
TLS E. Rescorla
Internet-Draft RTFM, Inc.
Obsoletes: 6347 (if approved) H. Tschofenig
Intended status: Standards Track ARM Limited
Expires: April 29, 2017 October 26, 2016

The Datagram Transport Layer Security (DTLS) Protocol Version 1.3
draft-rescorla-tls-dtls13-00

Abstract

 This document specifies Version 1.3 of the Datagram Transport Layer
 Security (DTLS) protocol. DTLS 1.3 allows client/server applications
 to communicate over the Internet in a way that is designed to prevent
 eavesdropping, tampering, and message forgery.

 The DTLS 1.3 protocol is intentionally based on the Transport Layer
 Security (TLS) 1.3 protocol and provides equivalent security
 guarantees. Datagram semantics of the underlying transport are
 preserved by the DTLS protocol.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 29, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Rescorla & Tschofenig Expires April 29, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft DTLS 1.3 October 2016

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 3
2. Conventions and Terminology 4
3. DTLS Design Rational and Overview 4
3.1. Packet Loss . 5
3.1.1. Reordering . 6
3.1.2. Message Size . 6

3.2. Replay Detection . 6
4. The DTLS Record Layer . 7
4.1. Transport Layer Mapping 8
4.2. PMTU Issues . 9
4.3. Record Payload Protection 11
4.3.1. Anti-Replay . 11
4.3.2. Handling Invalid Records 11

5. The DTLS Handshake Protocol 12
5.1. Denial-of-Service Countermeasures 12
5.2. DTLS Handshake Message Format 15
5.3. ACK Message . 19
5.4. Handshake Message Fragmentation and Reassembly 19
5.5. Timeout and Retransmission 20
5.5.1. State Machine . 24
5.5.2. Timer Values . 27

5.6. CertificateVerify and Finished Messages 28
5.7. Alert Messages . 28

 5.8. Establishing New Associations with Existing Parameters . 28
5.9. Epoch Values and Rekeying 28

6. Application Data Protocol 30
7. Security Considerations 30
8. Changes to DTLS 1.2 . 30

Rescorla & Tschofenig Expires April 29, 2017 [Page 2]

Internet-Draft DTLS 1.3 October 2016

9. Open Issues . 31
10. IANA Considerations . 31
11. References . 31
11.1. Normative References 31
11.2. Informative References 32

Appendix A. History . 34
Appendix B. Working Group Information 34
Appendix C. Contributors . 34

 Authors' Addresses . 35

1. Introduction

 RFC EDITOR: PLEASE REMOVE THE FOLLOWING PARAGRAPH

 The source for this draft is maintained in GitHub. Suggested changes
 should be submitted as pull requests at https://github.com/tlswg/

dtls13-spec. Instructions are on that page as well. Editorial
 changes can be managed in GitHub, but any substantive change should
 be discussed on the TLS mailing list.

 The primary goal of the TLS protocol is to provide privacy and data
 integrity between two communicating peers. The TLS protocol is
 composed of two layers: the TLS Record Protocol and the TLS Handshake
 Protocol. However, TLS must run over a reliable transport channel -
 typically TCP [RFC0793].

 There are applications that utilize UDP as a transport and to offer
 communication security protection for those applications the Datagram
 Transport Layer Security (DTLS) protocol has been designed. DTLS is
 deliberately designed to be as similar to TLS as possible, both to
 minimize new security invention and to maximize the amount of code
 and infrastructure reuse.

 DTLS 1.0 was originally defined as a delta from TLS 1.1 and DTLS 1.2
 was defined as a series of deltas to TLS 1.2. There is no DTLS 1.1;
 that version number was skipped in order to harmonize version numbers
 with TLS. This specification describes the most current version of
 the DTLS protocol aligning with the efforts around TLS 1.3.

 Implementations that speak both DTLS 1.2 and DTLS 1.3 can
 interoperate with those that speak only DTLS 1.2 (using DTLS 1.2 of
 course), just as TLS 1.3 implementations can interoperate with TLS
 1.2 (see Appendix C of [I-D.ietf-tls-tls13] for details). While
 backwards compatibility with DTLS 1.0 is possible the use of DTLS 1.0
 is not recommended as explained in Section 3.1.2 of RFC 7525
 [RFC7525].

https://github.com/tlswg/dtls13-spec
https://github.com/tlswg/dtls13-spec
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc7525#section-3.1.2
https://datatracker.ietf.org/doc/html/rfc7525

Rescorla & Tschofenig Expires April 29, 2017 [Page 3]

Internet-Draft DTLS 1.3 October 2016

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119 [RFC2119].

 The following terms are used:

 - client: The endpoint initiating the TLS connection.

 - connection: A transport-layer connection between two endpoints.

 - endpoint: Either the client or server of the connection.

 - handshake: An initial negotiation between client and server that
 establishes the parameters of their transactions.

 - peer: An endpoint. When discussing a particular endpoint, "peer"
 refers to the endpoint that is remote to the primary subject of
 discussion.

 - receiver: An endpoint that is receiving records.

 - sender: An endpoint that is transmitting records.

 - session: An association between a client and a server resulting
 from a handshake.

 - server: The endpoint which did not initiate the TLS connection.

 The reader is assumed to be familiar with the TLS 1.3 specification
 since this document defined as a delta from TLS 1.3.

3. DTLS Design Rational and Overview

 The basic design philosophy of DTLS is to construct "TLS over
 datagram transport". Datagram transport does not require or provide
 reliable or in-order delivery of data. The DTLS protocol preserves
 this property for application data. Applications such as media
 streaming, Internet telephony, and online gaming use datagram
 transport for communication due to the delay-sensitive nature of
 transported data. The behavior of such applications is unchanged
 when the DTLS protocol is used to secure communication, since the
 DTLS protocol does not compensate for lost or re-ordered data
 traffic.

Rescorla & Tschofenig Expires April 29, 2017 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft DTLS 1.3 October 2016

 TLS cannot be used directly in datagram environments for the
 following five reasons:

 1. TLS does not allow independent decryption of individual records.
 Because the integrity check indirectly depends on a sequence
 number, if record N is not received, then the integrity check on
 record N+1 will be based on the wrong sequence number and thus
 will fail. DTLS solves this problem by adding explicit sequence
 numbers.

 2. The TLS handshake is a lock-step cryptographic handshake.
 Messages must be transmitted and received in a defined order; any
 other order is an error. Clearly, this is incompatible with
 reordering and message loss.

 3. Not all TLS 1.3 handshake messages (such as the NewSessionTicket
 message) are acknowledged. Hence, a new acknowledgement message
 has to be added to detect message loss.

 4. Handshake messages are potentially larger than any given
 datagram, thus creating the problem of IP fragmentation.

 5. Datagram transport protocols, like UDP, are more vulnerable to
 denial of service attacks and require a return-routability check
 with the help of cookies to be integrated into the handshake. A
 detailed discussion of countermeasures can be found in

Section 5.1.

