
LURK D. Migault
Internet-Draft Ericsson
Intended status: Standards Track I. Boureanu
Expires: January 4, 2021 University of Surrey
 July 03, 2020

LURK Extension version 1 for (D)TLS 1.2 Authentication
draft-mglt-lurk-tls12-03

Abstract

 This document describes the LURK Extension 'tls12' which enables
 interactions between a LURK Client and a LURK Server in a context of
 authentication with (D)TLS 1.2.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Migault & Boureanu Expires January 4, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft LURK/TLS 1.2 July 2020

Table of Contents

1. Introduction . 3
2. Terminology and Acronyms 4
3. LURK Header . 4
4. rsa_master, rsa_master_with_poh 6
4.1. Request Payload . 6
4.1.1. Perfect Forward Secrecy 8

4.2. Response Payload . 9
4.3. LURK Client Behavior 10
4.4. LURK Server Behavior 10

5. rsa_extended_master, rss_extended_master_with_poh 11
5.1. Request Payload . 11
5.2. Response Payload . 12
5.3. LURK Client Behavior 12
5.4. LURK Server Behavior 12

6. ecdhe" . 13
6.1. Request Payload . 13
6.2. Response Payload . 15
6.3. LURK Client Behavior 15
6.4. LURK Server Behavior 15

7. capabilities . 16
7.1. Request Payload . 16
7.2. Response Payload . 16
7.3. LURK Client Behavior 18
7.4. LURK Server Behavior" 18

8. ping . 18
8.1. Request Payload . 18
8.2. Response Payload . 18
8.3. LURK Client Behavior 18
8.4. LURK Server Behavior 19

9. Security Considerations 19
9.1. RSA . 19
9.2. ECDHE . 20
9.3. Perfect Foward Secrecy 21

10. IANA Considerations . 22
11. Acknowledgments . 23
12. Apendix . 24

 12.1. LURK Exchange for TLS RSA Master Secret with Proof of
 Handshake . 25

12.2. LURK Exchange for TLS RSA Extended Master Secret 26
 12.3. LURK Exchange for TLS RSA Extended Master Secret with
 proof of handshake 28

12.4. LURK Exchange for TLS ECDHE Signature 30
13. References . 31
13.1. Normative References 31
13.2. Informative References 32

 Authors' Addresses . 33

Migault & Boureanu Expires January 4, 2021 [Page 2]

Internet-Draft LURK/TLS 1.2 July 2020

1. Introduction

 This document describes the LURK Extension for TLS 1.2 so the LURK
 Server can implement a Cryptographic Service in a TLS 1.2 [RFC5246]
 and DTLS 1.2 [RFC6347] context.

 More specifically, the LURK Server will be in charge of performing
 the cryptographic operations associated to the private key of the TLS
 Server, while other aspects of the termination of the TLS session is
 handled by other services in the same administrative domain or in a
 different administrative domain. Most Cryptographic Operations are
 related to the TLS authentication and the current document limits the
 Cryptographic Operations to the following authentication methods: RSA
 and ECDHE_RSA defined in [RFC5246], [RFC6347] as well as ECDHE_ECDSA
 defined in [RFC8422].

 A more detailed description of some use cases foreseen in a TLS
 context can be found in [I-D.mglt-lurk-tls-use-cases].

 HTTPS delegation has been the main concern of the Content Delivery
 Networks Interconnection (cdni) Working Group and several mechanisms
 have been designed to delegate the load from an upstream entity to a
 downstream entity. Entities can be of different nature and may
 designated differently according to the context. Typically
 designations includes Content Owner, CDN Provider, Domain Name Owner
 for example. [I-D.fieau-cdni-https-delegation] provides a details
 comparison of the various mechanisms applies to the CDN
 Interconnection, and the remaining of this section positions these
 mechanisms at a very high level view.

 STAR [I-D.ietf-acme-star], [I-D.sheffer-acme-star-request] describes
 a methods where the domain name owner or the content owner
 orchestrates the refreshing process between a CA and the CDN
 (terminating the TLS session). The CDN refreshes regularly and
 automatically its certificates using [I-D.ietf-acme-acme], which
 allows the use of short term certificates.

 Delegated credentials [I-D.rescorla-tls-subcerts] consists having a
 certificate that enables the servers to generates some "delegated
 credentials".

 STAR and "delegated credentials" both require some changes performed
 by the CA - new certificate type for the delegated credentials and
 new interfaces for the delegated and delegating entity for STAR. In
 both case the TLS Client authenticates the delegated entity. While
 STAR does not require changes on the TLS Client, the "delegated
 credential" solution does. In both cases, the delegation is
 controlled by limiting in time (7 days), which is also the limit of

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc8422

Migault & Boureanu Expires January 4, 2021 [Page 3]

Internet-Draft LURK/TLS 1.2 July 2020

 use of a stolen key or a rogue server. Such delegation provides a
 high scalability of the architecture and prevents additional delays
 when a TLS session is established.

