
Network Working Group M. Nottingham
Internet-Draft
Intended status: Informational M. Thomson
Expires: September 6, 2015 Mozilla
 March 5, 2015

Encrypted Content-Encoding for HTTP
draft-nottingham-http-encryption-encoding-00

Abstract

 This memo introduces a content-coding for HTTP that allows message
 payloads to be encrypted.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Nottingham & Thomson Expires September 6, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTP encryption coding March 2015

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3

2. The "aesgcm-128" HTTP content-coding 3
3. The "Encryption" HTTP header field 5
3.1. Encryption Header Field Parameters 5
3.2. Content Encryption Key Derivation 6

4. Encryption-Key Header Field 6
4.1. Explicit Key . 7
4.2. Diffie-Hellman . 7

5. Examples . 8
5.1. Successful GET Response 8
5.2. Encryption and Compression 8
5.3. Encryption with More Than One Key 8
5.4. Encryption with Explicit Key 9
5.5. Diffie-Hellman Encryption 9

6. IANA Considerations . 10
6.1. The "aesgcm-128" HTTP content-coding 10
6.2. Encryption Header Fields 10
6.3. The HTTP Encryption Parameter Registry 10
6.3.1. keyid . 11
6.3.2. salt . 11
6.3.3. rs . 11

6.4. The HTTP Encryption-Key Parameter Registry 11
6.4.1. keyid . 12
6.4.2. key . 12
6.4.3. dh . 12

7. Security Considerations 12
7.1. Key and Nonce Reuse 13
7.2. Content Integrity . 13
7.3. Leaking Information in Headers 13
7.4. Poisoning Storage . 14
7.5. Sizing and Timing Attacks 14

8. References . 14
8.1. Normative References 14
8.2. Informative References 15

Appendix A. Acknowledgements 16
 Authors' Addresses . 16

1. Introduction

 It is sometimes desirable to encrypt the contents of a HTTP message
 (request or response) in a persistent manner, so that when the
 payload is stored (e.g., with a HTTP PUT), only someone with the
 appropriate key can read it.

Nottingham & Thomson Expires September 6, 2015 [Page 2]

Internet-Draft HTTP encryption coding March 2015

 For example, it might be necessary to store a file on a server
 without exposing its contents to that server. Furthermore, that same
 file could be replicated to other servers (to make it more resistant
 to server or network failure), downloaded by clients (to make it
 available offline), etc. without exposing its contents.

 These uses are not met by the use of TLS [RFC5246], since it only
 encrypts the channel between the client and server.

 Message-based encryption formats - such as those that are described
 by [RFC4880], [RFC5652], [I-D.ietf-jose-json-web-encryption], and
 [XMLENC] - are not suited to stream processing, which is necessary
 for HTTP messages. While virtually any of these alternatives could
 be profiled and adapted to suit, the overhead and complexity that
 would introduce is sub-optimal.

 This document specifies a content-coding [RFC7231]) for HTTP to serve
 these and other use cases.

 This mechanism is likely only a small part of a larger design that
 uses content encryption. In particular, this document does not
 describe key management practices. How clients and servers acquire
 and identify keys will depend on the use case.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. The "aesgcm-128" HTTP content-coding

 The "aesgcm-128" HTTP content-coding indicates that a payload has
 been encrypted using Advanced Encryption Standard (AES) in Galois/
 Counter Mode (GCM) as identified as AEAD_AES_128_GCM in [RFC5116],
 Section 5.1. The AEAD_AES_128_GCM algorithm uses a 128 bit content
 encryption key.

 When this content-coding is in use, the Encryption header field
Section 3 describes how encryption has been applied. The Encryption-

 Key header field Section 4 can be included to describe how the the
 content encryption key is derived or retrieved.

 The "aesgcm-128" content-coding uses a single fixed set of encryption
 primitives. Cipher suite agility is achieved by defining a new
 content-coding scheme. This ensures that only the HTTP Accept-
 Encoding header field is necessary to negotiate the use of
 encryption.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4880
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5116#section-5.1
https://datatracker.ietf.org/doc/html/rfc5116#section-5.1

Nottingham & Thomson Expires September 6, 2015 [Page 3]

Internet-Draft HTTP encryption coding March 2015

 The "aesgcm-128" content-coding uses a fixed record size. The
 resulting encoding is a series of fixed-size records, though the
 final record can contain any amount of data.

