
Workgroup: Network Working Group
Published: 22 May 2020
Intended Status: Informational
Expires: 23 November 2020
Authors: J. Schaad

August Cellars
CBOR Object Signing and Encryption (COSE): Additional Algorithms

Abstract

The CBOR Object Signing and Encryption (COSE) syntax [I-D.ietf-cose-
rfc8152bis-struct] allows for adding additional algorithms to the
registries. This document adds one additional key wrap algorithm to
the registry using the AES Wrap with Padding Algorithm [RFC5649].
This document adds Keccak Message Authentication Code (KMAC)
algorithms as well as using KMAC as a Key Derivation Function (KDF).

Contributing to this document

This note is to be removed before publishing as an RFC.

The source for this draft is being maintained in GitHub. Suggested
changes should be submitted as pull requests at https://github.com/
cose-wg/X509 Editorial changes can be managed in GitHub, but any
substantial issues need to be discussed on the COSE mailing list.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is
at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 23 November 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/cose-wg/X509
https://github.com/cose-wg/X509
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1.  Introduction

1.1.  Requirements Terminology

1.2.  Open Issues

2.  Signature Algorithms

3.  Message Authentication Code (MAC) Algorithms

3.1.  Keccak Message Authentication Code (KMAC)

4.  AES Key Wrap with Padding

4.1.  Security Considerations for AES-KW with Padding

5.  Key Derivation Functions (KDFs)

5.1.  KMAC KDF

6.  Content Key Distribution Methods

6.1.  Direct Key with KDF

6.1.1.  Security Considerations

6.2.  Direct ECDH

6.3.  ECDH with Key Wrap

7.  Security Considerations

8.  IANA Considerations

8.1.  Changes to the Algorithm Table

9.  References

9.1.  Normative References

Author's Address

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



1. Introduction

The CBOR Object Signing and Encryption (COSE) syntax [I-D.ietf-cose-
rfc8152bis-struct] is defined to have an object based set of security
primitives using CBOR [I-D.ietf-cbor-7049bis] for use in constrained
environments. COSE has algorithm agility so that documents like this
one can register algorithms which are needed.

In this document we add:

The AES Wrap with Padding algorithm.

Keccak Message Authentication Code (KMAC) algorithms.

KMAC as a Key Derivation Function (KDF) for direct and key
agreement algorithms.

1.1. Requirements Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

1.2. Open Issues

This section is to be removed before publishing as an RFC.

Should 192-bit AES Key Wrap be omitted or just given a large
identifier? (John)

Add the cSHAKE algorithms to the list? (Bob)

RESOLVED: A desire has been expressed to all for the use of AES
Key Wrap with Padding as a content encryption algorithm. This is
not compatible with the requirement that all content encryption
algorithms "support authentication of both the content and
additional data." AES Key Wrap is an AE not an AEAD algorithm.
(Jim) Response: Russ said it was ok just to be a key wrap
algorithm.

2. Signature Algorithms

This section is to be removed before publishing as an RFC.

This document defines no new signature algorithms.

¶

¶

* ¶

* ¶

*
¶

¶

¶

*
¶

* ¶

*

¶

¶

¶



3. Message Authentication Code (MAC) Algorithms

3.1. Keccak Message Authentication Code (KMAC)

As part of the definition of the SHA-3 algorithms, NIST also defined
a number of algorithms that are based on SHA-3 [NIST-800-185]. The
Keccak Message Authentication Code (KMAC) is defined in that
document. KMAC has a big performance advantage when compared to Hash-
Based Message Authentication Code (HMAC) [RFC2104] [RFC4231] as it
was designed to deal with the length extension attacks that forced
the two pass structure of HMAC.

KMAC is parameterized with four inputs:

K - the key used for authentication

X - the byte string to be authenticated

L - the size of the authentication value in bits. This MUST be at
least 64 and SHOULD be at least 128.

S - customization string which shall be a zero length byte string.

