Network Working Group M. Nottingham

Internet-Draft

Intended status: Informational M. Thomson

Expires: September 6, 2015 Mozilla
March 5, 2015

Encrypted Content-Encoding for HTTP
draft-nottingham-http-encryption-encoding-00
Abstract

This memo introduces a content-coding for HTTP that allows message
payloads to be encrypted.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 6, 2015.
Copyright Notice

Copyright (c) 2015 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Nottingham & Thomson Expires September 6, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTP encryption coding March 20

Table of Contents

[

Introduction
1.1. Notational Conventlons .
The "aesgcm-128" HTTP content- codlng

(=

2.
3. The "Encryption" HTTP header field
3.1. Encryption Header Field Parameters
3.2. Content Encryption Key Derivation .
4. Encryption-Key Header Field .
4.1. Explicit Key
4.2. Diffie-Hellman
5. Examples .
5.1. Successful GET Response .
5.2. Encryption and Compression .
5.3. Encryption with More Than One Key .
5.4. Encryption with Explicit Key
5.5. Diffie-Hellman Encryption .
6. IANA Considerations .
6.1. The "aesgcm-128" HTTP content codlng
6.2. Encryption Header Fields
6.3. The HTTP Encryption Parameter Reglstry
6.3.1. Kkeyid . . e
6.3.2 salt
6.3.3. rs
6.4. The HTTP Encryptlon Key Parameter Reglstry
6.4.1. Kkeyid . e e e e e e e e
6.4.2. key .
6.4.3. dh
7. Security Con51derat10ns
7.1. Key and Nonce Reuse .
7.2. Content Integrity .
7.3. Leaking Information in Headers
7.4. Poisoning Storage . . .
7.5. Sizing and Timing Attacks .
8. References .o
8.1. Normative References

é:i. Informative References
Appendix A. Acknowledgements .
Authors' Addresses .o

Introduction

It is sometimes desirable to encrypt the contents of a HTTP message
(request or response) in a persistent manner, so that when the
payload is stored (e.g., with a HTTP PUT), only someone with the
appropriate key can read it.

15

OOV (0|0 ININO oUW W IN

slele s
[N o} (o]

forg o
=]

=
=

T Ll el el el i e el el el Ll Ll el L
SeGRREREEERKISKIS

Nottingham & Thomson Expires September 6, 2015 [Page 2]

Internet-Draft HTTP encryption coding March 2015

IN

For example, it might be necessary to store a file on a server
without exposing its contents to that server. Furthermore, that same
file could be replicated to other servers (to make it more resistant
to server or network failure), downloaded by clients (to make it
available offline), etc. without exposing its contents.

These uses are not met by the use of TLS [RFC5246], since it only
encrypts the channel between the client and server.

Message-based encryption formats - such as those that are described
by [RFC4880], [RFC5652], [I-D.ietf-jose-json-web-encryption], and
[XMLENC] - are not suited to stream processing, which is necessary
for HTTP messages. While virtually any of these alternatives could
be profiled and adapted to suit, the overhead and complexity that
would introduce is sub-optimal.

This document specifies a content-coding [RFC7231]) for HTTP to serve
these and other use cases.

This mechanism is likely only a small part of a larger design that
uses content encryption. In particular, this document does not
describe key management practices. How clients and servers acquire
and identify keys will depend on the use case.

.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

The "aesgcm-128" HTTP content-coding

The "aesgcm-128" HTTP content-coding indicates that a payload has
been encrypted using Advanced Encryption Standard (AES) in Galois/
Counter Mode (GCM) as identified as AEAD AES 128 GCM in [RFC5116],
Section 5.1. The AEAD AES 128 GCM algorithm uses a 128 bit content

encryption key.

When this content-coding is in use, the Encryption header field
Section 3 describes how encryption has been applied. The Encryption-
Key header field Section 4 can be included to describe how the the
content encryption key is derived or retrieved.