3.1. Packet Loss

 DTLS uses a simple retransmission timer to handle packet loss.
 Figure 1 demonstrates the basic concept, using the first phase of the
 DTLS handshake:

 Client Server
 ------ ------
 ClientHello ------>

 X<-- HelloRetryRequest
 (lost)

 [Timer Expires]

 ClientHello ------>
 (retransmit)

 Figure 1: DTLS Retransmission Example.

Rescorla & Tschofenig Expires April 29, 2017 [Page 5]

Internet-Draft DTLS 1.3 October 2016

 Once the client has transmitted the ClientHello message, it expects
 to see a HelloRetryRequest from the server. However, if the server's
 message is lost, the client knows that either the ClientHello or the
 HelloRetryRequest has been lost and retransmits. When the server
 receives the retransmission, it knows to retransmit.

 The server also maintains a retransmission timer and retransmits when
 that timer expires.

 Note that timeout and retransmission do not apply to the
 HelloRetryRequest since this would require creating state on the
 server. The HelloRetryRequest is designed to be small enough that it
 will not itself be fragmented, thus avoiding concerns about
 interleaving multiple HelloRetryRequests.

3.1.1. Reordering

 In DTLS, each handshake message is assigned a specific sequence
 number within that handshake. When a peer receives a handshake
 message, it can quickly determine whether that message is the next
 message it expects. If it is, then it processes it. If not, it
 queues it for future handling once all previous messages have been
 received.

3.1.2. Message Size

 TLS and DTLS handshake messages can be quite large (in theory up to
 2^24-1 bytes, in practice many kilobytes). By contrast, UDP
 datagrams are often limited to less than 1500 bytes if IP
 fragmentation is not desired. In order to compensate for this
 limitation, each DTLS handshake message may be fragmented over
 several DTLS records, each of which is intended to fit in a single IP
 datagram. Each DTLS handshake message contains both a fragment
 offset and a fragment length. Thus, a recipient in possession of all
 bytes of a handshake message can reassemble the original unfragmented
 message.

3.2. Replay Detection

 DTLS optionally supports record replay detection. The technique used
 is the same as in IPsec AH/ESP, by maintaining a bitmap window of
 received records. Records that are too old to fit in the window and
 records that have previously been received are silently discarded.
 The replay detection feature is optional, since packet duplication is
 not always malicious, but can also occur due to routing errors.
 Applications may conceivably detect duplicate packets and accordingly
 modify their data transmission strategy.

Rescorla & Tschofenig Expires April 29, 2017 [Page 6]

Internet-Draft DTLS 1.3 October 2016

4. The DTLS Record Layer

 The DTLS record layer is extremely similar to that of TLS 1.3. The
 only change is the inclusion of an explicit epoch and sequence number
 in the record. This sequence number allows the recipient to
 correctly verify the TLS MAC. The DTLS record format is shown below:

 struct {
 ContentType type;
 ProtocolVersion version = { 254, 253 };
 uint16 epoch; // DTLS-related field
 uint48 sequence_number; // DTLS-related field
 uint16 length;
 opaque fragment[DTLSPlaintext.length];
 } DTLSPlaintext;

 type: Identical to the type field in a TLS 1.3 record.

 version: This specification re-uses the DTLS version 1.2 version
 number, namely { 254, 253 }. This field is deprecated and MUST be
 ignored for all purposes.

 epoch: A counter value that is incremented on every cipher state
 change.

 sequence_number: The sequence number for this record.

 length: Identical to the length field in a TLS 1.3 record.

 fragment: Identical to the fragment field in a TLS 1.3 record.

 DTLS uses an explicit sequence number, rather than an implicit one,
 carried in the sequence_number field of the record. Sequence numbers
 are maintained separately for each epoch, with each sequence_number
 initially being 0 for each epoch. For instance, if a handshake
 message from epoch 0 is retransmitted, it might have a sequence
 number after a message from epoch 1, even if the message from epoch 1
 was transmitted first. Note that some care needs to be taken during
 the handshake to ensure that retransmitted messages use the right
 epoch and keying material.

 If several handshakes are performed in close succession, there might
 be multiple records on the wire with the same sequence number but
 from different cipher states. The epoch field allows recipients to
 distinguish such packets. The epoch number is initially zero and is
 incremented each time keying material changes and a sender aims to
 rekey. More details are provided in Section 5.9. In order to ensure
 that any given sequence/epoch pair is unique, implementations MUST

Rescorla & Tschofenig Expires April 29, 2017 [Page 7]

Internet-Draft DTLS 1.3 October 2016

 NOT allow the same epoch value to be reused within two times the TCP
 maximum segment lifetime.

 Note that because DTLS records may be reordered, a record from epoch
 1 may be received after epoch 2 has begun. In general,
 implementations SHOULD discard packets from earlier epochs, but if
 packet loss causes noticeable problems they MAY choose to retain
 keying material from previous epochs for up to the default MSL
 specified for TCP [RFC0793] to allow for packet reordering. (Note
 that the intention here is that implementers use the current guidance
 from the IETF for MSL, not that they attempt to interrogate the MSL
 that the system TCP stack is using.) Until the handshake has
 completed, implementations MUST accept packets from the old epoch.

 Conversely, it is possible for records that are protected by the
 newly negotiated context to be received prior to the completion of a
 handshake. For instance, the server may send its Finished message
 and then start transmitting data. Implementations MAY either buffer
 or discard such packets, though when DTLS is used over reliable
 transports (e.g., SCTP), they SHOULD be buffered and processed once
 the handshake completes. Note that TLS's restrictions on when
 packets may be sent still apply, and the receiver treats the packets
 as if they were sent in the right order. In particular, it is still
 impermissible to send data prior to completion of the first
 handshake.

 As in TLS, implementations MUST either abandon an association or re-
 key using a KeyUpdate message prior to allowing the sequence number
 to wrap.

 Implementations MUST NOT allow the epoch to wrap, but instead MUST
 establish a new association, terminating the old association.

4.1. Transport Layer Mapping

 Each DTLS record MUST fit within a single datagram. In order to
 avoid IP fragmentation, clients of the DTLS record layer SHOULD
 attempt to size records so that they fit within any PMTU estimates
 obtained from the record layer.

 Note that unlike IPsec, DTLS records do not contain any association
 identifiers. Applications must arrange to multiplex between
 associations. With UDP, this is presumably done with the host/port
 number.

 Multiple DTLS records may be placed in a single datagram. They are
 simply encoded consecutively. The DTLS record framing is sufficient
 to determine the boundaries. Note, however, that the first byte of

https://datatracker.ietf.org/doc/html/rfc0793

Rescorla & Tschofenig Expires April 29, 2017 [Page 8]

Internet-Draft DTLS 1.3 October 2016

 the datagram payload must be the beginning of a record. Records may
 not span datagrams.

 Some transports, such as DCCP [RFC4340] provide their own sequence
 numbers. When carried over those transports, both the DTLS and the
 transport sequence numbers will be present. Although this introduces
 a small amount of inefficiency, the transport layer and DTLS sequence
 numbers serve different purposes; therefore, for conceptual
 simplicity, it is superior to use both sequence numbers.