 The LURK Architecture [I-D.mglt-lurk-lurk] and the LURK Extension
 'tls12' do not proceed to the delegation of the HTTPS delegation by
 delegating the entire TLS termination. Instead, the TLS termination
 is split into sub services, for example one associated to the
 networking part and one associated to the cryptographic operation.
 While micro services associated to the networking part are delegated,
 the micro service associated to the cryptographic operation may not
 be delegated. As a result, LURK Architecture is focused on the
 protection of the Cryptographic Material and prevents leakage of the
 Cryptographic Material for example by avoiding node exposed to the
 Internet to host the Cryptographic Material. In addition, LURK
 provides means to instantaneously suspend the delegation with a
 suspicious node. On the other hand the LURK Extension 'tls12'
 introduces some latency, and is not as scalable as STAR or delegated
 credential solutions.

 The LURK Extension 'tls12' is seen as a complementary to the STAR and
 "delegated credentials". The LURK Extension 'tls12' is a backend
 solution that does not require any modifications from TLS Client or
 the CA. It is also aimed at protecting the Cryptographic Material.

 LURK may also be deployed within an administrative domain in order to
 to provide a more controlled deployment of TLS Servers.

2. Terminology and Acronyms

 This document re-uses the terminology defined in
 [I-D.mglt-lurk-lurk].

3. LURK Header

 LURK / TLS 1.2 is a LURK Extension that introduces a new designation
 "tls12". This document assumes that Extension is defined with
 designation set to "tls12" and version set to 1. The LURK Extension
 extends the LURKHeader structure defined in [I-D.mglt-lurk-lurk] as
 follows:

Migault & Boureanu Expires January 4, 2021 [Page 4]

Internet-Draft LURK/TLS 1.2 July 2020

 enum {
 tls12 (1), (255)
 } Designation;

 enum {
 capabilities (0), ping (1), rsa_master (2),
 rsa_master_with_poh (3), rsa_extended_master (4),
 rsa_extended_master_with_poh (5), ecdhe (6), (255)
 }TLS12Type;

 enum {
 // generic values reserved or aligned with the
 // LURK Protocol
 request (0), success (1), undefined_error (2),
 invalid_payload_format (3),

 // code points for rsa authentication
 invalid_key_id_type (4), invalid_key_id (5),
 invalid_tls_random (6), invalid_freshness_funct (7),
 invalid_encrypted_premaster (8), invalid_finished (9)

 //code points for ecdhe authentication
 invalid_ec_type (10), invalid_ec_curve (11),
 invalid_poo_prf (12), invalid_poo (13), (255)
 }TLS12Status

 struct {
 Designation designation = "tls12";
 int8 version = 1;
 } Extension;

 struct {
 Extension extension;
 select(Extension){
 case ("tls12", 1):
 TLS12Type;
 } type;
 select(Extension){
 case ("tls12", 1):
 TLS12Status;
 } status;
 uint64 id;
 unint32 length;
 } LURKHeader;

Migault & Boureanu Expires January 4, 2021 [Page 5]

Internet-Draft LURK/TLS 1.2 July 2020

4. rsa_master, rsa_master_with_poh

 An exchange of type "rsa_master" or "rsa_master_with_poh" enables the
 LURK Client to delegate the RSA Key Exchange and authentication as
 defined in [RFC5246]. The LURK Server returns the master secret.

 "rsa_master" provides the necessary parameters and details to
 generate the master secret, as well as to hinder replaying of old
 handshake messages by a corrupt LURK Client. I.e., some attestation
 of message-freshness is acquired by the LURK Server.

 In addition, the"rsa_master_with_poh" provides a proof of handshake
 (PoH). The proof of handshake consists in providing the Finished
 message of the TLS Client to the LURK Server, so that latter can
 perform more checks that in the "rsa_master" mode. Notably, herein,
 the LURK Server also checks that the LURK request is performed in a
 context of a TLS handshake.

 While "rsa_master" and "rsa_master_with_poh" exchange have
 respectively different requests, the response is the same. The
 motivation for having different type is that the parameters provided
 to the LURK Server are provided using different format. "rsa_master"
 provides them explicitly, while "rsa_master_with_poh" provides them
 via handshake messages.

4.1. Request Payload

 A rsa_master request payload has the following structure:

Migault & Boureanu Expires January 4, 2021 [Page 6]

https://datatracker.ietf.org/doc/html/rfc5246

Internet-Draft LURK/TLS 1.2 July 2020

 enum {
 sha256_32 (0), (255)
 }KeyPairIdType;

 struct {
 KeyPairIdType type;
 opaque data; // length defined by the type
 } KeyPairID;

 enum{
 sha256 (0), (255)
 } FreshnessFunct

 enum{
 sha256 (0), sha384(1), sha512(2), (255)
 } PRFHash

 struct {
 KeyPairID key_id;
 FreshnessFunct freshness_funct;
 PRFHash prf_hash;
 Random client_random; // see RFC5246 section 7.4.1.2
 Random server_random;
 EncryptedPreMasterSecret pre_master;
 // see RFC5246 section 7.4.7.1
 // Length depends on the key.
 }
 } TLS12RSAMasterRequestPayload;

 key_id The identifier of the public key. This document defines
 sha256_32 format which takes the 32 first bits of the hash of the
 binary ASN.1 DER representation of the public key using sha256.
 The binary representation of RSA keys is described in [RFC8017].
 The binary representation of ECC keys is the subjectPublicKeyInfo
 structure defined in [RFC5480].

 freshness_funct the one-way hash function (OWHF) used by LURK to
 implement Perfect Forward Secrecy.

 prf_hash the one way hash function used by the Pseudo Random
 Function (PRF) to generate the master secret. PRF and hash
 function are defined in {!RFC5246}} Section 5.

 client_random the random value associated to the TLS Client as
 defined in [RFC5246] Section 7.4.1.2.

 server_random: the random value associated to the TLS Server as
 defined in [RFC5246] Section 7.4.1.2.