The algorithm identifier does not encode the length of the
authentication tag, unlike the MAC algorithms defined in [I-D.ietf-
cose-rfc8152bis-algs]. This is because shortened tags for those
algorithms are generated by truncating a longer output. However, KMAC
takes the resultant output length as one of the parameters and will
generate different outputs depending on the length. The length of the
MAC code is therefore chosen by the sender, and the length is
inferred from the actual tag by the validator. If an attacker
attempts to gain an advantage by shortening the tag, KMAC is not
going to generate the correct tag.

Name Value Description Recommended
KMAC 128 TBD4 KMAC w/ SHA-3 128-bits Yes
KMAC 256 TBD5 KMAC w/ SHA-3 256-bits Yes

Table 1

When using a COSE key for this algorithm, the following checks are
made:

The 'kty' field MUST be present, and it MUST be 'Symmetric'.

If the 'alg' field is present, it MUST match the KMAC algorithm
being used.

If the 'key_ops' field is present, it MUST include 'MAC create'
when creating an KMAC authentication tag.

If the 'key_ops' field is present, it MUST include 'MAC verify'
when verifying an KMAC authentication tag.

¶

¶

* ¶

* ¶

*
¶

* ¶

¶

¶

* ¶

*
¶

*
¶

*
¶



Implementations creating and validating MAC values MUST validate that
the key type, key length, and algorithm are correct and appropriate
for the entities involved.

4. AES Key Wrap with Padding

The AES Key Wrap with Padding is defined in [RFC5649]. This algorithm
uses an AES key to wrap a value that is a multiple of 8 bits. As
such, it can be used to wrap not only the key sizes for the content
encryption algorithms, but additionally it can be used to encrypt off
size keys that can be used with the keyed hash functions or key
derivation functions. The algorithm uses a single fixed parameter,
the initial value. This value is fixed in section 3 of [RFC5649],
this is a different value from that used for the AES Key Wrap
algorithm of [RFC3394]. There are no public parameters that very on a
per-invocation bases. This algorithm does not support additional data
and thus the protected header field MUST be empty.

Name Value
Key
Size

Description Recommended

A128KW-
Pad

TBD1 128
AES Key Wrap w/padding and a
128-bit key

Yes

A192KW-
Pad

TBD2 192
AES Key Wrap w/padding and a
192-bit key

No

A256KW-
Pad

TBD3 256
AES Key Wrap w/padding and a
256-bit key

Yes

Table 2: AES Key Wrap Algorithm Values

When using a COSE key for this algorithm, the following checks are
made:

The 'kty' field MUST be present, and it MUST be 'Symmetric'.

If the 'alg' field is present, it MUST match the AES Key Wrap
algorithm being used.

If the 'key_ops' field is present, it MUST include 'encrypt' or
'wrap key' when encrypting.

If the 'key_ops' field is present, it MUST include 'decrypt' or
'unwrap key' when decrypting.

4.1. Security Considerations for AES-KW with Padding

The shared secret needs to have some method to be regularly updated
over time. The shared secret is the basis of trust.

¶

¶

¶

* ¶

*
¶

*
¶

*
¶

¶



5. Key Derivation Functions (KDFs)

5.1. KMAC KDF

KMAC can additionally be used as a key derivation function 
[NIST-800-56C]. KMAC has a big advantage over the HKDF function,
defined in [HKDF], as it executes the hashing function once as
opposed to either two or four times for HKDF w/ HMAC SHA-256. This
advantage may be offset by having SHA-256 in hardware and KMAC in
software, so that should be one consideration in deciding which one
to use.

The KMAC-KDF algorithm takes these inputs:

secret -- a shared value that is secret. Secrets may be either
previously shared or derived from operations like a Diffie-Hellman
(DH) key agreement.

salt -- an optional value that is used to change the generation
process. The salt value can be either public or private. If the
salt is public and carried in the message, then the 'salt'
algorithm header parameter defined in Table 9 of [I-D.ietf-cose-
rfc8152bis-algs] is used. While [HKDF] suggests that the length of
the salt be the same as the length of the underlying hash value,
any positive salt length will improve the security as different
key values will be generated. This parameter is protected by being
included in the key computation and does not need to be separately
authenticated. The salt value does not need to be unique for every
message sent.

length -- the number of bytes of output that need to be generated.

context information -- Information that describes the context in
which the resulting value will be used. Making this information
specific to the context in which the material is going to be used
ensures that the resulting material will always be tied to that
usage. The context structure defined in Section 5.2 of [I-D.ietf-
cose-rfc8152bis-algs] is used by the KDFs in this document.