 Some transports provide congestion control for traffic carried over
 them. If the congestion window is sufficiently narrow, DTLS
 handshake retransmissions may be held rather than transmitted
 immediately, potentially leading to timeouts and spurious
 retransmission. When DTLS is used over such transports, care should
 be taken not to overrun the likely congestion window. [RFC5238]
 defines a mapping of DTLS to DCCP that takes these issues into
 account.

4.2. PMTU Issues

 In general, DTLS's philosophy is to leave PMTU discovery to the
 application. However, DTLS cannot completely ignore PMTU for three
 reasons:

 - The DTLS record framing expands the datagram size, thus lowering
 the effective PMTU from the application's perspective.

 - In some implementations, the application may not directly talk to
 the network, in which case the DTLS stack may absorb ICMP
 [RFC1191] "Datagram Too Big" indications or ICMPv6 [RFC4443]
 "Packet Too Big" indications.

 - The DTLS handshake messages can exceed the PMTU.

 In order to deal with the first two issues, the DTLS record layer
 SHOULD behave as described below.

 If PMTU estimates are available from the underlying transport
 protocol, they should be made available to upper layer protocols.
 In particular:

 - For DTLS over UDP, the upper layer protocol SHOULD be allowed to
 obtain the PMTU estimate maintained in the IP layer.

 - For DTLS over DCCP, the upper layer protocol SHOULD be allowed to
 obtain the current estimate of the PMTU.

https://datatracker.ietf.org/doc/html/rfc4340
https://datatracker.ietf.org/doc/html/rfc5238
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc4443

Rescorla & Tschofenig Expires April 29, 2017 [Page 9]

Internet-Draft DTLS 1.3 October 2016

 - For DTLS over TCP or SCTP, which automatically fragment and
 reassemble datagrams, there is no PMTU limitation. However, the
 upper layer protocol MUST NOT write any record that exceeds the
 maximum record size of 2^14 bytes.

 The DTLS record layer SHOULD allow the upper layer protocol to
 discover the amount of record expansion expected by the DTLS
 processing.

 If there is a transport protocol indication (either via ICMP or
 via a refusal to send the datagram as in Section 14 of [RFC4340]),
 then the DTLS record layer MUST inform the upper layer protocol of
 the error.

 The DTLS record layer SHOULD NOT interfere with upper layer
 protocols performing PMTU discovery, whether via [RFC1191] or
 [RFC4821] mechanisms. In particular:

 - Where allowed by the underlying transport protocol, the upper
 layer protocol SHOULD be allowed to set the state of the DF bit
 (in IPv4) or prohibit local fragmentation (in IPv6).

 - If the underlying transport protocol allows the application to
 request PMTU probing (e.g., DCCP), the DTLS record layer should
 honor this request.

 The final issue is the DTLS handshake protocol. From the
 perspective of the DTLS record layer, this is merely another upper
 layer protocol. However, DTLS handshakes occur infrequently and
 involve only a few round trips; therefore, the handshake protocol
 PMTU handling places a premium on rapid completion over accurate
 PMTU discovery. In order to allow connections under these
 circumstances, DTLS implementations SHOULD follow the following
 rules:

 - If the DTLS record layer informs the DTLS handshake layer that a
 message is too big, it SHOULD immediately attempt to fragment it,
 using any existing information about the PMTU.

 - If repeated retransmissions do not result in a response, and the
 PMTU is unknown, subsequent retransmissions SHOULD back off to a
 smaller record size, fragmenting the handshake message as
 appropriate. This standard does not specify an exact number of
 retransmits to attempt before backing off, but 2-3 seems
 appropriate.

https://datatracker.ietf.org/doc/html/rfc4340#section-14
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc4821

Rescorla & Tschofenig Expires April 29, 2017 [Page 10]

Internet-Draft DTLS 1.3 October 2016

4.3. Record Payload Protection

 Like TLS, DTLS transmits data as a series of protected records. The
 rest of this section describes the details of that format.

4.3.1. Anti-Replay

 DTLS records contain a sequence number to provide replay protection.
 Sequence number verification SHOULD be performed using the following
 sliding window procedure, borrowed from Section 3.4.3 of [RFC4303].

 The receiver packet counter for this session MUST be initialized to
 zero when the session is established. For each received record, the
 receiver MUST verify that the record contains a sequence number that
 does not duplicate the sequence number of any other record received
 during the life of this session. This SHOULD be the first check
 applied to a packet after it has been matched to a session, to speed
 rejection of duplicate records.

 Duplicates are rejected through the use of a sliding receive window.
 (How the window is implemented is a local matter, but the following
 text describes the functionality that the implementation must
 exhibit.) A minimum window size of 32 MUST be supported, but a
 window size of 64 is preferred and SHOULD be employed as the default.
 Another window size (larger than the minimum) MAY be chosen by the
 receiver. (The receiver does not notify the sender of the window
 size.)

 The "right" edge of the window represents the highest validated
 sequence number value received on this session. Records that contain
 sequence numbers lower than the "left" edge of the window are
 rejected. Packets falling within the window are checked against a
 list of received packets within the window. An efficient means for
 performing this check, based on the use of a bit mask, is described
 in Section 3.4.3 of [RFC4303].

 If the received record falls within the window and is new, or if the
 packet is to the right of the window, then the receiver proceeds to
 MAC verification. If the MAC validation fails, the receiver MUST
 discard the received record as invalid. The receive window is
 updated only if the MAC verification succeeds.

4.3.2. Handling Invalid Records

 Unlike TLS, DTLS is resilient in the face of invalid records (e.g.,
 invalid formatting, length, MAC, etc.). In general, invalid records
 SHOULD be silently discarded, thus preserving the association;
 however, an error MAY be logged for diagnostic purposes.

https://datatracker.ietf.org/doc/html/rfc4303#section-3.4.3
https://datatracker.ietf.org/doc/html/rfc4303#section-3.4.3

Rescorla & Tschofenig Expires April 29, 2017 [Page 11]

Internet-Draft DTLS 1.3 October 2016

 Implementations which choose to generate an alert instead, MUST
 generate fatal level alerts to avoid attacks where the attacker
 repeatedly probes the implementation to see how it responds to
 various types of error. Note that if DTLS is run over UDP, then any
 implementation which does this will be extremely susceptible to
 denial-of-service (DoS) attacks because UDP forgery is so easy.
 Thus, this practice is NOT RECOMMENDED for such transports.

 If DTLS is being carried over a transport that is resistant to
 forgery (e.g., SCTP with SCTP-AUTH), then it is safer to send alerts
 because an attacker will have difficulty forging a datagram that will
 not be rejected by the transport layer.

5. The DTLS Handshake Protocol

 DTLS 1.3 re-uses the TLS 1.3 handshake messages and flows, with the
 following changes:

 1. To handle message loss, reordering, and fragmentation
 modifications to the handshake header are necessary.

 2. Retransmission timers are introduced to handle message loss.

 3. The TLS 1.3 KeyUpdate message is not used in DTLS 1.3 for re-
 keying.

 4. A new ACK message is introduced to more robustness in message
 delivery.

 Note that TLS 1.3 already supports a cookie extension, which used to
 prevent denial-of-service attacks. This DoS prevention mechanism is
 described in more detail below since UDP-based protocols are more
 vulnerable to amplification attacks than a connection-oriented
 transport like TCP that performs return-routability checks as part of
 the connection establishment.

