
 Internet Draft D. M'Raihi
 Category: Informational VeriSign
 Document: draft-mraihi-oath-hmac-otp-04.txt M. Bellare
 Expires: April 2005 UCSD
 F. Hoornaert
 Vasco
 D. Naccache
 Gemplus
 O. Ranen
 Aladdin
 October 2004

HOTP: An HMAC-based One Time Password Algorithm

 Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 Abstract

 This document describes an algorithm to generate one-time password
 values, based on HMAC [BCK1]. A security analysis of the algorithm
 is presented, and important parameters related to the secure
 deployment of the algorithm are discussed. The proposed algorithm
 can be used across a wide range of network applications ranging
 from remote VPN access, Wi-Fi network logon to transaction-oriented
 Web applications.

 This work is a joint effort by the OATH (Open AuTHentication)
 membership to specify an algorithm that can be freely distributed
 to the technical community. The authors believe that a common and
 shared algorithm will facilitate adoption of two-factor
 authentication on the Internet by enabling interoperability across
 commercial and open-source implementations.

https://datatracker.ietf.org/doc/html/draft-mraihi-oath-hmac-otp-04.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

 Table of Contents

1. Overview...3
2. Introduction...3
3. Requirements Terminology...................................4
4. Algorithm Requirements.....................................4
5. HOTP Algorithm...5
5.1 Notation and Symbols.......................................5
5.2 Description..5
5.3 Generating an HOTP value...................................6
5.4 Example of HOTP computation for Digit = 6..................7
6. Security Considerations....................................7
6.1 Authentication Protocol Requirements.......................8
6.2 Validation of HOTP values..................................8
6.3 Bi-directional Authentication..............................9
6.4 Throttling at the server...................................9
6.5 Resynchronization of the counter...........................9
6.6 Management of Shared Secrets..............................10
7. HOTP Algorithm Security: Overview.........................12
8. Composite Shared Secrets..................................13
9. IANA Considerations.......................................13
10. Conclusion..13
11. Acknowledgements..13
12. Contributors..13
13. References..14
12.1 Normative...14
12.2 Informative...14
14. Authors' Addresses..15
15. Full Copyright Statement...................................15
16. Intellectual Property......................................16
Appendix A - HOTP Algorithm Security: Detailed Analysis........16
A.1 Definitions and Notations..................................16
A.2 The idealized algorithm: HOTP-IDEAL........................17
A.3 Model of Security..17
A.4 Security of the ideal authentication algorithm.............19
A.4.1 From bits to digits......................................19
A.4.2 Brute force attacks......................................20
A.4.3 Brute force attacks are the best possible attacks........21
A.5 Security Analysis of HOTP..................................22
Appendix B - SHA-1 Attacks.....................................23
B.1 SHA-1 status...23
B.2 HMAC-SHA-1 status..24
B.3 HOTP status..25
Appendix C - HOTP Algorithm: Reference Implementation..........25
Appendix D - HOTP Algorithm: Test Values.......................29
Appendix E - Extensions..29
E.1 Number of Digits..30
E.2 Alpha-numeric Values......................................30
E.3 Sequence of HOTP values...................................30
E.4 A Counter-based Re-Synchronization Method.................31
E.5 Data Field..31

 1. Overview

 The document introduces first the context around the HOTP
 algorithm. In section 4, the algorithm requirements are listed and
 in section 5, the HOTP algorithm is described. Sections 6 and 7
 focus on the algorithm security. Section 8 proposes some extensions
 and improvements, and Section 9 concludes this document. The
 interested reader will find in the Appendix a detailed, full-fledge
 analysis of the algorithm security: an idealized version of the
 algorithm is evaluated, and then the HOTP algorithm security is
 analyzed.

 2. Introduction

 Today, deployment of two-factor authentication remains extremely
 limited in scope and scale. Despite increasingly higher levels of
 threats and attacks, most Internet applications still rely on weak
 authentication schemes for policing user access. The lack of
 interoperability among hardware and software technology vendors has
 been a limiting factor in the adoption of two-factor authentication
 technology. In particular, the absence of open specifications has
 led to solutions where hardware and software components are tightly
 coupled through proprietary technology, resulting in high cost
 solutions, poor adoption and limited innovation.

 In the last two years, the rapid rise of network threats has
 exposed the inadequacies of static passwords as the primary mean of
 authentication on the Internet. At the same time, the current
 approach that requires an end-user to carry an expensive,
 single-function device that is only used to authenticate to the
 network is clearly not the right answer. For two factor
 authentication to propagate on the Internet, it will have to be
 embedded in more flexible devices that can work across a wide range
 of applications.

 The ability to embed this base technology while ensuring broad
 interoperability require that it be made freely available to the
 broad technical community of hardware and software developers. Only
 an open system approach will ensure that basic two-factor
 authentication primitives can be built into the next-generation of
 consumer devices such USB mass storage devices, IP phones, and
 personal digital assistants).

 One Time Password is certainly one of the simplest and most popular
 forms of two-factor authentication for securing network access. For
 example, in large enterprises, Virtual Private Network access often
 requires the use of One Time Password tokens for remote user
 authentication. One Time Passwords are often preferred to stronger
 forms of authentication such as PKI or biometrics because an
 air-gap device does not require the installation of any client
 desktop software on the user machine, therefore allowing them to
 roam across multiple machines including home computers, kiosks and

 personal digital assistants.

 This draft proposes a simple One Time Password algorithm that can
 be implemented by any hardware manufacturer or software developer
 to create interoperable authentication devices and software agents.
 The algorithm is event-based so that it can be embedded in high
 volume devices such as Java smart cards, USB dongles and GSM SIM
 cards. The presented algorithm is made freely available to the
 developer community under the terms and conditions of the IETF
 Intellectual Property Rights [RFC3668].

 The authors of this document are members of the Open AuTHentication
 initiative [OATH]. The initiative was created in 2004 to facilitate
 collaboration among strong authentication technology providers.

 3. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in RFC 2119.

 4. Algorithm Requirements

 This section presents the main requirements that drove this
 algorithm design. A lot of emphasis was placed on end-consumer
 usability as well as the ability for the algorithm to be
 implemented by low cost hardware that may provide minimal user
 interface capabilities. In particular, the ability to embed the
 algorithm into high volume SIM and Java cards was a fundamental
 pre-requisite.

 R1 - The algorithm MUST be sequence or counter-based: One of the
 goals is to have the HOTP algorithm embedded in high volume devices
 such as Java smart cards, USB dongles and GSM SIM cards.

 R2 - The algorithm SHOULD be economical to implement in hardware by
 minimizing requirements on battery, number of buttons,
 computational horsepower, and size of LCD display.

 R3 - The algorithm MUST work with tokens that do not supports any
 numeric input, but MAY also be used with more sophisticated devices
 such as secure PIN-pads.

 R4 - The value displayed on the token MUST be easily read and
 entered by the user: This requires the HOTP value to be of
 reasonable length. The HOTP value must be at least a 6-digit value.
 It is also desirable that the HOTP value be 'numeric only' so that
 it can be easily entered on restricted devices such as phones.

 R5 - There MUST be user-friendly mechanisms available to
 resynchronize the counter. The sections 6.4 and 8.4 detail the
 resynchronization mechanism proposed in this draft.

https://datatracker.ietf.org/doc/html/rfc3668
https://datatracker.ietf.org/doc/html/rfc2119

 R6 - The algorithm MUST use a strong shared secret. The length of
 the shared secret MUST be at least 128 bits. This draft RECOMMENDs
 a shared secret length of 160 bits.