 +------+
 | data | input of between rs-256
 +------+ and rs-1 octets
 |
 v
 +-----+-----------+
 | pad | data | add padding to form plaintext
 +-----+-----------+
 |
 v
 +--------------------+
 | ciphertext | encrypt with AEAD_AES_128_GCM
 +--------------------+ expands by 16 octets

 The record size determines the length of each portion of plaintext
 that is enciphered. The record size defaults to 4096 octets, but can
 be changed using the "rs" parameter on the Encryption header field.

 AEAD_AES_128_GCM expands ciphertext to be 16 octets longer than its
 input plaintext. Therefore, the length of each enciphered record is
 equal to the value of the "rs" parameter plus 16 octets. It is a
 fatal decryption error to have a remainder of 16 octets or less in
 size (though AEAD_AES_128_GCM permits input plaintext to be zero
 length, records always contain at least one padding octet).

 Each record contains between 0 and 255 octets of padding, inserted
 into a record before the enciphered content. The length of the
 padding is stored in the first octet of the payload. All padding
 octets MUST be set to zero. It is a fatal decryption error to have a
 record with more padding than the record size.

 The nonce used for each record is a 96-bit value containing the index
 of the current record in network byte order. Records are indexed
 starting at zero.

 The additional data passed to the AEAD algorithm is a zero-length
 octet sequence.

 Issue: Double check that having no AAD is safe.

Nottingham & Thomson Expires September 6, 2015 [Page 4]

Internet-Draft HTTP encryption coding March 2015

3. The "Encryption" HTTP header field

 The "Encryption" HTTP header field describes the encrypted content
 encoding(s) that have been applied to a message payload, and
 therefore how those content encoding(s) can be removed.

 Encryption-val = #encryption_params
 encryption_params = [param *(";" param)]

 If the payload is encrypted more than once (as reflected by having
 multiple content-codings that imply encryption), each application of
 the content encoding is reflected in the Encryption header field, in
 the order in which they were applied.

 The Encryption header MAY be omitted if the sender does not intend
 for the immediate recipient to be able to decrypt the message.
 Alternatively, the Encryption header field MAY be omitted if the
 sender intends for the recipient to acquire the header field by other
 means.

 Servers processing PUT requests MUST persist the value of the
 Encryption header field, unless they remove the content-coding by
 decrypting the payload.

3.1. Encryption Header Field Parameters

 The following parameters are used in determining the key that is used
 for encryption:

 keyid: The "keyid" parameter contains a string that identifies the
 keying material that is used. The "keyid" parameter SHOULD be
 included, unless key identification is guaranteed by other means.
 The "keyid" parameter MUST be used if keying material is included
 in an Encryption-Key header field.

 salt: The "salt" parameter contains a base64 URL-encoded octets that
 is used as salt in deriving a unique content encryption key (see

Section 3.2). The "salt" parameter MUST be present, and MUST be
 exactly 16 octets long. The "salt" parameter MUST NOT be reused
 for two different messages that have the same content encryption
 key; generating a random nonce for each message ensures that reuse
 is highly unlikely.

 rs: The "rs" parameter contains a positive decimal integer that
 describes the record size in octets. This value MUST be greater
 than 1. If the "rs" parameter is absent, the record size defaults
 to 4096 octets.

Nottingham & Thomson Expires September 6, 2015 [Page 5]

Internet-Draft HTTP encryption coding March 2015

3.2. Content Encryption Key Derivation

 In order to allow the reuse of keying material for multiple different
 messages, a content encryption key is derived for each message. This
 key is derived from the decoded value of the "s" parameter using the
 HMAC-based key derivation function (HKDF) described in [RFC5869]
 using the SHA-256 hash algorithm [FIPS180-2].