 With these exceptions, the DTLS message formats, flows, and logic are
 the same as those of TLS 1.3.

5.1. Denial-of-Service Countermeasures

 Datagram security protocols are extremely susceptible to a variety of
 DoS attacks. Two attacks are of particular concern:

 1. An attacker can consume excessive resources on the server by
 transmitting a series of handshake initiation requests, causing
 the server to allocate state and potentially to perform expensive
 cryptographic operations.

Rescorla & Tschofenig Expires April 29, 2017 [Page 12]

Internet-Draft DTLS 1.3 October 2016

 2. An attacker can use the server as an amplifier by sending
 connection initiation messages with a forged source of the
 victim. The server then sends its next message (in DTLS, a
 Certificate message, which can be quite large) to the victim
 machine, thus flooding it.

 In order to counter both of these attacks, DTLS borrows the stateless
 cookie technique used by Photuris [RFC2522] and IKE [RFC5996]. When
 the client sends its ClientHello message to the server, the server
 MAY respond with a HelloRetryRequest message. The HelloRetryRequest
 message as well as the cookie extension is defined in TLS 1.3. The
 HelloRetryRequest message contains a stateless cookie generated using
 the technique of [RFC2522]. The client MUST retransmit the
 ClientHello with the cookie added as an extension. The server then
 verifies the cookie and proceeds with the handshake only if it is
 valid. This mechanism forces the attacker/client to be able to
 receive the cookie, which makes DoS attacks with spoofed IP addresses
 difficult. This mechanism does not provide any defence against DoS
 attacks mounted from valid IP addresses.

 The DTLS 1.3 specification changes the way how cookies are exchanged
 compared to DTLS 1.2. DTLS 1.3 re-uses the HelloRetryRequest message
 and conveys the cookie to the client via an extension. The client
 then uses the same extension to place the cookie into a ClientHello
 message. DTLS 1.2 on the other hand used a separate message, namely
 the HelloVerifyRequest, to pass a cookie to the client and did not
 utilize the extension mechanism. For backwards compatibility reason
 the cookie field in the ClientHello is present in DTLS 1.3 but is
 ignored by a DTLS 1.3 compliant server implementation.

 The exchange is shown in Figure 2. Note that the figure focuses on
 the cookie exchange; all other extensions are omitted.

 Client Server
 ------ ------
 ClientHello ------>

 <----- HelloRetryRequest
 + cookie

 ClientHello ------>
 + cookie

 [Rest of handshake]

 Figure 2: DTLS Exchange with HelloRetryRequest contain the Cookie
 Extension

https://datatracker.ietf.org/doc/html/rfc2522
https://datatracker.ietf.org/doc/html/rfc5996
https://datatracker.ietf.org/doc/html/rfc2522

Rescorla & Tschofenig Expires April 29, 2017 [Page 13]

Internet-Draft DTLS 1.3 October 2016

 The cookie extension is defined in Section 4.2.1 of
 [I-D.ietf-tls-tls13]. When sending the initial ClientHello, the
 client does not have a cookie yet. In this case, the cookie
 extension is omitted and the legacy_cookie field in the ClientHello
 message SHOULD be set to a zero length vector (i.e., a single zero
 byte length field) and MUST be ignored by a server negotiating DTLS
 1.3.

 When responding to a HelloRetryRequest, the client MUST create a new
 ClientHello message following the description in Section 4.1 of
 [I-D.ietf-tls-tls13].

 The server SHOULD use information received in the ClientHello to
 generate its cookie, such as version, random, ciphersuites. The
 server MUST use the same version number in the HelloRetryRequest that
 it would use when sending a ServerHello. Upon receipt of the
 ServerHello, the client MUST verify that the server version values
 match.

 If the HelloRetryRequest message is used, the initial ClientHello and
 the HelloRetryRequest are included in the calculation of the
 handshake_messages (for the CertificateVerify message) and
 verify_data (for the Finished message).

 As such, the handshake transcript is not reset with the second
 ClientHello and a stateless server-cookie implementation requires the
 transcript of the HelloRetryRequest to be stored in the cookie or the
 internal state of the hash algorithm, since only the hash of the
 transcript is required for the handshake to complete.

 When the second ClientHello is received, the server can verify that
 the cookie is valid and that the client can receive packets at the
 given IP address.

 One potential attack on this scheme is for the attacker to collect a
 number of cookies from different addresses and then reuse them to
 attack the server. The server can defend against this attack by
 changing the secret value frequently, thus invalidating those
 cookies. If the server wishes that legitimate clients be able to
 handshake through the transition (e.g., they received a cookie with
 Secret 1 and then sent the second ClientHello after the server has
 changed to Secret 2), the server can have a limited window during
 which it accepts both secrets. [RFC5996] suggests adding a key
 identifier to cookies to detect this case. An alternative approach
 is simply to try verifying with both secrets. It is RECOMMENDED that
 servers implement a key rotation scheme that allows the server to
 manage keys with overlapping lifetime.

https://datatracker.ietf.org/doc/html/rfc5996

Rescorla & Tschofenig Expires April 29, 2017 [Page 14]

Internet-Draft DTLS 1.3 October 2016

 Alternatively, the server can store timestamps in the cookie and
 reject those cookies that were not generated within a certain amount
 of time.

 DTLS servers SHOULD perform a cookie exchange whenever a new
 handshake is being performed. If the server is being operated in an
 environment where amplification is not a problem, the server MAY be
 configured not to perform a cookie exchange. The default SHOULD be
 that the exchange is performed, however. In addition, the server MAY
 choose not to do a cookie exchange when a session is resumed.
 Clients MUST be prepared to do a cookie exchange with every
 handshake.

 If a server receives a ClientHello with an invalid cookie, it MUST
 NOT respond with a HelloRetryRequest. Restarting the handshake from
 scratch, without a cookie, allows the client to recover from a
 situation where it obtained a cookie that cannot be verified by the
 server. As described in Section 4.1.4 of
 [I-D.ietf-tls-tls13],clients SHOULD also abort the handshake with an
 "unexpected_message" alert in response to any second
 HelloRetryRequest which was sent in the same connection (i.e., where
 the ClientHello was itself in response to a HelloRetryRequest).