 5. HOTP Algorithm

 In this section, we introduce the notation and describe the HOTP
 algorithm basic blocks - the base function to compute an HMAC-SHA-1
 value and the truncation method to extract an HOTP value.

 5.1 Notation and Symbols

 A string always means a binary string, meaning a sequence of zeros
 and ones.

 If s is a string then |s| denotes its length.

 If n is a number then |n| denotes its absolute value.

 If s is a string then s[i] denotes its i-th bit. We start numbering
 the bits at 0, so s = s[0]s[1]..s[n-1] where n = |s| is the length
 of s.

 Let StToNum (String to Number) denote the function which as input a
 string s returns the number whose binary representation is s.
 (For example StToNum(110) = 6).

 Here is a list of symbols used in this document.

 Symbol Represents

 C 8-byte counter value, the moving factor. This counter
 MUST be synchronized between the HOTP generator (client)
 and the HOTP validator (server);

 K shared secret between client and server; each HOTP
 generator has a different and unique secret K;

 T throttling parameter: the server will refuse connections
 from a user after T unsuccessful authentication attempts;

 s resynchronization parameter: the server will attempt to
 verify a received authenticator across s consecutive
 counter values;

 Digit number of digits in an HOTP value; system parameter.

 5.2 Description

 The HOTP algorithm is based on an increasing counter value and a
 static symmetric key known only to the token and the validation

 service. In order to create the HOTP value, we will use the

 HMAC-SHA-1 algorithm, as defined in RFC 2104 [BCK2].

 As the output of the HMAC-SHA1 calculation is 160 bits, we must
 truncate this value to something that can be easily entered by a
 user.

 HOTP(K,C) = Truncate(HMAC-SHA-1(K,C))

 Where:

 - Truncate represents the function that converts an HMAC-SHA-1
 value into an HOTP value as defined in Section 5.3.

 The Key (K), the Counter (C) and Data values are hashed high-order
 byte first.

 The HOTP values generated by the HOTP generator are treated as big
 endian.

 5.3 Generating an HOTP value

 We can describe the operations in 3 distinct steps:

 Step 1: Generate an HMAC-SHA-1 value
 Let HS = HMAC-SHA-1(K,C) // HS is a 20 byte string

 Step 2: Generate a 4-byte string (Dynamic Truncation)
 Let Sbits = DT(HS) // DT, defined in Section 6.3.1
 // returns a 31 bit string

 Step 3: Compute an HOTP value
 Let Snum = StToNum(S) // Convert S to a number in
 0...2^{31}-1
 Return D = Snum mod 10^Digit // D is a number in the range
 0...10^{Digit}-1

 The Truncate function performs Step 2 and Step 3, i.e. the dynamic
 truncation and then the reduction modulo 10^Digit. The purpose of
 the dynamic offset truncation technique is to extract a 4-byte
 dynamic binary code from a 160-bit (20-byte) HMAC-SHA1 result.

 DT(String) // String = String[0]...String[19]
 Let OffsetBits be the low order four bits of String[19]
 Offset = StToNum(OffSetBits) // 0 <= OffSet <= 15
 Let P = String[OffSet]...String[OffSet+3]
 Return the Last 31 bits of P

 The reason for masking the most significant bit of P is to avoid
 confusion about signed vs. unsigned modulo computations. Different
 processors perform these operations differently, and masking out
 the signed bit removes all ambiguity.

https://datatracker.ietf.org/doc/html/rfc2104

 Implementations MUST extract a 6-digit code at a minimum and
 possibly 7 and 8-digit code. Depending on security requirements,
 Digit = 7 or more SHOULD be considered in order to extract a longer
 HOTP value.

 The following paragraph is an example of using this technique for
 Digit = 6, i.e. that a 6-digit HOTP value is calculated from the
 HMAC value.

 5.4 Example of HOTP computation for Digit = 6

 The following code example describes the extraction of a dynamic
 binary code given that hmac_result is a byte array with the
 HMAC-SHA1 result:

 int offset = hmac_result[19] & 0xf ;
 int bin_code = (hmac_result[offset] & 0x7f) << 24
 | (hmac_result[offset+1] & 0xff) << 16
 | (hmac_result[offset+2] & 0xff) << 8
 | (hmac_result[offset+3] & 0xff) ;

 SHA-1 HMAC Bytes (Example)

 | Byte Number |

 |00|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|17|18|19|

 | Byte Value |

 |1f|86|98|69|0e|02|ca|16|61|85|50|ef|7f|19|da|8e|94|5b|55|5a|
 -------------------------------***********----------------++|

 * The last byte (byte 19) has the hex value 0x5a.
 * The value of the lower four bits is 0xa (the offset value).
 * The offset value is byte 10 (0xa).
 * The value of the 4 bytes starting at byte 10 is 0x50ef7f19,
 which is the dynamic binary code DBC1
 * The MSB of DBC1 is 0x50 so DBC2 = DBC1 = 0x50ef7f19
 * HOTP = DBC2 modulo 10^6 = 872921.

 We treat the dynamic binary code as a 31-bit, unsigned, big-endian
 integer; the first byte is masked with a 0x7f.

 We then take this number modulo 1,000,000 (10^6) to generate the
 6-digit HOTP value 872921 decimal.

 6. Security Considerations

 Any One-Time Password algorithm is only as secure as the

 application and the authentication protocols that implement it.

 Therefore, this section discusses the critical security
 requirements that our choice of algorithm imposes on the
 authentication protocol and validation software.

 The parameters T and s discussed in this section have a significant
 impact on the security - further details in Section 7 elaborate on
 the relations between these parameters and their impact on the
 system security.

 It is also important to remark that the HOTP algorithm is not a
 substitute for encryption and does not provide for the privacy of
 data transmission. Other mechanisms should be used to defeat

 6.1 Authentication Protocol Requirements

 We introduce in this section some requirements for a protocol P
 implementing HOTP as the authentication method between a prover and
 a verifier.

 RP1 - P MUST be two-factor, i.e. something you know (secret code
 such as a Password, Pass phrase, PIN code, etc.) and something you
 have (token). The secret code is known only to the user and usually
 entered with the one-time password value for authentication purpose
 (two-factor authentication).

 RP2 - P SHOULD NOT be vulnerable to brute force attacks. This
 implies that a throttling/lockout scheme is RECOMMENDED on the
 validation server side.

 RP3 - P SHOULD be implemented with respect to the state of the art
 in terms of security, in order to avoid the usual attacks and risks
 associated with the transmission of sensitive data over a public
 network (privacy, replay attacks, etc.)

 6.2 Validation of HOTP values

 The HOTP client (hardware or software token) increments its counter
 and then calculates the next HOTP value HOTP-client. If the value
 received by the authentication server matches the value calculated
 by the client, then the HOTP value is validated. In this case, the
 server increments the counter value by one.

 If the value received by the server does not match the value
 calculated by the client, the server initiate the resynch protocol
 (look-ahead window) before it requests another pass.

 If the resynch fails, the server asks then for another
 authentication pass of the protocol to take place, until the
 maximum number of authorized attempts is reached.

 If and when the maximum number of authorized attempts is reached,
 the server SHOULD lock out the account and initiate a procedure to
 inform the user.