Full details of how the key derivation works can be found in Section
4 of [NIST-800-56C]. A quick summary of the details is provided here
for simplicity. The KMAC function call is:

where:

salt is the same parameter as above

x is built as counter || Z || FixedInfo. Where counter is a 4-byte
unsigned integer of 0, Z is the secret, and FixedInfo is the
context information.

¶

¶

*

¶

*

¶

* ¶

*

¶

¶

          Result = KMAC#(salt, x, outputBits, "KDF")¶

¶

* ¶

*

¶

https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-algs-07#section-5.2


outputBits is length * 8

One algorithm parameter is defined for the KMAC-KDF function.

Name Label Type Algorithm Description

salt -20 bstr

direct+KMAC-128-KDF, direct+KMAC-256-
KDF, ECDH-ES+KMAC-128-KDF, ECDH-
ES+KMAC-256-KDF, ECDH-SS+KMAC-128-
KDF, ECDH-SS+KMAC-256-KDF ECDH-
ES+KMAC-128-KDF+A128KW, ECDH-
ES+KMAC-256-KDF+A128KW, ECDH-
SS+KMAC-128-KDF+A128KW, ECDH-
SS+KMAC-256-KDF+A128KW ECDH-
ES+KMAC-256-KDF+A256KW, ECDH-
ES+KMAC-256-KDF+A256KW, ECDH-
SS+KMAC-256-KDF+A256KW, ECDH-
SS+KMAC-256-KDF+A256KW 

Random salt

Table 3: KMAC-KDF Algorithm Parameters

6. Content Key Distribution Methods

6.1. Direct Key with KDF

These recipient algorithms take a common shared secret between the
two parties and applies the KMAC-KDF function (Section 5.1), using
the context structure defined in Section 5.2 of [I-D.ietf-cose-
rfc8152bis-algs] to transform the shared secret into the CEK. The
'protected' field can be of non-zero length. Either the 'salt'
parameter of KMAC-KDF or the 'PartyU nonce' parameter of the context
structure MUST be present. The salt/nonce parameter can be generated
either randomly or deterministically. The requirement is that it be a
unique value for the shared secret in question.

If the salt/nonce value is generated randomly, then it is suggested
that the length of the random value be the same length as the KMAC-
KDF. While there is no way to guarantee that it will be unique, there
is a high probability that it will be unique. If the salt/nonce value
is generated deterministically, it can be guaranteed to be unique,
and thus there is no length requirement.

A new IV must be used for each message if the same key is used. The
IV can be modified in a predictable manner, a random manner, or an
unpredictable manner (i.e., encrypting a counter).

The IV used for a key can also be generated from the same KMAC-KDF
functionality as the key is generated. If KMAC-KDF is used for
generating the IV, the algorithm identifier is set to "IV-
GENERATION". Doing this requires that the context be modified for
every IV generated to ensure that it is unique.

When these algorithms are used, the key type MUST be 'symmetric'.

* ¶

¶

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-algs-07#section-5.2


The set of algorithms defined in this document can be found in Table
4.

Name Value KDF Description
direct+KMAC-128 TBD6 KMAC-128 Shared secret w/ KMAC-128
direct+KMAC-256 TBD7 KMAC-256 Shared secret w/ KMAC-128

Table 4: Direct Key with KDF

When using a COSE key for this algorithm, the following checks are
made:

The 'kty' field MUST be present, and it MUST be 'Symmetric'.

If the 'alg' field is present, it MUST match the algorithm being
used.