The "aesgcm-128" content-coding uses a single fixed set of encryption
primitives. Cipher suite agility is achieved by defining a new
content-coding scheme. This ensures that only the HTTP Accept-
Encoding header field is necessary to negotiate the use of
encryption.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4880
https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5116#section-5.1
https://datatracker.ietf.org/doc/html/rfc5116#section-5.1

Nottingham & Thomson Expires September 6, 2015 [Page 3]

Internet-Draft HTTP encryption coding March 2015

The "aesgcm-128" content-coding uses a fixed record size. The
resulting encoding is a series of fixed-size records, though the
final record can contain any amount of data.

+--m - +
| data | input of between rs-256
Fommm - + and rs-1 octets
|
v
+----- L +
| pad | data add padding to form plaintext
- R R +
|
v
Fmmm e e +
| ciphertext | encrypt with AEAD AES 128 GCM
R T + expands by 16 octets

The record size determines the length of each portion of plaintext
that is enciphered. The record size defaults to 4096 octets, but can
be changed using the "rs" parameter on the Encryption header field.

AEAD AES 128 GCM expands ciphertext to be 16 octets longer than its
input plaintext. Therefore, the length of each enciphered record is
equal to the value of the "rs" parameter plus 16 octets. It is a
fatal decryption error to have a remainder of 16 octets or less in
size (though AEAD AES 128 GCM permits input plaintext to be zero
length, records always contain at least one padding octet).

Each record contains between 0 and 255 octets of padding, inserted
into a record before the enciphered content. The length of the
padding is stored in the first octet of the payload. All padding
octets MUST be set to zero. It is a fatal decryption error to have a
record with more padding than the record size.

The nonce used for each record is a 96-bit value containing the index
of the current record in network byte order. Records are indexed
starting at zero.

The additional data passed to the AEAD algorithm is a zero-length
octet sequence.

Issue: Double check that having no AAD is safe.

Nottingham & Thomson Expires September 6, 2015 [Page 4]

Internet-Draft HTTP encryption coding March 2015

3.

The "Encryption" HTTP header field

The "Encryption" HTTP header field describes the encrypted content
encoding(s) that have been applied to a message payload, and
therefore how those content encoding(s) can be removed.

Encryption-val = #encryption params
encryption params = [param *(";" param)]

If the payload is encrypted more than once (as reflected by having
multiple content-codings that imply encryption), each application of
the content encoding is reflected in the Encryption header field, in
the order in which they were applied.

The Encryption header MAY be omitted if the sender does not intend
for the immediate recipient to be able to decrypt the message.
Alternatively, the Encryption header field MAY be omitted if the
sender intends for the recipient to acquire the header field by other
means.

Servers processing PUT requests MUST persist the value of the
Encryption header field, unless they remove the content-coding by
decrypting the payload.

3.1. Encryption Header Field Parameters

The following parameters are used in determining the key that is used
for encryption:

keyid: The "keyid" parameter contains a string that identifies the
keying material that is used. The "keyid" parameter SHOULD be
included, unless key identification is guaranteed by other means.
The "keyid" parameter MUST be used if keying material is included
in an Encryption-Key header field.

salt: The "salt" parameter contains a base64 URL-encoded octets that
is used as salt in deriving a unique content encryption key (see
Section 3.2). The "salt" parameter MUST be present, and MUST be
exactly 16 octets long. The "salt" parameter MUST NOT be reused
for two different messages that have the same content encryption
key; generating a random nonce for each message ensures that reuse
is highly unlikely.

rs: The "rs" parameter contains a positive decimal integer that
describes the record size in octets. This value MUST be greater
than 1. If the "rs" parameter is absent, the record size defaults
to 4096 octets.

Nottingham & Thomson Expires September 6, 2015 [Page 5]

Internet-Draft HTTP encryption coding March 2015

3.2.

[

Content Encryption Key Derivation

In order to allow the reuse of keying material for multiple different
messages, a content encryption key is derived for each message. This
key is derived from the decoded value of the "s" parameter using the
HMAC-based key derivation function (HKDF) described in [RFC5869]
using the SHA-256 hash algorithm [FIPS180-2].