 6.3 Bi-directional Authentication

 Interestingly enough, the HOTP client could also be used to
 authenticate the validation server, claiming that it is a genuine
 entity knowing the shared secret.

 Since the HOTP client and the server are synchronized and share the
 same secret (or a method to recompute it) a simple 3-pass protocol
 could be put in place:
 1- The end user enter the TokenID and a first OTP value OTP1;
 2- The server checks OTP1 and if correct, sends back OTP2;
 3- The end user checks OTP2 using his HOTP device and if correct,
 uses the web site.

 Obviously, as indicated previously, all the OTP communications have
 to take place over secure https (SSL) connections.

 6.4 Throttling at the server

 Truncating the HMAC-SHA1 value to a shorter value makes a brute
 force attack possible. Therefore, the authentication server needs
 to detect and stop brute force attacks.

 We RECOMMEND setting a throttling parameter T, which defines the
 maximum number of possible attempts for One-Time-Password
 validation. The validation server manages individual counters per
 HOTP device in order to take note of any failed attempt. We
 RECOMMEND T not to be too large, particularly if the
 resynchronization method used on the server is window-based, and
 the window size is large. T SHOULD be set as low as possible, while
 still ensuring usability is not significantly impacted.

 Another option would be to implement a delay scheme to avoid a
 brute force attack. After each failed attempt A, the authentication
 server would wait for an increased T*A number of seconds, e.g. say
 T = 5, then after 1 attempt, the server waits for 5 seconds, at the
 second failed attempt, it waits for 5*2 = 10 seconds, etc.

 The delay or lockout schemes MUST be across login sessions to
 prevent attacks based on multiple parallel guessing techniques.

 6.5 Resynchronization of the counter

 Although the server's counter value is only incremented after a
 successful HOTP authentication, the counter on the token is
 incremented every time a new HOTP is requested by the user. Because
 of this, the counter values on the server and on the token might be
 out of synchronization.

 We RECOMMEND setting a look-ahead parameter s on the server, which
 defines the size of the look-ahead window. In a nutshell, the
 server can recalculate the next s HOTP-server values, and check
 them against the received HOTP-client.

 Synchronization of counters in this scenario simply requires the
 server to calculate the next HOTP values and determine if there is
 a match. Optionally, the system MAY require the user to send a
 sequence of (say 2, 3) HOTP values for resynchronization purpose,
 since forging a sequence of consecutive HOTP values is even more
 difficult than guessing a single HOTP value.

 The upper bound set by the parameter s ensures the server does not
 go on checking HOTP values forever (causing a DoS attack) and also
 restricts the space of possible solutions for an attacker trying to
 manufacture HOTP values. s SHOULD be set as low as possible, while
 still ensuring usability is not impacted.

 6.6 Management of Shared Secrets

 The operations dealing with the shared secrets used to generate and
 verify OTP values must be performed securely, in order to mitigate
 risks of any leakage of sensitive information. We describe in this
 section different modes of operations and techniquest to perform
 these different operations with respect of the state of the art in
 terms of data security.

 We can consider two different avenues for generating and storing
 (securely) shared secrets in the Validation system:
 * Deterministic Generation: secrets are derived from a master
 seed, both at provisioning and verification stages and generated
 on-the-fly whenever it is required;
 * Random Generation: secrets are generated randomly at
 provisioning stage, and must be stored immediately and kept secure
 during their life cycle.

 Deterministic Generation

 A possible strategy is to derive the shared secrets from a master
 secret. The master secret will be stored at the server only. A
 tamper resistant device MUST be used to store the master key and
 derive the shared secrets from the master key and some public
 information. The main benefit would be to avoid the exposure of the
 shared secrets at any time and also avoid specific requirements on
 storage, since the shared secrets could be generated on-demand when
 needed at provisioning and validation time.

 We distinguish two different cases:
 - A single master key MK is used to derive the shared secrets;
 each HOTP device has a different secret, K_i = SHA-1 (MK,i)
 where i stands for a public piece of information that

 identifies uniquely the HOTP device such as a serial number, a

 token ID, etc.; obviously, this is in the context of an
 application or service - different application or service
 providers will have different secrets and settings;
 - Several master keys MK_i are used and each HOTP device stores a
 set of different derived secrets, {K_i,j = SHA-1(MK_i,j)} where
 j stands for a public piece of information identifying the
 device. The idea would be to store ONLY the active master key
 at the validation server, in the HSM, and keep in a safe place,
 using secret sharing methods such as [Shamir] for instance. In
 this case, if a master secret MK_i is compromised, then it is
 possible to switch to another secret without replacing all the
 devices.

 The drawback in the deterministic case is that the exposure of the
 master secret would obviously enable an attacker to rebuild any
 shared secret based on correct public information. The revocation
 of all secrets would be required, or switching to a new set of
 secrets in the case of multiple master keys.

 On the other hand, the device used to store the master key(s) and
 generate the shared secrets MUST be tamper resistant. Furthermore,
 the HSM will not be exposed outside the security perimeter of the
 validation system, therefore reducing the risk of leakage.

 Random Generation

 The shared secrets are randomly generated. We RECOMMEND to follow
 the recommendations in [RFC1750] and to select a good and secure
 random source for generating these secrets. A (true) random
 generator requires a naturally occurring source of randomness.
 Practically, there are two possible avenues to consider for the
 generation of the shared secrets:

 * Hardware-based generators: they exploit the randomness which
 occurs in physical phenomena. A nice implementation can be based on
 oscillators, and built in such ways that active attacks are more
 difficult to perform.

 * Software-based generators: designing a good software random
 generator is not an easy task. A simple, but efficient,
 implementation should be based on various sources, and apply to the
 sampled sequence a one-way function such as SHA-1.

 We RECOMMEND to select proven products, being hardware or software
 generators for the computation of shared secrets.

 We also RECOMMEND storing the shared secrets securely, and more
 specifically encrypting the shared secrets when stored using
 tamper-resistant hardware encryption, and exposing them only when
 required: e.g. the shared secret is decrypted when needed to verify

https://datatracker.ietf.org/doc/html/rfc1750

 an HOTP value, and re-encrypted immediately to limit exposure in
 the RAM for a short period of time. The data store holding the

 shared secrets MUST be in a secure area, to avoid as much as
 possible direct attack on the validation system and secrets
 database.

 Particularly, access to the shared secrets should be limited to
 programs and processes required by the validation system only. We
 will not elaborate on the different security mechanisms to put in
 place, but obviously, the protection of shared secrets is of the
 uttermost importance.

 7. HOTP Algorithm Security: Overview

 The conclusion of the security analysis detailed in the Appendix
 section is that, for all practical purposes, the outputs of the
 dynamic truncation (DT) on distinct counter inputs are uniformly
 and independently distributed 31-bit strings.

 The security analysis then details the impact of the conversion
 from a string to an integer and the final reduction modulo
 10^Digit, where Digit is the number of digits in an HOTP value.

 The analysis demonstrates that these final steps introduce a
 negligible bias, which does not impact the security of the HOTP
 algorithm, in the sense that the best possible attack against the
 HOTP function is the brute force attack.

 Assuming an adversary is able to observe numerous protocol
 exchanges and collect sequences of successful authentication
 values. This adversary, trying to build a function F to generate
 HOTP values based on his observations, will not have a significant
 advantage over a random guess.