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.2
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.7.1
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc5480
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.2
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.2

Migault & Boureanu Expires January 4, 2021 [Page 7]

Internet-Draft LURK/TLS 1.2 July 2020

 EncryptedPreMasterSecret : The encrypted master secret as defined in
[RFC5246] Section 7.4.7.1.

 A rsa_master_with_poh request payload has the following structure:

 struct {
 KeyPairID key_id;
 FreshnessFunct freshness_funct;
 opaque handshake_messages<2...2^16-2>
 // see RFC5246 section 7.4.9
 Finished finished
 } TLS12RSAMasterWithPoHRequestPayload;

 key_id, freshness_funct are defined above

 handshake_messages provides the necessary handshake messages to
 compute the Finished message of the TLS Client as defined in

[RFC5246] section 7.4.9.

 finished the TLS Client Finished message as defined by {{!RFC5246}
section 7.4.9.

4.1.1. Perfect Forward Secrecy

 This document defines a mechanism which uses a function called
 freshness_funct, to prevent an attacker to send a request to the LURK
 Server in such a way that the said attacker can obtain back the
 mastersecret for an old handshake. In other words, the use of this
 function helps prevent a forward-secrecy attack on an old TLS
 session, where the attack would make use that session's handshake-
 data observed by the adversary.

 This design achieves PFS with freshness_funct being a collision-
 resistant hash function (CHRF). By CRHF, we mean a one-way hash
 function (OWHF) which also has collision resistance; the latter means
 that it is computationally infeasible to find any two inputs x1 and
 x2 such that freshness_funct(x1) = freshness_funct(x2). By one-way
 hash function (OWHF) we mean, as standard, a hash function
 freshness_funct that satisfies preimage resistance and 2nd-preimage
 resistance. That is, given a hash value y, it is computationally
 infeasible to find an x such that freshness_funct(x) = y, and
 respectively- given a value x1 and its hash freshness_funct(x1), it
 is computationally infeasible to find another x2 such that
 freshness_funct(x2) = freshness_funct(x1).

 For the concrete use of our freshness_funct funtions, let S be a
 fresh, randomly picked value generated by the LURK Client. The value
 of server_random in the TLS exchange is then equal to

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.7.1
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.9
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.9
https://datatracker.ietf.org/doc/html/rfc5246

Migault & Boureanu Expires January 4, 2021 [Page 8]

Internet-Draft LURK/TLS 1.2 July 2020

 freshness_funct(S), i.e., server_random=freshness_funct(S). Between
 the TLS Client and the LURK Server only server-random is exchanged.
 The LURK Client sends S to the Key Server, in the query. Note that
 the latter SHOULD happen over a secure channel.

 A man-in-the-middle attacker observing the (plaintext) TLS handshake
 between a TLS Client and the LURK Client does not see S, but only
 server_random. The preimage resistance guaranted by the
 freshness_funct makes it such that this man-in-the-middle cannot
 retrieve S out of the observed server-random. As such, this man-in-
 the-middle attacker cannot query the S corresponding to an (old)
 observed handshake to the Key Server. Moreover, the collision
 resistance guaranteed by the freshness_funct makes it such that if
 the aforementioned man-in-the-middle cannot find S' such that
 freshness_funct(S)=freshness_funct(S').

 As discussed in Section 9, PFS may be achieved in other ways (i.e.,
 not using a CRHF and the aforementioned exchanges but other
 cryptographic primitives and other exchanges). These may offer
 better computational efficiency. These may be standardized in future
 versions of the LURK extension "tls12.

 The server_random MUST follow the structure of [RFC5246] section
7.4.1.2, which carries the gmt_unix_time in the first four bytes.

 So, the ServerHello.random of the TLS exchange is derived from the
 server_random of the LURK exchange as defined below:

 gmt_unix_time = server_random[0..3];
 ServerHello.random = freshness_funct(server_random + "tls12 pfs");
 ServerHello.random[0..3] = gmt_unix_time;

 The operation MUST be performed by the LURK Server as well as the TLS
 Server, upon receiving the master secret or the signature of the
 ecdhe_params from the LURK Client.

4.2. Response Payload

 The "rsa_master" response payload contains the master secret and has
 the following structure:

 struct {
 opaque master[0..47];
 } TLS12RSAMasterResponsePayload;

https://datatracker.ietf.org/doc/html/rfc5246

Migault & Boureanu Expires January 4, 2021 [Page 9]

Internet-Draft LURK/TLS 1.2 July 2020

4.3. LURK Client Behavior

 A LURK Client initiates an rsa_master or an rsa_master_with_poh
 exchange in order to retrieve the master secret. The LURK exchange
 happens on the TLS Server side (Edge Server). Upon receipt of the
 master_secret the Edge Server generates the session keys and finish
 the TLS key exchange protocol.