If the 'key_ops' field is present, it MUST include 'deriveKey' or
'deriveBits'.

6.1.1. Security Considerations

The shared secret needs to have some method to be regularly updated
over time. The shared secret forms the basis of trust. Although not
used directly, it should still be subject to scheduled rotation.

While these methods do not provide for perfect forward secrecy, as
the same shared secret is used for all of the keys generated, if the
key for any single message is discovered, only the message (or series
of messages) using that derived key are compromised. A new key
derivation step will generate a new key that requires the same amount
of work to get the key.

6.2. Direct ECDH

This document adds to the set of Direct ECDH algorithms which were
defined in Section 6.3 of [I-D.ietf-cose-rfc8152bis-algs]. This is
done by adding a changing the KDF used to derive the shared secret.

Name Value KDF
Ephemeral-
Static

Key
Wrap

Description

ECDH-ES +
KMAC-128

TBD8 KMAC-128 yes none
ECDH ES w/ KMAC -
generate key
directly

ECDH-ES +
KMAC-256

TBD9 KMAC-256 yes none
ECDH ES w/ KMAC -
generate key
directly

Table 5: ECDH Algorithm Values

Both of these algorithms use the same set of the ECDH Algorithm
Parameters as their HKDF counterparts.

¶

¶

* ¶

*
¶

*
¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-algs-07#section-6.3


This document defines these algorithms to be used with the curves
P-256, P-384, P-521, X25519, and X448. Implementations MUST verify
that the key type and curve are correct. Different curves are
restricted to different key types. Implementations MUST verify that
the curve and algorithm are appropriate for the entities involved.

When using a COSE key for this algorithm, the following checks are
made:

The 'kty' field MUST be present, and it MUST be 'EC2' or 'OKP'.

If the 'alg' field is present, it MUST match the key agreement
algorithm being used.

If the 'key_ops' field is present, it MUST include 'derive key' or
'derive bits' for the private key.

If the 'key_ops' field is present, it MUST be empty for the public
key.

6.3. ECDH with Key Wrap

This document adds to the set of Direct ECDH algorithms which were
defined in Section 6.4 of [I-D.ietf-cose-rfc8152bis-algs]. This is
done by adding a changing the KDF used to derive the shared secret.

Name Value KDF
Ephemeral-
Static

Key
Wrap

Description

ECDH-ES +
KMAC-128 +
A128KW

TBD10 KMAC-128 yes A128KW

ECDH ES w/
KMAC-128 and AES
Key Wrap w/ 128-
bit key

ECDH-ES +
KMAC-256 +
A256KW

TBD11 KMAC-256 yes A256KW

ECDH ES w/
KMAC-256 and AES
Key Wrap w/ 256-
bit key

ECDH-SS +
KMAC-128 +
A128KW

TBD12 KMAC-128 yes A128KW

ECDH SS w/
KMAC-128 and AES
Key Wrap w/ 128-
bit key

ECDH-SS +
KMAC-256 +
A256KW

TBD13 KMAC-256 yes A256KW

ECDH SS w/
KMAC-256 and AES
Key Wrap w/ 256-
bit key

Table 6: ECDH Algorithm Values with Key Wrap

When using a COSE key for this algorithm, the following checks are
made:

The 'kty' field MUST be present, and it MUST be 'EC2' or 'OKP'.

¶

¶

* ¶

*
¶

*
¶

*
¶

¶

¶

* ¶

https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-algs-07#section-6.4


[I-D.ietf-cose-rfc8152bis-struct]

[I-D.ietf-cose-rfc8152bis-algs]

[I-D.ietf-cbor-7049bis]

[RFC2104]

[RFC2119]

If the 'alg' field is present, it MUST match the key agreement
algorithm being used.

If the 'key_ops' field is present, it MUST include 'derive key' or
'derive bits' for the private key.

If the 'key_ops' field is present, it MUST be empty for the public
key.

7. Security Considerations

Decide on this - TBD

8. IANA Considerations

8.1. Changes to the Algorithm Table

IANA is requested to add new items to the "COSE Algorithms" registry.
The content to be added can be found in Table 2. For all items to be
added, the Reference column should be set to this document.