 The logical conclusion is simply that is best strategy will once
 again be to perform a brute force attack to enumerate and try all
 the possible values.

 Considering the security analysis in the Appendix section of this
 document, without loss of generality, we can approximate closely
 the security of the HOTP algorithm by the following formula:

 Sec = sv/10^Digit

 Where:
 - Sec is the probability of success of the adversary
 - s stands for the look-ahead synchronization window size;
 - v stands for the number of verification attempts;
 - Digit stands for the number of digits in HOTP values.

 Obviously, we can play with s, T (the Throttling parameter that
 would limit the number of attempts by an attacker) and Digit until

 achieving a certain level of security, still preserving the system
 usability.

 8. Composite Shared Secrets

 It may be desirable to include additional authentication factors in
 the shared secret K. These additional factors can consist of any
 data known at the token but not easily obtained by others. Examples
 of such data include:
 * PIN or Password obtained as user input at the token
 * Phone number
 * Any unique identifier programmatically available at the token

 In this scenario the composite shared secret K is constructed
 during the provisioning process from a random seed value combined
 with one or more additional authentication factors. The server
 could either build on-demand or store composite secrets - in any
 case, depending on implementation choice, the token only stores the
 seed value. When the token performs the HOTP calculation it
 computes K from the seed value and the locally derived or input
 values of the other authentication factors.

 The use of composite shared secrets can strengthen HOTP based
 authentication systems through the inclusion of additional
 authentication factors at the token. To the extent that the token
 is a trusted device this approach has the further benefit of not
 requiring exposure of the authentication factors (such as the user
 input PIN) to other devices.

 9. IANA Considerations

 This document has no actions for IANA.

 10. Conclusion

 This draft describes HOTP, a HMAC-based One-Time Password
 algorithm. It also recommends the preferred implementation and
 related modes of operations for deploying the algorithm.

 The draft also exhibits elements of security and demonstrates that
 the HOTP algorithm is practical and sound, the best possible attack
 being a brute force attack that can be prevented by careful
 implementation of countermeasures in the validation server.

 Eventually, several enhancements have been proposed, in order to
 improve security if needed for specific applications.

 11. Acknowledgements

 The authors would like to thank Siddharth Bajaj, Alex Deacon, Loren
 Hart and Nico Popp for their help during the conception and
 redaction of this document.

 12. Contributors

 The authors of this draft would like to emphasize the role of three
 persons who have made a key contribution to this document:

 - Laszlo Elteto is system architect with SafeNet, Inc.

 - Ernesto Frutos is director of Engineering with Authenex, Inc.

 - Fred McClain is Founder and CTO with Boojum Mobile, Inc.

 Without their advice and valuable inputs, this draft would not be
 the same.

 13. References

 12.1 Normative

 [BCK1] M. Bellare, R. Canetti and H. Krawczyk, "Keyed Hash
 Functions and Message Authentication", Proceedings of
 Crypto'96, LNCS Vol. 1109, pp. 1-15.

 [BCK2] M. Bellare, R. Canetti and H. Krawczyk, "HMAC:
 Keyed-Hashing for Message Authentication", IETF Network
 Working Group, RFC 2104, February 1997.

 [RFC1750] D. Eastlake, 3rd., S. Crocker and J. Schiller,
 "Randomness Recommendantions for Security", IETF
 Network Working Group, RFC 1750, December 2004.

 [RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3668] S. Bradner, "Intellectual Propery Rights in IETF
 Technology", BCP 79, RFC 3668, February 2004.

 12.2 Informative

 [OATH] Initiative for Open AuTHentication
http://www.openauthentication.org

 [PrOo] B. Preneel and P. van Oorschot, "MD-x MAC and building
 fast MACs from hash functions", Advances in Cryptology
 CRYPTO '95, Lecture Notes in Computer Science Vol. 963,
 D. Coppersmith ed., Springer-Verlag, 1995.

 [Crack] Crack in SHA-1 code 'stuns' security gurus
http://www.eetimes.com/showArticle.jhtml?articleID=60402150

 [Sha1] Bruce Schneier. SHA-1 broken. February 15, 2005.
http://www.schneier.com/blog/archives/2005/02/sha1_broken.html

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/doc/html/rfc3668
http://www.openauthentication.org
http://www.eetimes.com/showArticle.jhtml?articleID=60402150
http://www.schneier.com/blog/archives/2005/02/sha1_broken.html

 [Res] Researchers: Digital encryption standard flawed
http://news.com.com/Researchers+Digital+encryption+standard+flawed/

 2100-1002-5579881.html?part=dht&tag=ntop&tag=nl.e703

 [Shamir] How to Share a Secret, by Adi Shamir. In Communications
 of the ACM, Vol. 22, No. 11, pp. 612-613, November, 1979.

 14. Authors' Addresses

 Primary point of contact (for sending comments and question):

 David M'Raihi
 VeriSign, Inc.
 685 E. Middlefield Road Phone: 1-650-426-3832
 Mountain View, CA 94043 USA Email: dmraihi@verisign.com

 Other Authors' contact information:

 Mihir Bellare
 Dept of Computer Science and Engineering, Mail Code 0114
 University of California at San Diego
 9500 Gilman Drive
 La Jolla, CA 92093, USA Email: mihir@cs.ucsd.edu

 Frank Hoornaert
 VASCO Data Security, Inc.
 Koningin Astridlaan 164
 1780 Wemmel, Belgium Email: frh@vasco.com

 David Naccache
 Gemplus Innovation
 34 rue Guynemer, 92447,
 Issy les Moulineaux, France Email: david.naccache@gemplus.com
 and
 Information Security Group,
 Royal Holloway,
 University of London, Egham,
 Surrey TW20 0EX, UK Email: david.naccache@rhul.ac.uk

 Ohad Ranen
 Aladdin Knowledge Systems Ltd.
 15 Beit Oved Street
 Tel Aviv, Israel 61110 Email: Ohad.Ranen@ealaddin.com

 15. Full Copyright Statement

 Copyright (C) The Internet Society (2005).

http://news.com

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
 ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
 PARTICULAR PURPOSE.

 16. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology described
 in this document or the extent to which any license under such
 rights might or might not be available; nor does it represent that
 it has made any independent effort to identify any such rights.
 Information on the procedures with respect to rights in RFC
 documents can be found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

 Appendix A - HOTP Algorithm Security: Detailed Analysis

 The security analysis of the HOTP algorithm is summarized in this
 section. We first detail the best attack strategies, and then
 elaborate on the security under various assumptions, the impact of
 the truncation and some recommendations regarding the number of
 digits.

 We focus this analysis on the case where Digit = 6, i.e. an HOTP
 function that produces 6-digit values, which is the bare minimum
 recommended in this draft.

 A.1 Definitions and Notations

 We denote by {0,1}^l the set of all strings of length l.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

 Let Z_{n} = {0,.., n - 1}.

 Let IntDiv(a,b) denote the integer division algorithm that takes
 input integers a, b where a >= b >= 1 and returns integers (q,r)

 the quotient and remainder, respectively, of the division of a by
 b. (Thus a = bq + r and 0 <= r < b.)