 The decoded value of the "salt" parameter is the salt input to HKDF
 function. The keying material identified by the "keyid" parameter is
 the input keying material (IKM) to HKDF. Input keying material can
 either be prearranged, or can be described using the Encryption-Key
 header field Section 4. The first step of HKDF is therefore:

 PRK = HMAC-SHA-256(salt, IKM)

 AEAD_AES_128_GCM requires 16 octets (128 bits) of key, so the length
 (L) parameter of HKDF is 16. The info parameter is set to the ASCII-
 encoded string "Content-Encoding: aesgcm128". The second step of
 HKDF can therefore be simplified to the first 16 octets of a single
 HMAC:

 OKM = HMAC-SHA-256(PRK, "Content-Encoding: aesgcm128" || 0x01)

4. Encryption-Key Header Field

 An Encryption-Key header field can be used to describe the input
 keying material used in the Encryption header field.

 Encryption-Key-val = #encryption_key_params
 encryption_key_params = [param *(";" param)]

 keyid: The "keyid" parameter corresponds to the "keyid" parameter in
 the Encryption header field.

 key: The "key" parameter contains the URL-safe base64 [RFC4648]
 octets of the input keying material.

 dh: The "dh" parameter contains an ephemeral Diffie-Hellman share.
 This form of the header field can be used to encrypt content for a
 specific recipient.

 The input keying material used by the content-encoding key derivation
 (see Section 3.2) can be determined based on the information in the
 Encryption-Key header field. The method for key derivation depends
 on the parameters that are present in the header field.

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc4648

Nottingham & Thomson Expires September 6, 2015 [Page 6]

Internet-Draft HTTP encryption coding March 2015

 Note that different methods for determining input keying materal will
 produce different amounts of data. The HKDF process ensures that the
 final content encryption key is the necessary size.

 Alternative methods for determining input keying material MAY be
 defined by specifications that use this content-encoding.

4.1. Explicit Key

 The "key" parameter is decoded and used directly if present. The
 "key" parameter MUST decode to exactly 16 octets in order to be used
 as input keying material for "aesgcm128" content encoding.

 Other key determination parameters can be ignored if the "key"
 parameter is present.

4.2. Diffie-Hellman

 The "dh" parameter is included to describe a Diffie-Hellman share,
 either modp (or finite field) Diffie-Hellman [DH] or elliptic curve
 Diffie-Hellman (ECDH) [RFC4492].

 This share is combined with other information at the recipient to
 determine the HKDF input keying material. In order for the exchange
 to be successful, the following information MUST be established out
 of band:

 o Which Diffie-Hellman form is used.

 o The modp group or elliptic curve that will be used.

 o The format of the ephemeral public share that is included in the
 "dh" parameter. For instance, using ECDH both parties need to
 agree whether this is an uncompressed or compressed point.

 In addition to identifying which content-encoding this input keying
 material is used for, the "keyid" parameter is used to identify this
 additional information at the receiver.

 The intended recipient recovers their private key and are then able
 to generate a shared secret using the appropriate Diffie-Hellman
 process.

 Specifications that rely on an Diffie-Hellman exchange for
 determining input keying material MUST either specify the parameters
 for Diffie-Hellman (group parameters, or curves and point format)
 that are used, or describe how those parameters are negotiated
 between sender and receiver.

https://datatracker.ietf.org/doc/html/rfc4492

Nottingham & Thomson Expires September 6, 2015 [Page 7]

Internet-Draft HTTP encryption coding March 2015

5. Examples

5.1. Successful GET Response

 HTTP/1.1 200 OK
 Content-Type: application/octet-stream
 Content-Encoding: aesgcm-128
 Connection: close
 Encryption: keyid="http://example.org/bob/keys/123";
 salt="XZwpw6o37R-6qoZjw6KwAw"

 [encrypted payload]

 Here, a successful HTTP GET response has been encrypted using a key
 that is identified by a URI.

 Note that the media type has been changed to "application/octet-
 stream" to avoid exposing information about the content.