 A LURK Client MAY use the rsa_master_with_poh to provide the LURK
 Server evidences that the LURK exchange is performed in the context
 of a TLS handshake. The Proof of TLS Hanshake (POH) helps the LURK
 Server to audit the context associated to the query.

 The LURK Client MUST ensure that the transmitted values for
 server_random is S such as server_random = freshness_funct(S).

4.4. LURK Server Behavior

 Upon receipt of a rsa_master or a rsa_master_with_poh request, the
 LURK Server proceeds according to the following steps:

 1. The LURK Server checks the RSA key pair is available (key_id).
 If the format of the key pair identifier is not understood, an
 "invalid_key_id_type" error is returned. If the designated key
 pair is not available an "invalid_key_id" error is returned.

 2. The LURK Server checks the freshness_funct. If it does not
 support the FreshnessFunct, an "invalid_freshness_funct" error
 is returned.

 3. The LURK Server collects the client_random, server_random and
 pre_master parameters either provided explicitly (rsa_master) or
 within the handshake (rsa_master_with_poh).

 4. The LURK Server MUST check the format of the server_random and
 more specifically checks the gmt_unix_time associated to the
 random is acceptable. Otherwise it SHOULD return an
 "invalid_tls_random" error. The value of the time window is
 implementation dependent and SHOULD be a configurable
 parameters. The LURK Server MAY also check the client_random.
 This should be considered cautiously as such check may prevent
 TLS Clients to set a TLS session. client_random is generated by
 the TLS Client whose clock might not be synchronized with the
 one of the LURK Server or that might have a TLS implementations
 that does not generate random based on gmt_unix_time.

 5. The LURK Server computes the necessary ServerHello.random from
 the server_random when applicable as described in Section 4.1.1.

Migault & Boureanu Expires January 4, 2021 [Page 10]

Internet-Draft LURK/TLS 1.2 July 2020

 When option is set to "finished" the ServerHello.random in the
 handshake is replaced by its new value.

 6. The LURK Server checks the length of the encrypted premaster
 secret and returns an "invalid_payload_format" error if the
 length differs from the length of binary representation of the
 RSA modulus.

 7. The LURK Server decrypts the encrypted premaster secret as
 described in [RFC5246] section 7.4.7.1. When a PKCS1.5 format
 error is detected, or a mismatch between the TLS versions
 provided as input and the one indicated in the encrypted
 premaster secret, the Key Server returns a randomly generated
 master secret.

 8. The LURK Server generates the master secret as described in
[RFC5246] section 8.1 using the client_random, and the

 server_random provided by the LURK Client.

 9. With a rsa_master_with_poh, the LURK Server checks the Finished
 message is checked as defined in [RFC5246] section 7.4.9. In
 case of mismatch returns an "invalid_finished" error.

 10. The LURK Server returns a master secret in a
 TLS12RSAMasterResponsePayload.

 11. Error are expected to provide the LURK Client an indication of
 the cause that resulted in the error. When an error occurs the
 LURK Server MAY ignore the request, or provide more generic
 error codes such as "undefined_error" or "invalid_format".

5. rsa_extended_master, rss_extended_master_with_poh

 A exchange of type "rsa_extended_master" enables the LURK Client to
 delegate the RSA Key Exchange and authentication. The LURK Server
 returns the extended master secret as defined in [RFC7627].

5.1. Request Payload

 The "rsa_extended_master" request has the following structure:

Migault & Boureanu Expires January 4, 2021 [Page 11]

https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.7.1
https://datatracker.ietf.org/doc/html/rfc5246#section-8.1
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.9
https://datatracker.ietf.org/doc/html/rfc7627

Internet-Draft LURK/TLS 1.2 July 2020

 enum { sha256 (0), (255) } FreshnessFunct

 enum { null(0), sha256_128(1), sha256_256(2),
 (255) }POOPRF

 struct {
 KeyPairID key_id
 FreshnessFunct freshness_funct // see RFC5246 section 6.1
 opaque handshake_messages<2...2^16-2> // see RFC7627 section 4
 }TLS12ExtendedMasterRSARequestPayload;

 The "rsa_extended_master_with_poh" request has the following
 structure:

 struct {
 KeyPairID key_id
 FreshnessFunct freshness_funct // see RFC5246 section 6.1
 opaque handshake_messages<2...2^16-2>
 // see RFC5246 section 7.4.9
 Finished finished
 }
 }TLS12ExtendedMasterRSAWithPoHRequestPayload;

 key_id, freshness_funct, option, handshake, finished are defined in
Section 4.1.

 handshake_messages With a the handshake message includes are those
 necessary to generate a extended master secret as defined in

[RFC7627] section 4.

5.2. Response Payload

 rsa_extended_master response payload has a similar structure as the
 rsa_master response payload Section 4.2.

5.3. LURK Client Behavior

 The LURK Client proceeds as described in {{sec-rsa-master-clt}. The
 main difference is that the necessary element to generate the master
 secret are included in the handshake and or not provided separately.