5.2. DTLS Handshake Message Format

 In order to support message loss, reordering, and message
 fragmentation, DTLS modifies the TLS 1.3 handshake header:

Rescorla & Tschofenig Expires April 29, 2017 [Page 15]

Internet-Draft DTLS 1.3 October 2016

 enum {
 hello_request_RESERVED(0),
 client_hello(1),
 server_hello(2),
 hello_verify_request_RESERVED(3),
 new_session_ticket(4),
 hello_retry_request(6),
 encrypted_extensions(8),
 certificate(11),
 server_key_exchange_RESERVED(12),
 certificate_request(13),
 server_hello_done_RESERVED(14),
 certificate_verify(15),
 client_key_exchange_RESERVED(16),
 finished(20),
 key_update_RESERVED(24),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* bytes in message */
 uint16 message_seq; /* DTLS-required field */
 uint24 fragment_offset; /* DTLS-required field */
 uint24 fragment_length; /* DTLS-required field */
 select (HandshakeType) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case hello_retry_request: HelloRetryRequest;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case new_session_ticket: NewSessionTicket;
 case key_update: KeyUpdate; /* reserved */
 case ack: ACK; /* DTLS-required field */
 } body;
 } Handshake;

 In addition to the handshake messages that are deprecated by the TLS
 1.3 specification DTLS 1.3 furthermore deprecates the
 HelloVerifyRequest message originally defined in DTLS 1.0. DTLS
 1.3-compliant implements MUST NOT use the HelloVerifyRequest to
 execute a return-routability check. A dual-stack DTLS 1.2/DTLS 1.3
 client must, however, be prepared to interact with a DTLS 1.2 server.

Rescorla & Tschofenig Expires April 29, 2017 [Page 16]

Internet-Draft DTLS 1.3 October 2016

 A DTLS 1.3 MUST NOT use the KeyUpdate message to change keying
 material used for the protection of traffic data. Instead the epoch
 field is used, which is explained in Section 5.9.

 The format of the ClientHello used by a DTLS 1.3 client differs from
 the TLS 1.3 ClientHello format as shown below.

 struct {
 ProtocolVersion client_version = { 254,252 }; /* DTLS v1.3 */
 Random random;
 opaque legacy_session_id<0..32>;
 opaque legacy_cookie<0..2^8-1>; // DTLS
 CipherSuite cipher_suites<2..2^16-2>;
 opaque legacy_compression_methods<1..2^8-1>;
 Extension extensions<0..2^16-1>;
 } ClientHello;

 client_version: The version of the DTLS protocol by which the client
 wishes to communicate during this session. This SHOULD be the
 latest (highest valued) version supported by the client. For the
 DTLS 1.3 version of the specification, the version will be {
 254,252 }.

 random: Same as for TLS 1.3

 legacy_session_id: Same as for TLS 1.3

 legacy_cookie: A DTLS 1.3-only client MUST set the legacy_cookie
 field to zero length.

 cipher_suites: Same as for TLS 1.3

 legacy_compression_methods: Same as for TLS 1.3

 extensions: Same as for TLS 1.3

 The first message each side transmits in each handshake always has
 message_seq = 0. Whenever a new message is generated, the
 message_seq value is incremented by one. When a message is
 retransmitted, the old message_seq value is re-used, i.e., not
 incremented.

 Here is an example:

Rescorla & Tschofenig Expires April 29, 2017 [Page 17]

Internet-Draft DTLS 1.3 October 2016

 Client Server
 ------ ------

 ClientHello
 (message_seq=0)
 -------->

 X<---- HelloRetryRequest
 (lost) (message_seq=0)

 [Timer Expires]

 ClientHello
 (message_seq=0)
 (retransmit) -------->

 <-------- HelloRetryRequest
 (message_seq=0)

 ClientHello -------->
 (message_seq=1)
 +cookie

 <-------- ServerHello
 (message_seq=1)
 EncryptedExtensions
 (message_seq=2)
 Certificate
 (message_seq=3)
 CertificateVerify
 (message_seq=4)
 Finished
 (message_seq=5)

 Certificate -------->
 (message_seq=2)
 CertificateVerify
 (message_seq=3)
 Finished
 (message_seq=4)

 <-------- Ack
 (message_seq=6)

 Figure 3: Example DTLS Exchange illustrating Message Loss

Rescorla & Tschofenig Expires April 29, 2017 [Page 18]

Internet-Draft DTLS 1.3 October 2016

 From the perspective of the DTLS record layer, the retransmission is
 a new record. This record will have a new
 DTLSPlaintext.sequence_number value.

 DTLS implementations maintain (at least notionally) a
 next_receive_seq counter. This counter is initially set to zero.
 When a message is received, if its sequence number matches
 next_receive_seq, next_receive_seq is incremented and the message is
 processed. If the sequence number is less than next_receive_seq, the
 message MUST be discarded. If the sequence number is greater than
 next_receive_seq, the implementation SHOULD queue the message but MAY
 discard it. (This is a simple space/bandwidth tradeoff).

5.3. ACK Message

 struct {} ACK;

 The ACK handshake message is used by a server to return a response to
 a client-provided message where the TLS 1.3 handshake does not
 foresee such return message. With the use of the ACK message the
 client is able to determine whether a transmitted request has been
 lost and needs to be retransmitted. Since the ACK message does not
 contain any correlation information the server MUST only have one
 message outstanding at a time.

5.4. Handshake Message Fragmentation and Reassembly

 Each DTLS message MUST fit within a single transport layer datagram.
 However, handshake messages are potentially bigger than the maximum
 record size. Therefore, DTLS provides a mechanism for fragmenting a
 handshake message over a number of records, each of which can be
 transmitted separately, thus avoiding IP fragmentation.

 When transmitting the handshake message, the sender divides the
 message into a series of N contiguous data ranges. These ranges MUST
 NOT be larger than the maximum handshake fragment size and MUST
 jointly contain the entire handshake message. The ranges MUST NOT
 overlap. The sender then creates N handshake messages, all with the
 same message_seq value as the original handshake message. Each new
 message is labeled with the fragment_offset (the number of bytes
 contained in previous fragments) and the fragment_length (the length
 of this fragment). The length field in all messages is the same as
 the length field of the original message. An unfragmented message is
 a degenerate case with fragment_offset=0 and fragment_length=length.

 When a DTLS implementation receives a handshake message fragment, it
 MUST buffer it until it has the entire handshake message. DTLS
 implementations MUST be able to handle overlapping fragment ranges.

Rescorla & Tschofenig Expires April 29, 2017 [Page 19]

Internet-Draft DTLS 1.3 October 2016

 This allows senders to retransmit handshake messages with smaller
 fragment sizes if the PMTU estimate changes.

 Note that as with TLS, multiple handshake messages may be placed in
 the same DTLS record, provided that there is room and that they are
 part of the same flight. Thus, there are two acceptable ways to pack
 two DTLS messages into the same datagram: in the same record or in
 separate records.

5.5. Timeout and Retransmission

 DTLS messages are grouped into a series of message flights, according
 to the diagrams below. Although each flight of messages may consist
 of a number of messages, they should be viewed as monolithic for the
 purpose of timeout and retransmission.