5.2. Encryption and Compression

 HTTP/1.1 200 OK
 Content-Type: text/html
 Content-Encoding: aesgcm-128, gzip
 Transfer-Encoding: chunked
 Encryption: keyid="mailto:me@example.com";
 salt="m2hJ_NttRtFyUiMRPwfpHA"

 [encrypted payload]

5.3. Encryption with More Than One Key

 PUT /thing HTTP/1.1
 Host: storage.example.com
 Content-Type: application/http
 Content-Encoding: aesgcm-128, aesgcm-128
 Content-Length: 1234
 Encryption: keyid="mailto:me@example.com";
 salt="NfzOeuV5USPRA-n_9s1Lag",
 keyid="http://example.org/bob/keys/123";
 salt="bDMSGoc2uobK_IhavSHsHA"; rs=1200

 [encrypted payload]

 Here, a PUT request has been encrypted with two keys; both will be
 necessary to read the content. The outer layer of encryption uses a
 1200 octet record size.

Nottingham & Thomson Expires September 6, 2015 [Page 8]

Internet-Draft HTTP encryption coding March 2015

5.4. Encryption with Explicit Key

 HTTP/1.1 200 OK
 Content-Length: 31
 Content-Encoding: aesgcm-128
 Encryption: keyid="a1"; salt="owIfQR647esVfrzCW_i9GQ"
 Encryption-Key: keyid="a1"; key="JcqK-OLkJZlJ3sJJWstJCA"

 LwTC-fwdKh8de0smD2jfzHodb1EYbuuTNpcYXLW257Q

 This example shows the string "I am the walrus" encrypted using an
 explicit key. The content body contains a single record only and is
 shown here encoded in URL-safe base64 for presentation reasons only.

5.5. Diffie-Hellman Encryption

 HTTP/1.1 200 OK
 Content-Length: 31
 Content-Encoding: aesgcm-128
 Encryption: keyid="dhkey"; salt="XYFSCgMVjc45IMfLOcMfiw"
 Encryption-Key: keyid="dhkey";
 dh="BELKqvZ7n3p5C9_ipP_6X9DBNAGuJujSN7YWbtcGZMMH
 3urZM-zlii3mGGCMjlqR-yWwiPlMdKRdOL8gQSdHw8E"

 P6ikHE_wyKnYHXxLswvuFBO3JJOZpM1Bg3KikQEmczU

 This example shows the same string, "I am the walrus", encrypted
 using ECDH over the P-256 curve [FIPS186]. The content body is shown
 here encoded in URL-safe base64 for presentation reasons only.

 The receiver (in this case, the HTTP client) uses the key identified
 by the string "dhkey" and the sender (the server) uses a key pair for
 which the public share is included in the "dh" parameter above. The
 keys shown below use uncompressed points [X.692] encoded using URL-
 safe base64. Line wrapping is added for presentation purposes only.

 Receiver:
 private key: QjGwenE3vCg8Eajo-PukGgUkYq8Vu-SQn04Cc9DR-YA
 public key: BBM3pYS4nXG6bQYnZbGDY7l6CVrQTZ-1u00h7XV6A_TD
 v7mXvv5k29uoLid8SdDycw341PJTW4hNCe2FNysN52U
 Sender:
 private key: wlC-qzKBWO6jYq32nlD0ZZVsI5jGVBC1gN7zkXjaPks
 public key: <the value of the "dh" parameter>

Nottingham & Thomson Expires September 6, 2015 [Page 9]

Internet-Draft HTTP encryption coding March 2015

6. IANA Considerations

6.1. The "aesgcm-128" HTTP content-coding

 This memo registers the "encrypted" HTTP content-coding in the HTTP
 Content Codings Registry, as detailed in Section 2.

 o Name: aesgcm-128

 o Description: AES-GCM encryption with a 128-bit key

 o Reference [this specification]

6.2. Encryption Header Fields

 This memo registers the "Encryption" HTTP header field in the
 Permanent Message Header Registry, as detailed in Section 3.

 o Field name: Encryption

 o Protocol: HTTP

 o Status: Standard

 o Reference: [this specification]

 o Notes:

 This memo registers the "Encryption-Key" HTTP header field in the
 Permanent Message Header Registry, as detailed in Section 4.

 o Field name: Encryption-Key

 o Protocol: HTTP

 o Status: Standard

 o Reference: [this specification]

 o Notes:

6.3. The HTTP Encryption Parameter Registry

 This memo establishes a registry for parameters used by the
 "Encryption" header field under the "Hypertext Transfer Protocol
 (HTTP) Parameters" grouping. The "Hypertext Transfer Protocol (HTTP)
 Encryption Parameters" operates under an "Specification Required"
 policy [RFC5226].