 Let H: {0,1}^k x {0,1}^c --> {0,1}^n be the base function that
 takes a k-bit key K and c-bit counter C and returns an n-bit output
 H(K,C). (In the case of HOTP, H is HMAC-SHA-1; we use this formal
 definition for generalizing our proof of security)

 A.2 The idealized algorithm: HOTP-IDEAL

 We now define an idealized counterpart of the HOTP algorithm. In
 this algorithm, the role of H is played by a random function that
 forms the key.

 To be more precise, let Maps(c,n) denote the set of all functions
 mapping from {0,1}^c to {0,1}^n. The idealized algorithm has key
 space Maps(c,n), so that a "key" for such an algorithm is a
 function h from {0,1}^c to {0,1}^n. We imagine this key (function)
 to be drawn at random. It is not feasible to implement this
 idealized algorithm, since the key, being a function from is way
 too large to even store. So why consider it?

 Our security analysis will show that as long as H satisfies a
 certain well-accepted assumption, the security of the actual and
 idealized algorithms is for all practical purposes the same. The
 task that really faces us, then, is to assess the security of the
 idealized algorithm.

 In analyzing the idealized algorithm, we are concentrating on
 assessing the quality of the design of the algorithm itself,
 independently of HMAC-SHA-1. This is in fact the important issue.

 A.3 Model of Security

 The model exhibits the type of threats or attacks that are being
 considered and enables to asses the security of HOTP and
 HOTP-IDEAL. We denote ALG as either HOTP or HOTP-IDEAL for the
 purpose of this security analysis.

 The scenario we are considering is that a user and server share a
 key K for ALG. Both maintain a counter C, initially zero, and the
 user authenticates itself by sending ALG(K,C) to the server. The
 latter accepts if this value is correct.

 In order to protect against accidental increment of the user
 counter, the server, upon receiving a value z, will accept as long
 as z equals ALG(K,i) for some i in the range C,...,C + s-1, where s

 is the resynchronization parameter and C is the server counter. If
 it accepts with some value of i, it then increments its counter to
 i+ 1. If it does not accept, it does not change its counter value.

 The model we specify captures what an adversary can do and what it
 needs to achieve in order to "win." First, the adversary is assumed

 to be able to eavesdrop, meaning see the authenticator transmitted
 by the user. Second, the adversary wins if it can get the server to
 accept an authenticator relative to a counter value for which the
 user has never transmitted an authenticator.

 The formal adversary, which we denote by B, starts out knowing
 which algorithm ALG is being used, knowing the system design and
 knowing all system parameters. The one and only thing it is not
 given a priori is the key K shared between the user and the server.

 The model gives B full control of the scheduling of events. It has
 access to an authenticator oracle representing the user. By calling
 this oracle, the adversary can ask the user to authenticate itself
 and get back the authenticator in return. It can call this oracle
 as often as it wants and when it wants, using the authenticators it
 accumulates to perhaps "learn" how to make authenticators itself.
 At any time, it may also call a verification oracle, supplying the
 latter with a candidate authenticator of its choice. It wins if the
 server accepts this accumulator.

 Consider the following game involving an adversary B that is
 attempting to compromise the security of an authentication
 algorithm ALG: K x {0,1}^c --> R.

 Initializations - A key K is selected at random from K, a counter C
 is initialized to 0, and the Boolean value win is set to false.

 Game execution - Adversary B is provided with the two following
 oracles:

 Oracle AuthO()

 A = ALG(K,C)
 C = C + 1
 Return O to B

 Oracle VerO(A)

 i = C
 While (i <= C + s - 1 and Win == FALSE) do
 If A == ALG(K,i) then Win = TRUE; C = i + 1
 Else i = i + 1
 Return Win to B

 AuthO() is the authenticator oracle and VerO(A) is the verification
 oracle.

 Upon execution, B queries the two oracles at will. Let Adv(B) be
 the probability that win gets set to true in the above game. This
 is the probability that the adversary successfully impersonates the
 user.

 Our goal is to assess how large this value can be as a function of
 the number v of verification queries made by B, the number a of
 authenticator oracle queries made by B, and the running time t of
 B. This will tell us how to set the throttle, which effectively
 upper bounds v.

 A.4 Security of the ideal authentication algorithm

 This section summarizes the security analysis of HOTP-IDEAL,
 starting with the impact of the conversion modulo 10^Digit and
 then, focusing on the different possible attacks.

 A.4.1 From bits to digits

 The dynamic offset truncation of a random n-bit string yields a
 random 31-bit string. What happens to the distribution when it is
 taken modulo m = 10^Digit, as done in HOTP?

 The following lemma estimates the biases in the outputs in this
 case.

 Lemma 1

 Let N >= m >= 1 be integers, and let (q,r) = IntDiv(N,m). For z in
 Z_{m} let:

 P_{N,m}(z) = Pr [x mod m = z : x randomly pick in Z_{n}]

 Then for any z in Z_{m}

 P_{N,m}(z) = (q + 1) / N if 0 <= z < r
 q / N if r <= z < m

 Proof of Lemma 1

 Let the random variable X be uniformly distributed over Z_{N}.
 Then:

 P_{N,m}(z) = Pr [X mod m = z]

 = Pr [X < mq] * Pr [X mod m = z| X < mq]
 + Pr [mq <= X < N] * Pr [X mod m = z| mq <= X < N]

 = mq/N * 1/m +
 (N - mq)/N * 1 / (N - mq) if 0 <= z < N - mq
 0 if N - mq <= z <= m

 = q/N +
 r/N * 1 / r if 0 <= z < N - mq
 0 if r <= z <= m

 Simplifying yields the claimed equation.

 Let N = 2^31, d = 6 and m = 10^d. If x is chosen at random from
 Z_{N} (meaning, is a random 31-bit string), then reducing it to a
 6-digit number by taking x mod m does not yield a random 6-digit
 number.

 Rather, x mod m is distributed as shown in the following table:

 Values Probability that each appears as output
 --
 0,1,...,483647 2148/2^31 roughly equals to 1.00024045/10^6
 483648,...,999999 2147/2^31 roughly equals to 0.99977478/10^6

 If X is uniformly distributed over Z_{2^31} (meaning is a random
 31-bit string) then the above shows the probabilities for different
 outputs of X mod 10^6. The first set of values appear with
 probability slightly greater than 10^-6, the rest with probability
 slightly less, meaning the distribution is slightly non-uniform.

 However, as the Figure indicates, the bias is small and as we will
 see later, negligible: the probabilities are very close to 10^-6.

 A.4.2 Brute force attacks

 If the authenticator consisted of d random digits, then a brute
 force attack using v verification attempts would succeed with
 probability sv/10^Digit.

 However, an adversary can exploit the bias in the outputs of HOTP-
 IDEAL, predicted by Lemma 1, to mount a slightly better attack.

 Namely, it makes authentication attempts with authenticators which
 are the most likely values, meaning the ones in the range 0,...,r -
 1, where (q,r) = IntDiv(2^31,10^Digit).

 The following specifies an adversary in our model of security that
 mounts the attack. It estimates the success probability as a
 function of the number of verification queries.

 For simplicity, we assume the number of verification queries is at
 most r. With N = 2^31 and m = 10^6 we have r = 483,648, and the
 throttle value is certainly less than this, so this assumption is
 not much of a restriction.