5.4. LURK Server Behavior

 The LURK Server proceeds as described in Section 4.4 except that the
 generation of the extended master is processed as described in
 [RFC7627].

https://datatracker.ietf.org/doc/html/rfc5246#section-6.1
https://datatracker.ietf.org/doc/html/rfc7627#section-4
https://datatracker.ietf.org/doc/html/rfc5246#section-6.1
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.9
https://datatracker.ietf.org/doc/html/rfc7627#section-4
https://datatracker.ietf.org/doc/html/rfc7627

Migault & Boureanu Expires January 4, 2021 [Page 12]

Internet-Draft LURK/TLS 1.2 July 2020

6. ecdhe"

 A exchange of type "ecdhe" enables the LURK Client to delegate the
 ECDHE_RSA [RFC5246] or the ECDHE_ECDSA [RFC8422] authentication.

6.1. Request Payload

 The "ecdhe" request payload has the following structure:

 enum { null(0), sha256_128(1), sha256_256(2),
 (255) }POOPRF

 struct {
 POOPRF poo_prf;
 select(poo_prf) {
 case ("null"):
 case ("sha256_128")
 ECPoint vG; //RFC8422 section 5.4
 opaque R[16] r;
 case ("sha256_256"):
 ECPoint vG; //RFC8422 section 5.4
 opaque R[32] r;
 }
 } TLS12POOParams;

 struct {
 KeyPairID key_id;
 FreshnessFunct freshness_funct;
 Random client_random; // see RFC5246 section 7.4.1.2
 Random server_random;
 SignatureAndHashAlgorithm sig_and_hash //RFC 5246 section 4.7
 ServerECDHParams ecdhe_params; // RFC8422 section 5.4
 POOParams poo_params;
 } TLS12ECDHERequestPayload;

 key_id, freshness_funct, client_random, server_random is defined in
Section 4.1.

 ecdhe_params contains as defined in [RFC8422] section 5.4, the
 elliptic curve domain parameters associated with the ECDH public
 key (defined by the ECParameters structure) and the ephemeral ECDH
 public key (defined by the ECPoint structure). The public key is
 also noted in this document bG with b is a random secret generated
 by the LURK Client and G the base point of the curve.

 poo_params defines the necessary parameters to provide a proof of
 ownership of the ECDHE private key. This option is intended to

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc8422
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.2
https://datatracker.ietf.org/doc/html/rfc8422#section-5.4
https://datatracker.ietf.org/doc/html/rfc8422#section-5.4

Migault & Boureanu Expires January 4, 2021 [Page 13]

Internet-Draft LURK/TLS 1.2 July 2020

 prevent the LURK Server to sign bytes that do not correspond to a
 ECDHE public key.

 poo_prf pseudo random function used to generate the necessary
 randoms to proof ownership of the private key. This document
 defines sha256_128 and sha256_256 which apply the sha256 hash
 function and respectively return the 128 or 256 first bits of the
 resulting hash.

 vG are the necessary points to generate the proof of ownership.

 r necessary value to create the proof of ownership.

 The proof of ownership (PoO) consists in the LURK Client proving the
 knowledge of the private random b, while not disclosing b. With G
 the base point, bG represents the public value. The PoO is based on
 the non-interactive variant of the three-pass Schnorr identification
 scheme (NIZR) also designated as the Fiat-Shamir transformation
 described in [RFC8235]. More specifically, the LURK Client randomly
 generates v and then derive c and r = v - b*c. The LURK Client
 provides bG, vG, and r to the LURK Servers. The LURK Server first
 checks bG is on the curve. Then it computes c similarly to the LURK
 Client as well S = rG + (bG)c. This latest value S is compared to
 vG. The equality between S and vG proves the ownership of b.

 v is randomly generated by the LURK Client. v MUST remain non-
 predictable with a length equivalent to the expected level of
 security, that is 128 bit length (resp. 256 bit length) for a 128
 (resp 256) bit security level. Given b, we RECOMMEND v to be at
 least half the size of b.

 c is computed by the LURK Client and the LURK Server as described in
 [RFC8235]. UserID is defined by the concatenation of the
 client_random and the server_random. OtherInfo is defined as the
 concatenation of key_id, freshness_funct, sig_and_hash, ecdhe_params,
 "tls12 poo". Each concatenated item is prefixed with a 4-byte
 integer that represents the byte length of the item.

 UserID = client_random || server_random
 OtherInfo = key_id || freshness_funct || sig_and_hash ||
 ecdhe_params || "tls12 poo"
 c = poo_prf(G || vG || bG || UserID || OtherInfo)

 The LURK Client provides bG in ecdhe_params and vG as well as r in
 poo_params.

 With X25519 or X448, b and r MUST be clamped and vG MUST use the
 Curve25519 (resp. Curve448). bG MAY also use the Curve25519 or

https://datatracker.ietf.org/doc/html/rfc8235
https://datatracker.ietf.org/doc/html/rfc8235

Migault & Boureanu Expires January 4, 2021 [Page 14]

Internet-Draft LURK/TLS 1.2 July 2020

 Curve448 representation, or the LURK Server MAY derive bG values from
 the provided xlined value in ecdhe_params.