Rescorla & Tschofenig Expires April 29, 2017 [Page 20]

Internet-Draft DTLS 1.3 October 2016

Client Server

ClientHello +----------+
 + key_share* | Flight 1 |
 + pre_shared_key* --------> +----------+

 +----------+
 <-------- HelloRetryRequest | Flight 2 |
 + cookie +----------+

ClientHello +----------+
 + key_share* | Flight 3 |
 + pre_shared_key* --------> +----------+
 + cookie

 ServerHello
 + key_share*
 + pre_shared_key* +----------+
 {EncryptedExtensions} | Flight 4 |
 {CertificateRequest*} +----------+
 {Certificate*}
 {CertificateVerify*}
 <-------- {Finished}
 [Application Data*]

 {Certificate*} +----------+
 {CertificateVerify*} | Flight 5 |
 {Finished} --------> +----------+
 [Application Data]

 +----------+
 <-------- {Ack} | Flight 6 |
 [Application Data*] +----------+

 [Application Data] <-------> [Application Data]

 Figure 4: Message Flights for full DTLS Handshake (with Cookie
 Exchange)

Rescorla & Tschofenig Expires April 29, 2017 [Page 21]

Internet-Draft DTLS 1.3 October 2016

 ClientHello +----------+
 + pre_shared_key | Flight 1 |
 + key_share* --------> +----------+

 ServerHello
 + pre_shared_key +----------+
 + key_share* | Flight 2 |
 {EncryptedExtensions} +----------+
 <-------- {Finished}
 [Application Data*]
 +----------+
 {Finished} --------> | Flight 3 |
 [Application Data*] +----------+

 +----------+
 <-------- {Ack} | Flight 4 |
 [Application Data*] +----------+

 [Application Data] <-------> [Application Data]

 Figure 5: Message Flights for Resumption and PSK Handshake (without
 Cookie Exchange)

Rescorla & Tschofenig Expires April 29, 2017 [Page 22]

Internet-Draft DTLS 1.3 October 2016

 Client Server

 ClientHello
 + early_data
 + pre_shared_key +----------+
 + key_share* | Flight 1 |
 (EncryptedExtensions) +----------+
 (Finished)
 (Application Data*)
 (end_of_early_data) -------->

 ServerHello
 + early_data
 + pre_shared_key +----------+
 + key_share* | Flight 2 |
 {EncryptedExtensions} +----------+
 {CertificateRequest*}
 <-------- {Finished}
 [Application Data*]

 +----------+
 | Flight 3 |
 {Finished} --------> +----------+
 [Application Data*]
 +----------+
 <-------- {Ack} | Flight 4 |
 [Application Data*] +----------+

 [Application Data] <-------> [Application Data]

 Figure 6: Message Flights for a zero round trip handshake

 Client Server

 +----------+
 <-------- {NewSessionTicket} | Flight 1 |
 +----------+

 +----------+
 {Ack} --------> | Flight 2 |
 +----------+

 Figure 7: Message Flights for New Session Ticket Message

Rescorla & Tschofenig Expires April 29, 2017 [Page 23]

Internet-Draft DTLS 1.3 October 2016

 Client Server

 +----------+
 <-------- {CertificateRequest} | Flight 1 |
 +----------+

 {Certificate} +----------+
 {CertificateVerify} | Flight 2 |
 {Finished} --------> +----------+

 Figure 8: Message Flights for Post-Handshake Authentication (Success)

 Client Server

 +----------+
 <-------- {CertificateRequest} | Flight 1 |
 +----------+

 {Certificate} +----------+
 {Finished} --------> | Flight 2 |
 +----------+

 Figure 9: Message Flights for Post-Handshake Authentication (Decline)

 Note: The application data sent by the client is not included in the
 timeout and retransmission calculation.

5.5.1. State Machine

 DTLS uses a simple timeout and retransmission scheme with the state
 machine shown in Figure 10. Because DTLS clients send the first
 message (ClientHello), they start in the PREPARING state. DTLS
 servers start in the WAITING state, but with empty buffers and no
 retransmit timer.

Rescorla & Tschofenig Expires April 29, 2017 [Page 24]

Internet-Draft DTLS 1.3 October 2016

 +-----------+
 | PREPARING |
 +---> | | <--------------------+
 | | | |
 | +-----------+ |
 | | |
 | | Buffer next flight |
 | | |
 | \|/ |
 | +-----------+ |
 | | | |
 | | SENDING |<------------------+ |
 | | | | | Send
 | +-----------+ | | HelloRequest
 Receive | | | |
 next | | Send flight | | or
 flight | +--------+ | |
 | | | Set retransmit timer | | Receive
 | | \|/ | | HelloRequest
 | | +-----------+ | | Send
 | | | | | | ClientHello
 +--)--| WAITING |-------------------+ |
 | | | | Timer expires | |
 | | +-----------+ | |
 | | | | |
 | | | | |
 | | +------------------------+ |
 | | Read retransmit |
 Receive | | |
 last | | |
 flight | | |
 | | |
 \|/\|/ |
 |
 +-----------+ |
 | | |
 | FINISHED | -------------------------------+
 | |
 +-----------+
 | /|\
 | |
 | |
 +---+

 Read retransmit
 Retransmit last flight

 Figure 10: DTLS Timeout and Retransmission State Machine

Rescorla & Tschofenig Expires April 29, 2017 [Page 25]

Internet-Draft DTLS 1.3 October 2016

 The state machine has three basic states.

 In the PREPARING state, the implementation does whatever computations
 are necessary to prepare the next flight of messages. It then
 buffers them up for transmission (emptying the buffer first) and
 enters the SENDING state.

 In the SENDING state, the implementation transmits the buffered
 flight of messages. Once the messages have been sent, the
 implementation then enters the FINISHED state if this is the last
 flight in the handshake. Or, if the implementation expects to
 receive more messages, it sets a retransmit timer and then enters the
 WAITING state.

 There are three ways to exit the WAITING state:

 1. The retransmit timer expires: the implementation transitions to
 the SENDING state, where it retransmits the flight, resets the
 retransmit timer, and returns to the WAITING state.

 2. The implementation reads a retransmitted flight from the peer:
 the implementation transitions to the SENDING state, where it
 retransmits the flight, resets the retransmit timer, and returns
 to the WAITING state. The rationale here is that the receipt of
 a duplicate message is the likely result of timer expiry on the
 peer and therefore suggests that part of one's previous flight
 was lost.

 3. The implementation receives the next flight of messages: if this
 is the final flight of messages, the implementation transitions
 to FINISHED. If the implementation needs to send a new flight,
 it transitions to the PREPARING state. Partial reads (whether
 partial messages or only some of the messages in the flight) do
 not cause state transitions or timer resets.

 Because DTLS clients send the first message (ClientHello), they
 start in the PREPARING state. DTLS servers start in the WAITING
 state, but with empty buffers and no retransmit timer.

 When the server desires a rehandshake, it transitions from the
 FINISHED state to the PREPARING state to transmit the
 HelloRequest. When the client receives a HelloRequest, it
 transitions from FINISHED to PREPARING to transmit the
 ClientHello.

 In addition, for at least twice the default Maximum Segment
 Lifetime (MSL) defined for [RFC0793], when in the FINISHED state,
 the node that transmits the last flight (the server in an

https://datatracker.ietf.org/doc/html/rfc0793

Rescorla & Tschofenig Expires April 29, 2017 [Page 26]

Internet-Draft DTLS 1.3 October 2016

 ordinary handshake or the client in a resumed handshake) MUST
 respond to a retransmit of the peer's last flight with a
 retransmit of the last flight. This avoids deadlock conditions
 if the last flight gets lost. To see why this is necessary,
 consider what happens in an ordinary handshake if the server's
 Finished message is lost: the server believes the handshake is
 complete but it actually is not. As the client is waiting for
 the Finished message, the client's retransmit timer will fire and
 it will retransmit the client's Finished message. This will
 cause the server to respond with its own Finished message,
 completing the handshake. The same logic applies on the server
 side for the resumed handshake.