 Proposition 1

 Suppose m = 10^Digit < 2^31, and let (q,r) = IntDiv(2^31,m). Assume
 s <= m. The brute-force attack adversary B-bf attacks HOTP using v
 <= r verification oracle queries. This adversary makes no
 authenticator oracle queries, and succeeds with probability

 Adv(B-bf) = 1 - (1 - v(q+1)/2^31)^s

 which is roughly equals to

 sv * (q+1)/2^31

 With m = 10^6 we get q = 2,147. In that case, the brute force
 attack using v verification attempts succeeds with probability

 Adv(B-bf) roughly = sv * 2148/2^31 = sv * 1.00024045/10^6

 As this equation shows, the resynchronization parameter s has a
 significant impact in that the adversary's success probability is
 proportional to s. This means that s cannot be made too large
 without compromising security.

 A.4.3 Brute force attacks are the best possible attacks

 A central question is whether there are attacks any better than the
 brute force one. In particular, the brute force attack did not
 attempt to collect authenticators sent by the user and try to
 cryptanalyze them in an attempt to learn how to better construct
 authenticators. Would doing this help? Is there some way to "learn"
 how to build authenticators that result in a higher success rate
 than given by the brute-force attack?

 The following says the answer to these questions is no. No matter
 what strategy the adversary uses, and even if it sees, and tries to
 exploit, the authenticators from authentication attempts of the
 user, its success probability will not be above that of the brute
 force attack - this is true as long as the number of
 authentications it observes is not incredibly large. This is
 valuable information regarding the security of the scheme.

 Proposition 2

 Suppose m = 10^Digit < 2^31, and let (q,r) = IntDiv(2^31,m). Let B
 be any adversary attacking HOTP-IDEAL using v verification oracle
 queries and a <= 2^c - s authenticator oracle queries. Then

 Adv(B) < = sv * (q+1)/ 2^31

 Note: This result is conditional on the adversary not seeing more
 than 2^c - s authentications performed by the user, which is hardly
 restrictive as long as c is large enough.

 With m = 10^6 we get q = 2,147. In that case, Proposition 2 says

 that any adversary B attacking HOTP-IDEAL and making v verification
 attempts succeeds with probability at most

 Equation 1

 sv * 2148/2^31 roughly = sv * 1.00024045/10^6

 Meaning, B's success rate is not more than that achieved by the
 brute force attack.

 A.5 Security Analysis of HOTP

 We have analyzed in the previous sections, the security of the
 idealized counterparts HOTP-IDEAL of the actual authentication
 algorithm HOTP. We now show that, under appropriate and
 well-believed assumption on H, the security of the actual
 algorithms is essentially the same as that of its idealized
 counterpart.

 The assumption in question is that H is a secure pseudorandom
 function, or PRF, meaning that its input-output values are
 indistinguishable from those of a random function in practice.

 Consider an adversary A that is given an oracle for a function f:
 {0,1}^c --> {0, 1}^n and eventually outputs a bit. We denote Adv(A)
 as the prf-advantage of A, which represents how well the adversary
 does at distinguishing the case where its oracle is H(K,.) from the
 case where its oracle is a random function of {0,1}^c to {0,1}^n.

 One possible attack is based on exhaustive search for the key K. If
 A runs for t steps and T denotes the time to perform one
 computation of H, its prf-advantage from this attack turns out to
 be (t/T)2^-k . Another possible attack is a birthday one [PrOo],
 whereby A can attain advantage p^2/2^n in p oracle queries and
 running time about pT.

 Our assumption is that these are the best possible attacks. This
 translates into the following.

 Assumption 1

 Let T denotes the time to perform one computation of H. Then if A
 is any adversary with running time at most t and making at most p
 oracle queries,

 Adv(A) <= (t/T)/2^k + p^2/2^n

 In practice this assumption means that H is very secure as PRF. For
 example, given that k = n = 160, an attacker with running time 2^60
 and making 2^40 oracle queries has advantage at most (about) 2^-80.

 Theorem 1

 Suppose m = 10^Digit < 2^31, and let (q,r) = IntDiv(2^31,m). Let B
 be any adversary attacking HOTP using v verification oracle
 queries, a <= 2^c - s authenticator oracle queries, and running
 time t. Let T denote the time to perform one computation of H. If
 Assumption 1 is true then

 Adv(B) <= sv * (q + 1)/2^31 + (t/T)/2^k + ((sv + a)^2)/2^n

 In practice, the (t/T)2^-k + ((sv + a)^2)2^-n term is much smaller
 than the sv(q + 1)/2^n term, so that the above says that for all
 practical purposes the success rate of an adversary attacking HOTP
 is sv(q + 1)/2^n, just as for HOTP-IDEAL, meaning the HOTP
 algorithm is in practice essentially as good as its idealized
 counterpart.

 In the case m = 10^6 of a 6-digit output this means that an
 adversary making v authentication attempts will have a success rate
 that is at most that of Equation 1.

 For example, consider an adversary with running time at most 2^60
 that sees at most 2^40 authentication attempts of the user. Both
 these choices are very generous to the adversary, who will
 typically not have these resources, but we are saying that even
 such a powerful adversary will not have more success than indicated
 by Equation 1.

 We can safely assume sv <= 2^40 due to the throttling and bounds on
 s. So:
 (t/T)/2^k + ((sv + a)^2)/2^n <= 2^60/2^160 + (2^41)^2/2^160
 roughly <= 2^-78

 which is much smaller than the success probability of Equation 1
 and negligible compared to it.

 Appendix B - SHA-1 Attacks

 This sections addresses the impact of the recent attacks on SHA-1
 on the security of the HMAC-SHA-1 based HOTP. We begin with some
 discussion of the situation of SHA-1 and then discuss the relevance
 to HMAC-SHA-1 and HOTP. Cited references are at the bottom of the
 document.

 B.1 SHA-1 status

 A collision for a hash function h means a pair x,y of different
 inputs such that h(x)=h(y). Since SHA-1 outputs 160 bits, a
 birthday attack finds a collision in 2^{80} trials. (A trial means
 one computation of the function.) This was thought to be the best
 possible until Wang, Yin and Yu announced on February 15, 2005 that
 they had an attack finding collisions in 2^{69} trials.

 Is SHA-1 broken? For most practical purposes we would say probably
 not, since the resources needed to mount the attack are huge. Here
 is one way to get a sense of it: we can estimate it is about the
 same as the time we would need to factor a 760-bit RSA modulus, and
 this is currently considered out of reach.

 Burr of NIST is quoted [Crack] as saying ``Large national
 intelligence agencies could do this in a reasonable amount of time
 with a few million dollars in computer time.'' However, the
 computation may be out of reach of all but such well-funded
 agencies.

 One should also ask what impact finding SHA-1 collisions actually
 has on security of real applications such as signatures. To exploit
 a collision x,y to forge signatures, you need to somehow obtain a
 signature of x and then you can forge a signature of y. How
 damaging this is depends on the content of y: the y created by the
 attack may not be meaningful in the application context. Also, one
 needs a chosen-message attack to get the signature of x. This seems
 possible in some contexts, but not others. Overall, it is not clear
 the impact on the security of signatures is significant.

 Indeed, one can read that SHA-1 is ``broken,'' [Sha1], that
 encryption and SSL are ``broken'' [Res], in the press. The media
 have a tendency to magnify events: it would hardly be interesting
 to announce in the news that a team of cryptanalysts did very
 interesting theoretical work in attacking SHA-1.

 Cryptographers are excited too. But mainly because this is an
 important theoretical breakthrough. Attacks can only get beter with
 time: it is therefore important to monitor any progress in hash
 functions cryptanalysis and be prepared for any really practical
 break with a sound migration plan for the future.