The decoded value of the "salt" parameter is the salt input to HKDF
function. The keying material identified by the "keyid" parameter is
the input keying material (IKM) to HKDF. Input keying material can
either be prearranged, or can be described using the Encryption-Key
header field Section 4. The first step of HKDF is therefore:

PRK = HMAC-SHA-256(salt, IKM)

AEAD AES 128 GCM requires 16 octets (128 bits) of key, so the length
(L) parameter of HKDF is 16. The info parameter is set to the ASCII-
encoded string "Content-Encoding: aesgcml28". The second step of
HKDF can therefore be simplified to the first 16 octets of a single
HMAC:

OKM = HMAC-SHA-256 (PRK, "Content-Encoding: aesgcml28" || 0x01)
Encryption-Key Header Field

An Encryption-Key header field can be used to describe the input
keying material used in the Encryption header field.

Encryption-Key-val = #encryption key params
encryption key params = [param *(";" param)]

keyid: The "keyid" parameter corresponds to the "keyid" parameter in
the Encryption header field.

key: The "key" parameter contains the URL-safe base64 [RFC4648]
octets of the input keying material.

dh: The "dh" parameter contains an ephemeral Diffie-Hellman share.
This form of the header field can be used to encrypt content for a
specific recipient.

The input keying material used by the content-encoding key derivation
(see Section 3.2) can be determined based on the information in the
Encryption-Key header field. The method for key derivation depends
on the parameters that are present in the header field.

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc4648

Nottingham & Thomson Expires September 6, 2015 [Page 6]

Internet-Draft HTTP encryption coding March 2015

Note that different methods for determining input keying materal will
produce different amounts of data. The HKDF process ensures that the
final content encryption key is the necessary size.

Alternative methods for determining input keying material MAY be
defined by specifications that use this content-encoding.

4.1. Explicit Key

The "key" parameter is decoded and used directly if present. The
"key" parameter MUST decode to exactly 16 octets in order to be used
as input keying material for "aesgcml28" content encoding.

Other key determination parameters can be ignored if the "key"
parameter is present.

4.2. Diffie-Hellman

The "dh" parameter is included to describe a Diffie-Hellman share,
either modp (or finite field) Diffie-Hellman [DH] or elliptic curve
Diffie-Hellman (ECDH) [RFC4492].

This share is combined with other information at the recipient to
determine the HKDF input keying material. In order for the exchange
to be successful, the following information MUST be established out
of band:

o Which Diffie-Hellman form is used.
0o The modp group or elliptic curve that will be used.

o The format of the ephemeral public share that is included in the
"dh" parameter. For instance, using ECDH both parties need to
agree whether this is an uncompressed or compressed point.

In addition to identifying which content-encoding this input keying
material is used for, the "keyid" parameter is used to identify this
additional information at the receiver.

The intended recipient recovers their private key and are then able
to generate a shared secret using the appropriate Diffie-Hellman
process.

Specifications that rely on an Diffie-Hellman exchange for
determining input keying material MUST either specify the parameters
for Diffie-Hellman (group parameters, or curves and point format)
that are used, or describe how those parameters are negotiated
between sender and receiver.

https://datatracker.ietf.org/doc/html/rfc4492

Nottingham & Thomson Expires September 6, 2015 [Page 7]

Internet-Draft HTTP encryption coding March 2015

5. Examples
5.1. Successful GET Response

HTTP/1.1 200 OK

Content-Type: application/octet-stream

Content-Encoding: aesgcm-128

Connection: close

Encryption: keyid="http://example.org/bob/keys/123";
salt="XZwpw6037R-6q0ZjwoKwAw"

[encrypted payload]

Here, a successful HTTP GET response has been encrypted using a key
that is identified by a URI.

Note that the media type has been changed to "application/octet-
stream" to avoid exposing information about the content.

5.2. Encryption and Compression

HTTP/1.1 200 OK

Content-Type: text/html

Content-Encoding: aesgcm-128, gzip

Transfer-Encoding: chunked

Encryption: keyid="mailto:me@example.com";
salt="m2hJ NttRtFyUiMRPwfpHA"

[encrypted payload]
5.3. Encryption with More Than One Key

PUT /thing HTTP/1.1

Host: storage.example.com

Content-Type: application/http

Content-Encoding: aesgcm-128, aesgcm-128

Content-Length: 1234

Encryption: keyid="mailto:me@example.com";
salt="Nfz0OeuV5USPRA-n 9sllag",
keyid="http://example.org/bob/keys/123";
salt="bDMSGoc2uobK ThavSHsHA"; rs=1200

[encrypted payload]
Here, a PUT request has been encrypted with two keys; both will be

necessary to read the content. The outer layer of encryption uses a
1200 octet record size.