 Note that because of packet loss, it is possible for one side to
 be sending application data even though the other side has not
 received the first side's Finished message. Implementations MUST
 either discard or buffer all application data packets for the new
 epoch until they have received the Finished message for that
 epoch. Implementations MAY treat receipt of application data
 with a new epoch prior to receipt of the corresponding Finished
 message as evidence of reordering or packet loss and retransmit
 their final flight immediately, shortcutting the retransmission
 timer.

5.5.2. Timer Values

 Though timer values are the choice of the implementation, mishandling
 of the timer can lead to serious congestion problems; for example, if
 many instances of a DTLS time out early and retransmit too quickly on
 a congested link. Implementations SHOULD use an initial timer value
 of 100 msec (the minimum defined in RFC 6298 [RFC6298]) and double
 the value at each retransmission, up to no less than the RFC 6298
 maximum of 60 seconds. Application specific profiles, such as those
 used for the Internet of Things environment, may recommend longer
 timer values. Note that we recommend a 100 msec timer rather than
 the 3-second RFC 6298 default in order to improve latency for time-
 sensitive applications. Because DTLS only uses retransmission for
 handshake and not dataflow, the effect on congestion should be
 minimal.

 Implementations SHOULD retain the current timer value until a
 transmission without loss occurs, at which time the value may be
 reset to the initial value. After a long period of idleness, no less
 than 10 times the current timer value, implementations may reset the
 timer to the initial value. One situation where this might occur is
 when a rehandshake is used after substantial data transfer.

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298

Rescorla & Tschofenig Expires April 29, 2017 [Page 27]

Internet-Draft DTLS 1.3 October 2016

5.6. CertificateVerify and Finished Messages

 CertificateVerify and Finished messages have the same format as in
 TLS 1.3. Hash calculations include entire handshake messages,
 including DTLS-specific fields: message_seq, fragment_offset, and
 fragment_length. However, in order to remove sensitivity to
 handshake message fragmentation, the CertificateVerify and the
 Finished messages MUST be computed as if each handshake message had
 been sent as a single fragment following the algorithm described in

Section 4.4.1 and Section 4.4.3 of [I-D.ietf-tls-tls13],
 respectively.

5.7. Alert Messages

 Note that Alert messages are not retransmitted at all, even when they
 occur in the context of a handshake. However, a DTLS implementation
 which would ordinarily issue an alert SHOULD generate a new alert
 message if the offending record is received again (e.g., as a
 retransmitted handshake message). Implementations SHOULD detect when
 a peer is persistently sending bad messages and terminate the local
 connection state after such misbehavior is detected.

5.8. Establishing New Associations with Existing Parameters

 If a DTLS client-server pair is configured in such a way that
 repeated connections happen on the same host/port quartet, then it is
 possible that a client will silently abandon one connection and then
 initiate another with the same parameters (e.g., after a reboot).
 This will appear to the server as a new handshake with epoch=0. In
 cases where a server believes it has an existing association on a
 given host/port quartet and it receives an epoch=0 ClientHello, it
 SHOULD proceed with a new handshake but MUST NOT destroy the existing
 association until the client has demonstrated reachability either by
 completing a cookie exchange or by completing a complete handshake
 including delivering a verifiable Finished message. After a correct
 Finished message is received, the server MUST abandon the previous
 association to avoid confusion between two valid associations with
 overlapping epochs. The reachability requirement prevents off-path/
 blind attackers from destroying associations merely by sending forged
 ClientHellos.

5.9. Epoch Values and Rekeying

 A recipient of a DTLS message needs to select the correct keying
 material in order to process an incoming message. With the
 possibility of message loss and re-order an identifier is needed to
 determine which cipher state has been used to protect the record
 payload. The epoch value fulfills this role in DTLS. In addition to

Rescorla & Tschofenig Expires April 29, 2017 [Page 28]

Internet-Draft DTLS 1.3 October 2016

 the key derivation steps described in Section 7 of
 [I-D.ietf-tls-tls13] triggered by the states during the handshake a
 sender may want to rekey at any time during the lifetime of the
 connection and has to have a way to indicate that it is updating its
 sending cryptographic keys.

 The following epoch values are reserved and correspond to phases in
 the handshake and allow identification of the correct cipher state:

 - epoch value (0) for use with unencrypted messages, namely
 ClientHello, ServerHello, and HelloRetryRequest.

 - epoch value (1) for messages protected using keys derived from
 early_traffic_secret.

 - epoch value (2) for 0-RTT 'Application Data' protected using keys
 derived from the early_traffic_secret.

 - epoch value (3) for messages protected using keys derived from the
 handshake_traffic_secret, namely the EncryptedExtensions,
 CertificateRequest, Certificate, CertificateVerify, Finished, ACK,
 and NewSessionTicket messages).

 - epoch value (4) for application data payloads protected using keys
 derived from the initial traffic_secret_0.

 - epoch value (5 to 2^16-1) for application data payloads protected
 using keys from the traffic_secret_N (N>0).

 Using these reserved epoch values a receiver knows what cipher state
 has been used to encrypt and integrity protect a message.
 Implementations that receive a payload with an epoch value for which
 no corresponding cipher state can be determined MUST generate a fatal
 "unexpected_message" alert. For example, client incorrectly uses
 epoch value 5 when sending application data in a 0-RTT exchange with
 the first message. A server will not be able to compute the
 appropriate keys and will therefore have to respond with a fatal
 alert.

 Increasing the epoch value by a sender (starting with value 5
 upwards) corresponds semantically to rekeying using the KeyUpdate
 message in TLS 1.3. Instead of utilizing an dedicated message in
 DTLS 1.3 the sender uses an increase in the epoch value to signal
 rekeying. Hence, a sender that decides to increment the epoch value
 (with value starting at 5) MUST send all its traffic using the next
 generation of keys, computed as described in Section 7.2 of
 [I-D.ietf-tls-tls13]. Upon receiving a payload with such a new epoch
 value, the receiver MUST update their receiving keys and if they have

Rescorla & Tschofenig Expires April 29, 2017 [Page 29]

Internet-Draft DTLS 1.3 October 2016

 not already updated their sending state up to or past the then
 current receiving generation MUST send messages with the new epoch
 value prior to sending any other messages. For epoch values lower
 than 5 the key schedule described in Section 7.1 of
 [I-D.ietf-tls-tls13] is applicable.

 Note that epoch values do not wrap. If a DTLS implementation would
 need to wrap the epoch value, it MUST terminate the connection.

 The traffic key calculation is described in Section 7.3 of
 [I-D.ietf-tls-tls13].

6. Application Data Protocol

 Application data messages are carried by the record layer and are
 fragmented and encrypted based on the current connection state. The
 messages are treated as transparent data to the record layer.

7. Security Considerations

 Security issues are discussed primarily in [I-D.ietf-tls-tls13].