 B.2 HMAC-SHA-1 status

 The new attacks on SHA-1 have no impact on the security of HMAC-
 SHA-1. The best attack on the latter remains one needing a sender
 to authenticate 2^{80} messages before an adversary can create a
 forgery. Why?

 HMAC is not a hash function. It is a message authentication code
 (MAC) that uses a hash function internally. A MAC depends on a
 secret key, while hash functions don't. What one needs to worry
 about with a MAC is forgery, not collisions. HMAC was designed so
 that collisions in the hash function (here SHA-1) do not yield
 forgeries for HMAC.

 Recall that HMAC-SHA-1(K,x) = SHA-1(K_o,SHA-1(K_i,x)) where the
 keys K_o,K_i are derived from K. Suppose the attacker finds a pair
 x,y such that SHA-1(K_i,x)=SHA-1(K_i,y). (Call this a hidden-key

 collision.) Then if it can obtain the MAC of x (itself a tall
 order), it can forge the MAC of y. (These values are the same.) But
 finding hidden-key collisions is harder than finding collisions,
 because the attacker does not know the hidden key K_i. All it may
 have is some outputs of HMAC-SHA-1 with key K. To date there are no
 claims or evidence that the recent attacks on SHA-1 extend to find
 hidden-key collisions.

 Historically, the HMAC design has already proven itself in this
 regard. MD5 is considered broken in that collisions in this hash
 function can be found relatively easily. But there is still no
 attack on HMAC-MD5 better than the trivial 2^{64} time birthday
 one. (MD5 outputs 128 bits, not 160.) We are seeing this strength
 of HMAC coming into play again in the SHA-1 context.

 B.3 HOTP status

 Since no new weakness has surfaced in HMAC-SHA-1, there is no
 impact on HOTP. The best attacks on HOTP remain those described in
 the document, namely to try to guess output values.

 The security proof of HOTP requires that HMAC-SHA-1 behave like a
 pseudorandom function. The quality of HMAC-SHA-1 as a pseudorandom
 function is not impacted by the new attacks on SHA-1, and so
 neither is this proven guarantee.

 Appendix C - HOTP Algorithm: Reference Implementation

 /*
 * OneTimePasswordAlgorithm.java
 * OATH Initiative,
 * HOTP one-time password algorithm
 *
 */

 /* Copyright (C) 2004, OATH. All rights reserved.
 *
 * License to copy and use this software is granted provided that it
 * is identified as the "OATH HOTP Algorithm" in all material
 * mentioning or referencing this software or this function.
 *
 * License is also granted to make and use derivative works provided
 * that such works are identified as
 * "derived from OATH HOTP algorithm"
 * in all material mentioning or referencing the derived work.
 *
 * OATH (Open AuTHentication) and its members make no
 * representations concerning either the merchantability of this
 * software or the suitability of this software for any particular
 * purpose.
 *
 * It is provided "as is" without express or implied warranty

 * of any kind and OATH AND ITS MEMBERS EXPRESSELY DISCLAIMS
 * ANY WARRANTY OR LIABILITY OF ANY KIND relating to this software.
 *
 * These notices must be retained in any copies of any part of this
 * documentation and/or software.
 */

 package org.openauthentication.otp;

 import java.io.IOException;
 import java.io.File;
 import java.io.DataInputStream;
 import java.io.FileInputStream ;
 import java.lang.reflect.UndeclaredThrowableException;

 import java.security.GeneralSecurityException;
 import java.security.NoSuchAlgorithmException;
 import java.security.InvalidKeyException;

 import javax.crypto.Mac;
 import javax.crypto.spec.SecretKeySpec;

 /**
 * This class contains static methods that are used to calculate the
 * One-Time Password (OTP) using
 * JCE to provide the HMAC-SHA1.
 *
 * @author Loren Hart
 * @version 1.0
 */
 public class OneTimePasswordAlgorithm {
 private OneTimePasswordAlgorithm() {}

 // These are used to calculate the check-sum digits.
 // 0 1 2 3 4 5 6 7 8 9
 private static final int[] doubleDigits =
 { 0, 2, 4, 6, 8, 1, 3, 5, 7, 9 };

 /**
 * Calculates the checksum using the credit card algorithm.
 * This algorithm has the advantage that it detects any single
 * mistyped digit and any single transposition of
 * adjacent digits.
 *
 * @param num the number to calculate the checksum for
 * @param digits number of significant places in the number
 *
 * @return the checksum of num
 */
 public static int calcChecksum(long num, int digits) {
 boolean doubleDigit = true;
 int total = 0;

 while (0 < digits--) {
 int digit = (int) (num % 10);
 num /= 10;
 if (doubleDigit) {
 digit = doubleDigits[digit];
 }
 total += digit;
 doubleDigit = !doubleDigit;
 }

 int result = total % 10;
 if (result > 0) {
 result = 10 - result;
 }
 return result;
 }

 /**
 * This method uses the JCE to provide the HMAC-SHA1
 * algorithm.
 * HMAC computes a Hashed Message Authentication Code and
 * in this case SHA1 is the hash algorithm used.
 *
 * @param keyBytes the bytes to use for the HMAC-SHA1 key
 * @param text the message or text to be authenticated.
 *
 * @throws NoSuchAlgorithmException if no provider makes
 * either HmacSHA1 or HMAC-SHA1
 * digest algorithms available.
 * @throws InvalidKeyException
 * The secret provided was not a valid HMAC-SHA1 key.
 *
 */

 public static byte[] hmac_sha1(byte[] keyBytes, byte[] text)
 throws NoSuchAlgorithmException, InvalidKeyException
 {
 // try {
 Mac hmacSha1;
 try {
 hmacSha1 = Mac.getInstance("HmacSHA1");
 } catch (NoSuchAlgorithmException nsae) {
 hmacSha1 = Mac.getInstance("HMAC-SHA1");
 }
 SecretKeySpec macKey =
 new SecretKeySpec(keyBytes, "RAW");
 hmacSha1.init(macKey);
 return hmacSha1.doFinal(text);
 // } catch (GeneralSecurityException gse) {
 // throw new UndeclaredThrowableException(gse);
 // }
 }

 private static final int[] DIGITS_POWER
 // 0 1 2 3 4 5 6 7 8
 = {1,10,100,1000,10000,100000,1000000,10000000,100000000};

 /**
 * This method generates an OTP value for the given
 * set of parameters.
 *
 * @param secret the shared secret
 * @param movingFactor the counter, time, or other value that

 * changes on a per use basis.
 * @param codeDigits the number of digits in the OTP, not
 * including the checksum, if any.
 * @param addChecksum a flag that indicates if a checksum digit
 * should be appended to the OTP.
 * @param truncationOffset the offset into the MAC result to
 * begin truncation. If this value is out of
 * the range of 0 ... 15, then dynamic
 * truncation will be used.
 * Dynamic truncation is when the last 4
 * bits of the last byte of the MAC are
 * used to determine the start offset.
 * @throws NoSuchAlgorithmException if no provider makes
 * either HmacSHA1 or HMAC-SHA1
 * digest algorithms available.
 * @throws InvalidKeyException
 * The secret provided was not
 * a valid HMAC-SHA1 key.
 *
 * @return A numeric String in base 10 that includes
 * {@link codeDigits} digits plus the optional checksum
 * digit if requested.
 */
 static public String generateOTP(byte[] secret,
 long movingFactor,
 int codeDigits,
 boolean addChecksum,
 int truncationOffset)
 throws NoSuchAlgorithmException, InvalidKeyException
 {
 // put movingFactor value into text byte array
 String result = null;
 int digits = addChecksum ? (codeDigits + 1) : codeDigits;
 byte[] text = new byte[8];
 for (int i = text.length - 1; i >= 0; i--) {
 text[i] = (byte) (movingFactor & 0xff);
 movingFactor >>= 8;
 }

