklower
 Computer Science Department
 380 Soda Hall, MS 1776
 University of California
 Berkeley, CA 94720-1776

 Phone: (510) 642-9587
 E-mail: sklower@CS.Berkeley.EDU

5. Expiration Date of this Draft

 December 31st, 1995

Sklower [Page 6]