6.2. Response Payload

 The "ecdhe" response payload has the following structure:

 struct {
 Signature signed_params; // RFC8422 section 5.4
 } TLS12ECDHEResponsePayload;

 signed_params signature applied to the hash of the ecdhe_params as
 well as client_random and server_random as described in

[RFC8422] section 5.4.

6.3. LURK Client Behavior

 The LURK Client builds the base as described in Section 4.1 and in
Section 6.1.

 Upon receiving the response payload, the LURK Client MAY check the
 signature. If the signature does not match an error SHOULD be
 reported.

6.4. LURK Server Behavior

 Upon receiving an ecdhe request, the LURK Server proceeds as follows:

 1. perform steps 1 - 6 as described in Section 4.4

 2. The LURK Server performs some format check of the ecdhe_params
 before signing them. If the ecdhe_params does not follow the
 expected structure. With the notations from [RFC8422], if
 curve_type is not set to "named_curve", the LURK Server SHOULD
 respond with an "invalid_ec_type" error. If the curve or
 namedcurve is not supported the LURK Server SHOULD be able to
 respond with an "invalid_ec_curve" error.

 3. The LURK Server processes the poo_params. If the poo_prf is not
 supported, the LURK Extension returns a "invalid_poo_prf" status.
 If poo_prf is supported and different from "null", the LURK
 Server proceeds to the proof of ownership as described in

Section 6.1. If the proof is not properly verified, the LURK
 Extension returns a "invalid_poo" status.

 4. The LURK Server processes the base structure as described in
Section 4.4

https://datatracker.ietf.org/doc/html/rfc8422#section-5.4
https://datatracker.ietf.org/doc/html/rfc8422#section-5.4
https://datatracker.ietf.org/doc/html/rfc8422

Migault & Boureanu Expires January 4, 2021 [Page 15]

Internet-Draft LURK/TLS 1.2 July 2020

 5. The LURK Server generates the signed_params.

 Error are expected to provide the LURK Client an indication of the
 cause that resulted in the error. When an error occurs the LURK
 Server MAY ignore the request, or provide more generic error codes
 such as "undefined_error" or "invalid_format".

7. capabilities

 A exchange of type "capabilities" enables the LURK Client to be
 informed of the supported operations performed by the LURK Server.
 The supported parameters are provided on a per type basis.

7.1. Request Payload

 A LURK "capabilities" request has no payload.

7.2. Response Payload

 The "capabilities" response payload lists for each supported type,
 the supported certificates, the supported signatures and hash
 associated. The "capabilities" payload has the following structure:

 struct{
 CertificateType certificate_type // RFC8442 section 4.4.2
 select (certificate_type) {
 case RawPublicKey:
 /* From RFC 7250 ASN.1_subjectPublicKeyInfo */
 opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;
 case X509:
 opaque cert_data<1..2^24-1>;
 };
 } TypedCertificate;

 struct {
 KeyPairID key_id_type_list<0..255>;
 TypedCertificate typed_certificate_list<0..255>
 FreshnessFunctList freshness_funct_list<0..255>
 CipherSuites cipher_suite_list<0..255>
 PRFHash prf_hash_list<0..255>
 } TLS12RSACapability;

 struct {
 KeyPairID key_id_type_list<0..255>;
 TypedCertificate typed_certificate_list<0..255>
 FreshnessFunctList freshness_funct_list<0..255>

https://datatracker.ietf.org/doc/html/rfc8442#section-4.4.2
https://datatracker.ietf.org/doc/html/rfc7250

Migault & Boureanu Expires January 4, 2021 [Page 16]

Internet-Draft LURK/TLS 1.2 July 2020

 CipherSuites cipher_suite_list<0..255>
 SignatureAndHashAlgorithm sig_and_hash_list<0..255>
 NameCurve ecdsa_curves_list<0..255>;
 NameCurve ecdhe_curves_list<0..255>
 POOPRF poo_prf_list<0..255>
 } TLS12ECDHECapability;

 struct {
 uint32 length;
 TLS12Type type
 Select(type) {
 case rsa_master : TLS12RSACapability,
 case rsa_master_with_poh : TLS12RSACapability,
 case rsa_extended_master : TLS12RSACapability,
 case rsa_extended_master_with_poh : TLS12RSACapability,
 case ecdhe : TLS12ECDHECapability
 } capability ;
 } TLS12Capability

 struct {
 TLS12Capability capability_list;
 opaque state<32>;
 } TLS12CapabilitiesResponsePayload;

 typed_certificate enables to contain authentication credentials of
 various type, such as X09 certificate or raw public key. While
 different, the structure is similar of CertificateEntry defined in

[RFC8446] section 4.4.2 as well as the Certificate structure
 defined in [RFC7250].

 key_id_type_list the supported key_id_type.

 freshness_funct_list designates the list of freshness_funct (see
Section 4.1).

 certificate_list designates the certificates associated to message
 type. The format is similar but different from the
 CertificateEntry defined in [RFC8446] in section 4.4.2 and

[RFC7250] section 1. The CertificateBis format enables the use of
 X509 as well as Raw Public key, while the Certificate structure
 defined in [RFC5246] section 7.4.2 does not.

 sig_and_hash_list designates supported signature algorithms as well
 as PRF used for the different operations. The format is defined
 in [RFC5246] section 7.4.1.4.1.

 ecdsa_curves_list the supported signatures

https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.2
https://datatracker.ietf.org/doc/html/rfc7250
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc7250#section-1
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.2
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.1.4.1

Migault & Boureanu Expires January 4, 2021 [Page 17]

Internet-Draft LURK/TLS 1.2 July 2020

 ecdhe_curves_list the supported curves for ECHDE parameters.

 poo_prf_list the supported message type poo_prf (see Section 6.1.
 to be used with the proof of ownership.

 type_list the supported message type of the LURK extension.

 state characterizes the configuration associated to 'tls12' on the
 LURK Server..