9. References

9.1. Normative References

Schaad, J., "CBOR Object Signing and Encryption (COSE):
Structures and Process", Work in Progress, Internet-Draft,
draft-ietf-cose-rfc8152bis-struct-08, 9 March 2020, 
<https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-
struct-08>. 

Schaad, J., "CBOR Object Signing and Encryption (COSE):
Initial Algorithms", Work in Progress, Internet-Draft,
draft-ietf-cose-rfc8152bis-algs-07, 9 March 2020, 
<https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-
algs-07>. 

Bormann, C. and P. Hoffman, "Concise Binary Object
Representation (CBOR)", Work in Progress, Internet-Draft,
draft-ietf-cbor-7049bis-13, 8 March 2020, <https://
tools.ietf.org/html/draft-ietf-cbor-7049bis-13>. 

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
Hashing for Message Authentication", RFC 2104, DOI
10.17487/RFC2104, February 1997, <https://www.rfc-
editor.org/info/rfc2104>. 

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

*
¶

*
¶

*
¶

¶

¶

https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-08
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-struct-08
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-algs-07
https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-algs-07
https://tools.ietf.org/html/draft-ietf-cbor-7049bis-13
https://tools.ietf.org/html/draft-ietf-cbor-7049bis-13
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104


[RFC4231]

[HKDF]

[RFC8174]

[RFC5649]

[RFC3394]

[NIST-800-185]

[NIST-800-56C]

RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>. 

Nystrom, M., "Identifiers and Test Vectors for HMAC-
SHA-224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512", 
RFC 4231, DOI 10.17487/RFC4231, December 2005, <https://
www.rfc-editor.org/info/rfc4231>. 

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
Key Derivation Function (HKDF)", RFC 5869, DOI 10.17487/
RFC5869, May 2010, <https://www.rfc-editor.org/info/
rfc5869>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 
May 2017, <https://www.rfc-editor.org/info/rfc8174>. 

Housley, R. and M. Dworkin, "Advanced Encryption Standard
(AES) Key Wrap with Padding Algorithm", RFC 5649, DOI
10.17487/RFC5649, September 2009, <https://www.rfc-
editor.org/info/rfc5649>. 

Schaad, J. and R. Housley, "Advanced Encryption Standard
(AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
September 2002, <https://www.rfc-editor.org/info/rfc3394>.

Kelsey, J., Change, S., and R. Perlner, "SHA-3 Derived
Functions: cSHAKE, KMAC, TupleHash, ParallelHash", 
December 2016, <https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-185.pdf>. 

Barker, E., Chen, L., and R. Davis, "Recommendation
for Key-Derivation Methods in Key-Establishment Schemes"",
March 2020, <https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-56Cr2-draft.pdf>. 

Author's Address

Jim Schaad
August Cellars

Email: ietf@augustcellars.com

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4231
https://www.rfc-editor.org/info/rfc4231
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc5649
https://www.rfc-editor.org/info/rfc5649
https://www.rfc-editor.org/info/rfc3394
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2-draft.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2-draft.pdf
mailto:ietf@augustcellars.com

	CBOR Object Signing and Encryption (COSE): Additional Algorithms
	Abstract
	Contributing to this document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Terminology
	1.2. Open Issues

	2. Signature Algorithms
	3. Message Authentication Code (MAC) Algorithms
	3.1. Keccak Message Authentication Code (KMAC)

	4. AES Key Wrap with Padding
	4.1. Security Considerations for AES-KW with Padding

	5. Key Derivation Functions (KDFs)
	5.1. KMAC KDF

	6. Content Key Distribution Methods
	6.1. Direct Key with KDF
	6.1.1. Security Considerations

	6.2. Direct ECDH
	6.3. ECDH with Key Wrap

	7. Security Considerations
	8. IANA Considerations
	8.1. Changes to the Algorithm Table

	9. References
	9.1. Normative References

	Author's Address