Nottingham & Thomson Expires September 6, 2015 [Page 10]

https://datatracker.ietf.org/doc/html/rfc5226

Internet-Draft HTTP encryption coding March 2015

 Entries in this registry are expected to include the following
 information:

 o Parameter Name: The name of the parameter.

 o Purpose: A brief description of the purpose of the parameter.

 o Reference: A reference to a specification that defines the
 semantics of the parameter.

 The initial contents of this registry are:

6.3.1. keyid

 o Parameter Name: keyid

 o Purpose: Identify the key that is in use.

 o Reference: [this document]

6.3.2. salt

 o Parameter Name: salt

 o Purpose: Provide a source of entropy for derivation of the content
 encryption key. This value is mandatory.

 o Reference: [this document]

6.3.3. rs

 o Parameter Name: rs

 o Purpose: The size of the encrypted records.

 o Reference: [this document]

6.4. The HTTP Encryption-Key Parameter Registry

 This memo establishes a registry for parameters used by the
 "Encryption-Key" header field under the "Hypertext Transfer Protocol
 (HTTP) Parameters" grouping. The "Hypertext Transfer Protocol (HTTP)
 Encryption Parameters" operates under an "Specification Required"
 policy [RFC5226].

 Entries in this registry are expected to include the following
 information:

Nottingham & Thomson Expires September 6, 2015 [Page 11]

https://datatracker.ietf.org/doc/html/rfc5226

Internet-Draft HTTP encryption coding March 2015

 o Parameter Name: The name of the parameter.

 o Purpose: A brief description of the purpose of the parameter.

 o Reference: A reference to a specification that defines the
 semantics of the parameter.

 The initial contents of this registry are:

6.4.1. keyid

 o Parameter Name: keyid

 o Purpose: Identify the key that is in use.

 o Reference: [this document]

6.4.2. key

 o Parameter Name: key

 o Purpose: Provide an explicit key.

 o Reference: [this document]

6.4.3. dh

 o Parameter Name: dh

 o Purpose: Carry a modp or elliptic curve Diffie-Hellman share used
 to derive a key.

 o Reference: [this document]

7. Security Considerations

 This mechanism assumes the presence of a key management framework
 that is used to manage the distribution of keys between valid senders
 and receivers. Defining key management is part of composing this
 mechanism into a larger application, protocol, or framework.

 Implementation of cryptography - and key management in particular -
 can be difficult. For instance, implementations need to account for
 the potential for exposing keying material on side channels, such as
 might be exposed by the time it takes to perform a given operation.
 The requirements for a good implementation of cryptographic
 algorithms can change over time.

Nottingham & Thomson Expires September 6, 2015 [Page 12]

Internet-Draft HTTP encryption coding March 2015

7.1. Key and Nonce Reuse

 Encrypting different plaintext with the same content encryption key
 and nonce in AES-GCM is not safe [RFC5116]. The scheme defined here
 relies on the uniqueness of the "nonce" parameter to ensure that the
 content encryption key is different for every message.

 If a key and nonce are reused, this could expose the content
 encryption key and it makes message modification trivial. If the
 same key is used for multiple messages, then the nonce parameter MUST
 be unique for each. An implementation SHOULD generate a random nonce
 parameter for every message, though using a counter could achieve the
 desired result.

7.2. Content Integrity

 This mechanism only provides content origin authentication. The
 authentication tag only ensures that those with access to the content
 encryption key produce a message that will be accepted as valid.

 Any entity with the content encryption key can therefore produce
 content that will be accepted as valid. This includes all recipients
 of the same message.

 Furthermore, any entity that is able to modify both the Encryption
 header field and the message payload can replace messages. Without
 the content encryption key however, modifications to or replacement
 of parts of a message are not possible.

7.3. Leaking Information in Headers

 Because "encrypted" only operates upon the message payload, any
 information exposed in headers is visible to anyone who can read the
 message.

 For example, the Content-Type header can leak information about the
 message payload.