Nottingham & Thomson Expires September 6, 2015 [Page 8]

Internet-Draft HTTP encryption coding March 2015

5.4. Encryption with Explicit Key

HTTP/1.1 200 OK

Content-Length: 31

Content-Encoding: aesgcm-128

Encryption: keyid="al"; salt="owIfQR647esVfrzCW i9GQ"
Encryption-Key: keyid="al"; key="JcqK-0LkJZ1J3sJJWstJCA"

LwTC-fwdKh8deOsmD2jfzHodb1lEYbuuTNpcYXLW257Q

This example shows the string "I am the walrus" encrypted using an
explicit key. The content body contains a single record only and is
shown here encoded in URL-safe base64 for presentation reasons only.

5.5. Diffie-Hellman Encryption

HTTP/1.1 200 OK
Content-Length: 31
Content-Encoding: aesgcm-128
Encryption: keyid="dhkey"; salt="XYFSCgMVjc45IMfLOCMfiw"
Encryption-Key: keyid="dhkey";
dh="BELKqvZ7n3p5C9 ipP 6X9DBNAGuJujSN7YWbtcGZMMH
3urZM-z1ii3mGGCMj LgR-yWwiP1MdKRdAOL8gQSdHwWSE"

P6ikHE wyKnYHXxLswvuFB03JJ0ZpM1Bg3KikQEmczU

This example shows the same string, "I am the walrus", encrypted
using ECDH over the P-256 curve [FIPS186]. The content body is shown
here encoded in URL-safe base64 for presentation reasons only.

The receiver (in this case, the HTTP client) uses the key identified
by the string "dhkey" and the sender (the server) uses a key pair for
which the public share is included in the "dh" parameter above. The
keys shown below use uncompressed points [X.692] encoded using URL-
safe base64. Line wrapping is added for presentation purposes only.

Receiver:
private key: QjGwenE3vCg8Eajo-PukGgUkYg8Vu-SQnO4Cc9IDR-YA
public key: BBM3pYS4nXG6bQYnZbGDY716CVrQTZ-1u@Oh7XV6A TD
v7mXvv5k29uoLid8SdDycw341PJTW4hNCe2FNysN52U
Sender:
private key: wlC-qzKBW06jYq32n1D0ZZVsI5jGVBC1gN7zkXjaPks
public key: <the value of the "dh" parameter>

Nottingham & Thomson Expires September 6, 2015 [Page 9]

Internet-Draft HTTP encryption coding March 2015

6. IANA Considerations
6.1. The "aesgcm-128" HTTP content-coding

This memo registers the "encrypted" HTTP content-coding in the HTTP
Content Codings Registry, as detailed in Section 2.

o Name: aesgcm-128
o0 Description: AES-GCM encryption with a 128-bit key
o0 Reference [this specification]

6.2. Encryption Header Fields

This memo registers the "Encryption" HTTP header field in the
Permanent Message Header Registry, as detailed in Section 3.

0o Field name: Encryption

0 Protocol: HTTP

o Status: Standard

0 Reference: [this specification]
o Notes:

This memo registers the "Encryption-Key" HTTP header field in the
Permanent Message Header Registry, as detailed in Section 4.

0o Field name: Encryption-Key

0o Protocol: HTTP

o Status: Standard

0 Reference: [this specification]

o Notes:

[+)]
w

The HTTP Encryption Parameter Registry

This memo establishes a registry for parameters used by the
"Encryption" header field under the "Hypertext Transfer Protocol
(HTTP) Parameters" grouping. The "Hypertext Transfer Protocol (HTTP)
Encryption Parameters" operates under an "Specification Required"
policy [RFC5226].