 The primary additional security consideration raised by DTLS is that
 of denial of service. DTLS includes a cookie exchange designed to
 protect against denial of service. However, implementations that do
 not use this cookie exchange are still vulnerable to DoS. In
 particular, DTLS servers that do not use the cookie exchange may be
 used as attack amplifiers even if they themselves are not
 experiencing DoS. Therefore, DTLS servers SHOULD use the cookie
 exchange unless there is good reason to believe that amplification is
 not a threat in their environment. Clients MUST be prepared to do a
 cookie exchange with every handshake.

 Unlike TLS implementations, DTLS implementations SHOULD NOT respond
 to invalid records by terminating the connection.

8. Changes to DTLS 1.2

 Since TLS 1.3 introduce a large number of changes to TLS 1.2, the
 list of changes from DTLS 1.2 to DTLS 1.3 is equally large. For this
 reason this section focuses on the most important changes only.

 - New handshake pattern, which leads to a shorter message exchange

 - Support for AEAD-only ciphers

 - HelloRetryRequest of TLS 1.3 used instead of HelloVerifyRequest

Rescorla & Tschofenig Expires April 29, 2017 [Page 30]

Internet-Draft DTLS 1.3 October 2016

 - More flexible ciphersuite negotiation

 - New session resumption mechanism

 - PSK authentication redefined

 - New key derivation hierarchy utilizing the HKDF construct

 - Removed support for weaker and older cryptographic algorithms

9. Open Issues

 - Handling of the handshake sequence numbers (i.e.,
 Handshake.message_seq) when 0-RTT is rejected. Proposal: keep
 pushing the numbers forward

 - Explore whether the record layer header can be simplified (to 2
 octets for epoch & sequence number)

 - Do we need the HelloRequest message in DTLS 1.3?

 - Update text in the appendix regarding backwards compatibility.

10. IANA Considerations

 IANA is requested to allocate a new value in the TLS HandshakeType
 Registry for the ACK message defined in Section 5.3.

11. References

11.1. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-18 (work in progress),
 October 2016.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <http://www.rfc-editor.org/info/rfc1191>.

Rescorla & Tschofenig Expires April 29, 2017 [Page 31]

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-18
https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc1191
http://www.rfc-editor.org/info/rfc1191

Internet-Draft DTLS 1.3 October 2016

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", RFC 4443,
 DOI 10.17487/RFC4443, March 2006,
 <http://www.rfc-editor.org/info/rfc4443>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <http://www.rfc-editor.org/info/rfc4821>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <http://www.rfc-editor.org/info/rfc6298>.

11.2. Informative References

 [RFC2522] Karn, P. and W. Simpson, "Photuris: Session-Key Management
 Protocol", RFC 2522, DOI 10.17487/RFC2522, March 1999,
 <http://www.rfc-editor.org/info/rfc2522>.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, DOI 10.17487/RFC4303, December 2005,

 <http://www.rfc-editor.org/info/rfc4303>.

 [RFC4340] Kohler, E., Handley, M., and S. Floyd, "Datagram
 Congestion Control Protocol (DCCP)", RFC 4340,
 DOI 10.17487/RFC4340, March 2006,
 <http://www.rfc-editor.org/info/rfc4340>.

 [RFC5238] Phelan, T., "Datagram Transport Layer Security (DTLS) over
 the Datagram Congestion Control Protocol (DCCP)",

RFC 5238, DOI 10.17487/RFC5238, May 2008,
 <http://www.rfc-editor.org/info/rfc5238>.

 [RFC5996] Kaufman, C., Hoffman, P., Nir, Y., and P. Eronen,
 "Internet Key Exchange Protocol Version 2 (IKEv2)",

RFC 5996, DOI 10.17487/RFC5996, September 2010,
 <http://www.rfc-editor.org/info/rfc5996>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4443
http://www.rfc-editor.org/info/rfc4443
https://datatracker.ietf.org/doc/html/rfc4821
http://www.rfc-editor.org/info/rfc4821
https://datatracker.ietf.org/doc/html/rfc6298
http://www.rfc-editor.org/info/rfc6298
https://datatracker.ietf.org/doc/html/rfc2522
http://www.rfc-editor.org/info/rfc2522
https://datatracker.ietf.org/doc/html/rfc4303
http://www.rfc-editor.org/info/rfc4303
https://datatracker.ietf.org/doc/html/rfc4340
http://www.rfc-editor.org/info/rfc4340
https://datatracker.ietf.org/doc/html/rfc5238
http://www.rfc-editor.org/info/rfc5238
https://datatracker.ietf.org/doc/html/rfc5996
http://www.rfc-editor.org/info/rfc5996

Rescorla & Tschofenig Expires April 29, 2017 [Page 32]

Internet-Draft DTLS 1.3 October 2016

 [RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May
 2015, <http://www.rfc-editor.org/info/rfc7525>.

11.3. URIs

 [1] mailto:tls@ietf.org

Rescorla & Tschofenig Expires April 29, 2017 [Page 33]

https://datatracker.ietf.org/doc/html/bcp195
https://datatracker.ietf.org/doc/html/rfc7525
http://www.rfc-editor.org/info/rfc7525

Internet-Draft DTLS 1.3 October 2016

Appendix A. History

 RFC EDITOR: PLEASE REMOVE THE THIS SECTION

draft-00

 - Initial version using TLS 1.3 as a baseline.

 - Use of epoch values instead of KeyUpdate message

 - Use of cookie extension instead of cookie field in ClientHello and
 HelloVerifyRequest messages

 - Added ACK message

 - Text about sequence number handling

Appendix B. Working Group Information

 The discussion list for the IETF TLS working group is located at the
 e-mail address tls@ietf.org [1]. Information on the group and
 information on how to subscribe to the list is at

https://www1.ietf.org/mailman/listinfo/tls

 Archives of the list can be found at: https://www.ietf.org/mail-
archive/web/tls/current/index.html

Appendix C. Contributors

 Many people have contributed to previous DTLS versions and they are
 acknowledged in prior versions of DTLS specifications.

 For this version of the document we would like to thank:

 * Nagendra Modadugu (co-author of {{RFC6347}})
 Google, Inc.
 nagendra@cs.stanford.edu

 * Ilari Liusvaara
 Independent
 ilariliusvaara@welho.com

 * Martin Thomson
 Mozilla
 martin.thomson@gmail.com

Rescorla & Tschofenig Expires April 29, 2017 [Page 34]

https://datatracker.ietf.org/doc/html/draft-00
https://www1.ietf.org/mailman/listinfo/tls
https://www.ietf.org/mail-archive/web/tls/current/index.html
https://www.ietf.org/mail-archive/web/tls/current/index.html
https://datatracker.ietf.org/doc/html/rfc6347

Internet-Draft DTLS 1.3 October 2016

Authors' Addresses

 Eric Rescorla
 RTFM, Inc.

 EMail: ekr@rtfm.com

 Hannes Tschofenig
 ARM Limited

 EMail: hannes.tschofenig@gmx.net

Rescorla & Tschofenig Expires April 29, 2017 [Page 35]