 There are a number of strategies available to mitigate this threat,
 depending upon the application's threat model and the users'
 tolerance for leaked information:

 1. Determine that it is not an issue. For example, if it is
 expected that all content stored will be "application/json", or
 another very common media type, exposing the Content-Type header
 could be an acceptable risk.

https://datatracker.ietf.org/doc/html/rfc5116

Nottingham & Thomson Expires September 6, 2015 [Page 13]

Internet-Draft HTTP encryption coding March 2015

 2. If it is considered sensitive information and it is possible to
 determine it through other means (e.g., out of band, using hints
 in other representations, etc.), omit the relevant headers, and/
 or normalize them. In the case of Content-Type, this could be
 accomplished by always sending Content-Type: application/octet-
 stream (the most generic media type).

 3. If it is considered sensitive information and it is not possible
 to convey it elsewhere, encapsulate the HTTP message using the
 application/http media type [RFC7230], encrypting that as the
 payload of the "outer" message.

7.4. Poisoning Storage

 This mechanism only offers encryption of content; it does not perform
 authentication or authorization, which still needs to be performed
 (e.g., by HTTP authentication [RFC7235]).

 This is especially relevant when a HTTP PUT request is accepted by a
 server; if the request is unauthenticated, it becomes possible for a
 third party to deny service and/or poison the store.

7.5. Sizing and Timing Attacks

 Applications using this mechanism need to be aware that the size of
 encrypted messages, as well as their timing, HTTP methods, URIs and
 so on, may leak sensitive information.

 This risk can be mitigated through the use of the padding that this
 mechanism provides. Alternatively, splitting up content into
 segments and storing the separately might reduce exposure. HTTP/2
 [I-D.ietf-httpbis-http2] combined with TLS [RFC5246] might be used to
 hide the size of individual messages.

8. References

8.1. Normative References

 [DH] Diffie, W. and M. Hellman, "New Directions in
 Cryptography", IEEE Transactions on Information Theory,
 V.IT-22 n.6 , June 1977.

 [FIPS180-2]
 Department of Commerce, National., "NIST FIPS 180-2,
 Secure Hash Standard", August 2002.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Nottingham & Thomson Expires September 6, 2015 [Page 14]

Internet-Draft HTTP encryption coding March 2015

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869, May 2010.

 [RFC7230] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing", RFC 7230, June
 2014.

 [RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content", RFC 7231, June 2014.

8.2. Informative References

 [FIPS186] National Institute of Standards and Technology (NIST),
 "Digital Signature Standard (DSS)", NIST PUB 186-4 , July
 2013.

 [I-D.ietf-httpbis-http2]
 Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer
 Protocol version 2", draft-ietf-httpbis-http2-17 (work in
 progress), February 2015.

 [I-D.ietf-jose-json-web-encryption]
 Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",

draft-ietf-jose-json-web-encryption-40 (work in progress),
 January 2015.

 [RFC4880] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
 Thayer, "OpenPGP Message Format", RFC 4880, November 2007.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-17
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-encryption-40
https://datatracker.ietf.org/doc/html/rfc4880
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5652

Nottingham & Thomson Expires September 6, 2015 [Page 15]

Internet-Draft HTTP encryption coding March 2015

 [RFC7235] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Authentication", RFC 7235, June 2014.

 [X.692] ANSI, "Public Key Cryptography For The Financial Services
 Industry: The Elliptic Curve Digital Signature Algorithm
 (ECDSA)", ANSI X9.62, 1998. , n.d..

 [XMLENC] Eastlake, D., Reagle, J., Imamura, T., Dillaway, B., and
 E. Simon, "XML Encryption Syntax and Processing", W3C REC
 , December 2002, <http://www.w3.org/TR/xmlenc-core/>.

Appendix A. Acknowledgements

 The following people provided valuable feedback and suggestions:
 Richard Barnes, Stephen Farrell, Eric Rescorla, and Jim Schaad.

Authors' Addresses

 Mark Nottingham

 Email: mnot@mnot.net
 URI: http://www.mnot.net/

 Martin Thomson
 Mozilla

 Email: martin.thomson@gmail.com

Nottingham & Thomson Expires September 6, 2015 [Page 16]

https://datatracker.ietf.org/doc/html/rfc7235
http://www.w3.org/TR/xmlenc-core/
http://www.mnot.net/