7.3. LURK Client Behavior

 The LURK Client performs a capability request in order to determine
 the possible operations.

 The LURK Client is expected to keep the state value to be able to
 detect a change in the LURK Server configuration when an error
 occurs.

7.4. LURK Server Behavior"

 Upon receiving a capabilities request, the LURK Extension MUST return
 the capabilities payload associated to a "success" status to the LURK
 Server. These information are then forwarded by the LURK Server to
 the LURK Client.

8. ping

 A exchange of type "ping" enables the LURK Client to check the
 reachability in a context of the defined LURK Extension.

8.1. Request Payload

 A "ping" request has no payload.

8.2. Response Payload

 A "ping" response has no payload.

8.3. LURK Client Behavior

 The LURK Client sends a "ping" request to test the reachability of
 the LURK Server. The reachability is performed for the tls12 LURK
 Extension.

Migault & Boureanu Expires January 4, 2021 [Page 18]

Internet-Draft LURK/TLS 1.2 July 2020

8.4. LURK Server Behavior

 Upon receiving a ping request, the LURK Extension MUST return the
 ping response associated with a "success" status to the LURK Server.
 These information are then forwarded by the LURK Server to the LURK
 Client.

9. Security Considerations

 The security considerations defined in [I-D.mglt-lurk-lurk] applies
 to the LURK Extension "tls12" defined in this document.

 Anti-replay mechanisms rely in part on the security of channel
 between the LURK Client and the LURK Server. As such the channel
 between the LURK Client and the LURK Server MUST be ensuring
 confidentiality and integrity. More specifically, the exchanges
 between the LURK Client and the LURK Server MUST be an encrypted with
 authentication encryption, and the two parties had previously
 mutually authenticated.

 The LURK Extension "tls12" is expected to have response smaller that
 the request or at least not significantly larger, which makes "tls12"
 relatively robust to amplification attacks. This is especially
 matters when LURK is using UDP. The use of an authenticated channel
 reduces also the risk of amplification attacks even when UDP is being
 used.

 The LURK Client and the LURK Server use time in their way to generate
 the server_random. Care MUST be taken so the LURK Client and LURK
 Server remain synchronized.

9.1. RSA

 The rsa_master and rsa_extended_master returns the master_secret
 instead of the premaster. The additional hashing operation necessary
 to generate the master secret is expected to improve the protection
 of the RSA private key against cryptographic analysis based on the
 observation of a set of clear text and corresponding encrypted text.

 The standard TLS1.2 is robust against Bleichenbacher attack as it
 provides no means to detect if the error comes from a TLS version
 mismatch or from the premaster format. This properties remain with
 LURK, and so LURK does not present vulnerabilities toward
 Bleichenbacher attack, and cannot be used as a decryption oracle.

Migault & Boureanu Expires January 4, 2021 [Page 19]

Internet-Draft LURK/TLS 1.2 July 2020

9.2. ECDHE

 A passive attacker observing the ecdhe exchange may collect a
 sufficient amount of clear text and corresponding signature to
 perform a cryptographic analysis or to reuse the signature for other
 purposes. As a result, it remains important to encrypt the ecdhe
 exchange between the LURK Client and the LURK Server. Note that this
 vulnerability is present in TLS 1.2 as a TLS Client can accumulate
 these data as well. The difference with LURK is by listening the
 LURK Server, the accumulation is achieved for all TLS Clients.

 As previously mentioned, the LURK Server may be used as signing
 oracle for the specific string:

 SHA(ClientHello.random + ServerHello.random +
 ServerKeyExchange.params);

 More specifically, the ECDHE_RSA and ECDHE_DSA mechanisms does not
 associate the signature to a TLS1.2 context. As a result, an
 attacker could re-used the signature in another context.

 The attack may operate by collecting a large collection of clear text
 and their corresponding signature. When the attacker want to provide
 a signature, it checks in its database, a match occurs between the
 two contents to be signed. The probability of a collision increases
 with number of available hashes. The attack is related the pre-image
 and collision resistance properties of the hash function.

 The attacker may also given a clear text to be signed, generate a
 collision such that a collision occurs which provides is related to
 the second pre-image and collision resistance property of the hash
 function.