Nottingham & Thomson Expires September 6, 2015 [Page 10]

https://datatracker.ietf.org/doc/html/rfc5226

Internet-Draft HTTP encryption coding March 2015

Entries in this registry are expected to include the following

information:

0 Parameter Name: The name of the parameter.

0 Purpose: A brief description of the purpose of the parameter.
o0 Reference: A reference to a specification that defines the

semantics of the parameter.

The initial contents of this registry are:

6.3.1.

keyid
Parameter Name: keyid
Purpose: Identify the key that is in use.
Reference: [this document]
salt
Parameter Name: salt

Purpose: Provide a source of entropy for derivation of the content
encryption key. This value is mandatory.

Reference: [this document]
rs
Parameter Name: rs
Purpose: The size of the encrypted records.
Reference: [this document]

The HTTP Encryption-Key Parameter Registry

This memo establishes a registry for parameters used by the
"Encryption-Key" header field under the "Hypertext Transfer Protocol
(HTTP) Parameters" grouping. The "Hypertext Transfer Protocol (HTTP)
Encryption Parameters" operates under an "Specification Required"
policy [RFC5226].

Entries in this registry are expected to include the following
information:

Nottingham & Thomson Expires September 6, 2015 [Page 11]

https://datatracker.ietf.org/doc/html/rfc5226

Int

6.4.

ernet-Draft HTTP encryption coding March 2015

0 Parameter Name: The name of the parameter.
0 Purpose: A brief description of the purpose of the parameter.

o Reference: A reference to a specification that defines the
semantics of the parameter.

The initial contents of this registry are:
1. keyid

o Parameter Name: keyid

0 Purpose: Identify the key that is in use.
0 Reference: [this document]

2. key

0 Parameter Name: key

0 Purpose: Provide an explicit key.

o Reference: [this document]

.3. dh

7.

Not

o Parameter Name: dh

0 Purpose: Carry a modp or elliptic curve Diffie-Hellman share used
to derive a key.

o Reference: [this document]
Security Considerations

This mechanism assumes the presence of a key management framework
that is used to manage the distribution of keys between valid senders
and receivers. Defining key management is part of composing this
mechanism into a larger application, protocol, or framework.

Implementation of cryptography - and key management in particular -
can be difficult. For instance, implementations need to account for
the potential for exposing keying material on side channels, such as
might be exposed by the time it takes to perform a given operation.
The requirements for a good implementation of cryptographic
algorithms can change over time.

tingham & Thomson Expires September 6, 2015 [Page 12]

Internet-Draft HTTP encryption coding March 2015

7.1. Key and Nonce Reuse

Encrypting different plaintext with the same content encryption key
and nonce in AES-GCM is not safe [RFC5116]. The scheme defined here
relies on the uniqueness of the "nonce" parameter to ensure that the
content encryption key is different for every message.

If a key and nonce are reused, this could expose the content
encryption key and it makes message modification trivial. If the
same key is used for multiple messages, then the nonce parameter MUST
be unique for each. An implementation SHOULD generate a random nonce
parameter for every message, though using a counter could achieve the
desired result.

7.2. Content Integrity

This mechanism only provides content origin authentication. The
authentication tag only ensures that those with access to the content
encryption key produce a message that will be accepted as valid.

Any entity with the content encryption key can therefore produce
content that will be accepted as valid. This includes all recipients
of the same message.

Furthermore, any entity that is able to modify both the Encryption
header field and the message payload can replace messages. Without
the content encryption key however, modifications to or replacement
of parts of a message are not possible.

7.3. Leaking Information in Headers

Because "encrypted" only operates upon the message payload, any
information exposed in headers is visible to anyone who can read the
message.

For example, the Content-Type header can leak information about the
message payload.

There are a number of strategies available to mitigate this threat,
depending upon the application's threat model and the users'
tolerance for leaked information:

1. Determine that it is not an issue. For example, if it is
expected that all content stored will be "application/json", or
another very common media type, exposing the Content-Type header
could be an acceptable risk.

https://datatracker.ietf.org/doc/html/rfc5116

Nottingham & Thomson Expires September 6, 2015 [Page 13]

Internet-Draft HTTP encryption coding March 2015

8.