 // compute hmac hash
 byte[] hash = hmac_sha1(secret, text);

 // put selected bytes into result int
 int offset = hash[hash.length - 1] & 0xf;
 if ((0<=truncationOffset) &&
 (truncationOffset<(hash.length-4))) {
 offset = truncationOffset;
 }
 int binary =
 ((hash[offset] & 0x7f) << 24)
 | ((hash[offset + 1] & 0xff) << 16)
 | ((hash[offset + 2] & 0xff) << 8)
 | (hash[offset + 3] & 0xff);

 int otp = binary % DIGITS_POWER[codeDigits];
 if (addChecksum) {
 otp = (otp * 10) + calcChecksum(otp, codeDigits);
 }
 result = Integer.toString(otp);
 while (result.length() < digits) {
 result = "0" + result;
 }
 return result;
 }
 }

 Appendix D - HOTP Algorithm: Test Values

 The following test data uses the ASCII string
 "123456787901234567890" for the secret:

 Secret = 0x3132333435363738393031323334353637383930

 Table 1 details for each count, the intermediate hmac value.

 Count Hexadecimal HMAC-SHA1(secret, count)
 0 cc93cf18508d94934c64b65d8ba7667fb7cde4b0
 1 75a48a19d4cbe100644e8ac1397eea747a2d33ab
 2 0bacb7fa082fef30782211938bc1c5e70416ff44
 3 66c28227d03a2d5529262ff016a1e6ef76557ece
 4 a904c900a64b35909874b33e61c5938a8e15ed1c
 5 a37e783d7b7233c083d4f62926c7a25f238d0316
 6 bc9cd28561042c83f219324d3c607256c03272ae
 7 a4fb960c0bc06e1eabb804e5b397cdc4b45596fa
 8 1b3c89f65e6c9e883012052823443f048b4332db
 9 1637409809a679dc698207310c8c7fc07290d9e5

 Table details for each count the truncated values (both in
 hexadecimal and decimal) and then the HOTP value.

 Truncated
 Count Hexadecimal Decimal HOTP
 0 4c93cf18 1284755224 755224
 1 41397eea 1094287082 287082

 2 82fef30 137359152 359152
 3 66ef7655 1726969429 969429
 4 61c5938a 1640338314 338314
 5 33c083d4 868254676 254676
 6 7256c032 1918287922 287922
 7 4e5b397 82162583 162583
 8 2823443f 673399871 399871
 9 2679dc69 645520489 520489

Appendix E - Extensions

 We introduce in this section several enhancements to the HOTP
 algorithm. These are not recommended extensions or part of the
 standard algorithm, but merely variations that could be used for
 customized implementations.

 E.1 Number of Digits

 A simple enhancement in terms of security would be to extract more
 digits from the HMAC-SHA1 value.

 For instance, calculating the HOTP value modulo 10^8 to build an
 8-digit HOTP value would reduce the probability of success of the
 adversary from sv/10^6 to sv/10^8.

 This could give the opportunity to improve usability, e.g. by
 increasing T and/or s, while still achieving a better security
 overall. For instance, s = 10 and 10v/10^8 = v/10^7 < v/10^6 which
 is the theoretical optimum for 6-digit code when s = 1.

 E.2 Alpha-numeric Values

 Another option is to use A-Z and 0-9 values; or rather a subset of
 32 symbols taken from the alphanumerical alphabet in order to avoid
 any confusion between characters: 0, O and Q as well as l, 1 and I
 are very similar, and can look the same on a small display.

 The immediate consequence is that the security is now in the order
 of sv/32^6 for a 6-digit HOTP value and sv/32^8 for an 8-digit HOTP
 value.

 32^6 > 10^9 so the security of a 6-alphanumeric HOTP code is
 slightly better than a 9-digit HOTP value, which is the maximum
 length of an HOTP code supported by the proposed algorithm.

 32^8 > 10^12 so the security of an 8-alphanumeric HOTP code is
 significantly better than a 9-digit HOTP value.

 Depending on the application and token/interface used for
 displaying and entering the HOTP value, the choice of alphanumeric
 values could be a simple and efficient way to improve security at a
 reduced cost and impact on users.

 E.3 Sequence of HOTP values

 As we suggested for the resynchronization to enter a short sequence
 (say 2 or 3) of HOTP values, we could generalize the concept to the
 protocol, and add a parameter L that would define the length of the
 HOTP sequence to enter.

 Per default, the value L SHOULD be set to 1, but if security needs
 to be increased, users might be asked (possibly for a short period
 of time, or a specific operation) to enter L HOTP values.

 This is another way, without increasing the HOTP length or using
 alphanumeric values to tighten security.

 Note: The system MAY also be programmed to request synchronization
 on a regular basis (e.g. every night, or twice a week, etc.) and to
 achieve this purpose, ask for a sequence of L HOTP values.

 E.4 A Counter-based Re-Synchronization Method

 In this case, we assume that the client can access and send not
 only the HOTP value but also other information, more specifically
 the counter value.

 A more efficient and secure method for resynchronization is
 possible in this case. The client application will not send the
 HOTP-client value only, but the HOTP-client and the related
 C-client counter value, the HOTP value acting as a message
 authentication code of the counter.

 Resynchronization Counter-based Protocol (RCP)
 --

 The server accepts if the following are all true, where C-server is
 its own current counter value:

 1) C-client >= C-server
 2) C-client - C-server <= s
 3) Check that HOTP-client is valid HOTP(K,C-Client)
 4) If true, the server sets C to C-client + 1 and client is
 authenticated

 In this case, there is no need for managing a look-ahead window
 anymore. The probability of success of the adversary is only v/10^6
 or roughly v in one million. A side benefit is obviously to be able
 to increase s "infinitely" and therefore improve the system
 usability without impacting the security.

 This resynchronization protocol SHOULD be use whenever the related
 impact on the client and server applications is deemed acceptable.

 E.5 Data Field

 Another interesting option is the introduction of a Data field,
 that would be used for generating the One-Time password values:
 HOTP (K, C, [Data]) where Data is an optional field that can be the
 concatenation of various pieces of identity-related information -
 e.g. Data = Address | PIN.

 We could also use a Timer, either as the only moving factor or in
 combination with the Counter - in this case, e.g. Data = Timer,
 where Timer could be the UNIX-time (GMT seconds since 1/1/1970)
 divided by some factor (8, 16, 32, etc.) in order to give a
 specific time step. The time window for the One-Time Password is

 then equal to the time step multiplied by the resynchronization
 parameter as defined before - e.g. if we take 64 seconds as the
 time step and 7 for the resynchronization parameter, we obtain an
 acceptance window of +/- 3 minutes.

 Using a Data field opens for more flexibility in the algorithm
 implementation, provided that the Data field is clearly specified.