8.1

2. If it is considered sensitive information and it is possible to
determine it through other means (e.g., out of band, using hints
in other representations, etc.), omit the relevant headers, and/
or normalize them. 1In the case of Content-Type, this could be
accomplished by always sending Content-Type: application/octet-
stream (the most generic media type).

3. If it is considered sensitive information and it is not possible
to convey it elsewhere, encapsulate the HTTP message using the
application/http media type [RFC7230], encrypting that as the
payload of the "outer" message.

7.4. Poisoning Storage

This mechanism only offers encryption of content; it does not perform
authentication or authorization, which still needs to be performed
(e.g., by HTTP authentication [RFC7235]).

This is especially relevant when a HTTP PUT request is accepted by a
server; if the request is unauthenticated, it becomes possible for a
third party to deny service and/or poison the store.

7.5. Sizing and Timing Attacks

Applications using this mechanism need to be aware that the size of
encrypted messages, as well as their timing, HTTP methods, URIs and
so on, may leak sensitive information.

This risk can be mitigated through the use of the padding that this
mechanism provides. Alternatively, splitting up content into
segments and storing the separately might reduce exposure. HTTP/2
[I-D.ietf-httpbis-http2] combined with TLS [REC5246] might be used to
hide the size of individual messages.

References
1. Normative References

[DH] Diffie, W. and M. Hellman, "New Directions in
Cryptography", IEEE Transactions on Information Theory,
V.IT-22 n.6 , June 1977.

[FIPS180-2]
Department of Commerce, National., "NIST FIPS 180-2,
Secure Hash Standard", August 2002.

[RFC2119] Bradner, S., "Key words for use in RF(Cs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Nottingham & Thomson Expires September 6, 2015 [Page 14]

Internet-Draft HTTP encryption coding March 2015

[RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
for Transport Layer Security (TLS)", RFC 4492, May 2006.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodings", RFC 4648, October 2006.

[RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
Encryption", REC 5116, January 2008.

[RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
Key Derivation Function (HKDF)", RFC 5869, May 2010.

[RFC7230] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing", RFC 7230, June
2014.

[RFC7231] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content", RFC 7231, June 2014,

8.2. Informative References

[FIPS186] National Institute of Standards and Technology (NIST),
"Digital Signature Standard (DSS)", NIST PUB 186-4 , July
2013.

[I-D.ietf-httpbis-http2]
Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer
Protocol version 2", draft-ietf-httpbis-http2-17 (work in
progress), February 2015.

[I-D.ietf-jose-json-web-encryption]
Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
draft-ietf-jose-json-web-encryption-40 (work in progress),
January 2015.

[RFC4880] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.
Thayer, "OpenPGP Message Format", RFC 4880, November 2007.

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", BCP 26, RFC 5226,
May 2008.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFEC 5246, August 2008.

[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
RFC 5652, September 2009.

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-http2-17
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-encryption-40
https://datatracker.ietf.org/doc/html/rfc4880
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5652

Nottingham & Thomson Expires September 6, 2015 [Page 15]

Internet-Draft HTTP encryption coding March 2015

[RFC7235] Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
(HTTP/1.1): Authentication", RFC 7235, June 2014.

[X.692] ANSI, "Public Key Cryptography For The Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm
(ECDSA) ", ANSI X9.62, 1998. , n.d..

[XMLENC] Eastlake, D., Reagle, J., Imamura, T., Dillaway, B., and
E. Simon, "XML Encryption Syntax and Processing", W3C REC
, December 2002, <http://www.w3.0rg/TR/xmlenc-core/>.

Appendix A. Acknowledgements

The following people provided valuable feedback and suggestions:
Richard Barnes, Stephen Farrell, Eric Rescorla, and Jim Schaad.

Authors' Addresses
Mark Nottingham

Email: mnot@mnot.net
URI: http://www.mnot.net/

Martin Thomson
Mozilla

Email: martin.thomson@gmail.com

Nottingham & Thomson Expires September 6, 2015 [Page 16]

https://datatracker.ietf.org/doc/html/rfc7235
http://www.w3.org/TR/xmlenc-core/
http://www.mnot.net/