 The surface of attack is limited by:

 o limiting the possibility of aggregating a collection of clear text
 and their corresponding signatures. This could be achieved by
 using multiple LURK Clients using an encrypted channel between the
 LURK Client and the LURK Server.

 o increasing the checks and ensure that signature is performed in a
 TLS 1.2 context. For that purpose it is RECOMMENDED the LURK
 Server checks the consistency of its input parameters. This
 includes the proof of ownership as well as the format of the
 randoms and ecdhe_params for example.

 o limiting the usage of a Cryptographic material to a single usage,
 in our case serving TLS 1.2.

Migault & Boureanu Expires January 4, 2021 [Page 20]

Internet-Draft LURK/TLS 1.2 July 2020

9.3. Perfect Foward Secrecy

 This document uses sha256 as the freshness_funct, in order to achieve
 PFS Section 4.1.1 as described above. By construction of the
 server_random, of the output of freshness_funct we will keep only the
 last 28 bytes. The PFS property is in place as long as this
 truncated version of freshness_funct can be considered a CRHF and
 that the 28 bytes of randomness carried by the server_random are
 sufficient. Otherwise, the mechanism described in this document will
 not be considered as safe.

 Details on the truncation will be added. Alternatively, we could use
 a hash function like SHA3 (or, more explicitly SHAKE) which considers
 variable output length as part of its design. The SHAKE functions
 allow arbitrary output lengths and the PFS-input S can be of
 arbitrary length too. However, for SHAKE128-d, if the truncated
 output is of length d as low as 224 bits (28 bytes), then one only
 gets 224/2=112 bits security w.r.t. collision-resistance, > 112 bits
 w.r.t. preimage resistance and 112 bits security w.r.t. second
 preimage resistance.

 One reason why we have the hash-based solution to is to reduce
 communication costs between the LURK Client and the LURK Server,
 whilst still getting more than some security w.r.t. a MiM corrupting
 a LURK Client and then attempting a PFS attack.

 But, if we disregard the overhaed on communication costs, we can
 consider other mechanisms not based on CRHF for attaining PFS
 security. See I and II below.

 I. For example, as freshness_funct, one can use an instance of a
 pseudo random function (PRF), keyed on a key K that the LURK Server
 already shares with the LURK Client. I.e.,
 server_random=freshness_funct(S;K). In this case, the mechanisms to
 achieve PFS are as follows: 1. The LURK Client and the LURK Server
 run a key-establishment protocol before every LURK session to
 establish such a new key K for every LURK session. Alternatively,
 the export this key of the key-establishment run to secure the
 channel. The time-to-live of K is one session only. 2. The LURK
 Server generates the value S on its side and send the server_random
 to the LURK Client. 3. The LURK Client uses this server_random with
 the TLS Client 4. The LURK Server checks the correctness of the use
 of the said server_random when the query for the master_secret is
 made, with the messages forwarded therein;

 II. In fact, since the channel between the LURK Client and the LURK
 Server MUST be encrypted by default, all for 2 steps in point I above
 can be combined into 1 step (without the need of a specially executed

Migault & Boureanu Expires January 4, 2021 [Page 21]

Internet-Draft LURK/TLS 1.2 July 2020

 key-establishment): a. the LURK Server sends the server_random to
 the LURK Client. b. the LURK Client uses this server_random with
 the TLS Client c. the LURK Server checks the correctness of the use
 of the said server_random when the query for the master_secret is
 made, with the messages forwarded therein;

 Yet, option I and option II are more expensive on the communication
 than the version achieving PFS with a hash function. I.e., in I and
 II, the LURK Server needs to be involved on the first part of the TLS
 handshake to produce the S or server_random for the LURK Client.
 However, note that the LURK Client no longer queries S, hence the
 risk of a man-in-the-middle querying an old S is eliminated by
 design.

 Option II above is akin to what "Content delivery over TLS: a
 cryptographic analysis of keyless SSL," by K. Bhargavan, I.
 Boureanu, P. A. Fouque, C. Onete and B. Richard at 2017 IEEE
 European Symposium on Security and Privacy (EuroS&P), Paris, 2017,
 pp. 1-16, suggested in order to amend (forward-secrecy) attacks on
 Keyless SSL.

10. IANA Considerations

 The requested information is defined in [I-D.mglt-lurk-lurk].

 LURK Extension Designation: tls12 LURK Extension Reference: [RFD-TBD]
 LURK Extension Description: RSA, ECDHE_RSA and ECDHE_ECDSA for (D)TLS
 1.2.

Migault & Boureanu Expires January 4, 2021 [Page 22]

Internet-Draft LURK/TLS 1.2 July 2020

 LURK tls12 Extension Status

 Value Description Reference

 0 - 1 Reserved [RFC-TBD-LURK]
 2 undefined_error [RFC-TBD]
 3 invalid_payload_format [RFC-TBD]
 4 invalid_key_id_type [RFC-TBD]
 5 invalid_key_id [RFC-TBD]
 6 invalid_tls_random [RFC-TBD]
 7 invalid_freshness_funct [RFC-TBD]
 8 invalid_encrypted_premaster [RFC-TBD]
 9 invalid_finished [RFC-TBD]
 10 invalid_ec_type [RFC-TBD]
 11 invalid_ec_curve [RFC-TBD]
 12 invalid_poo_prf [RFC-TBD]
 13 invalid_poo [RFC-TBD]
 14 invalid_cipher_or_prf_hash [RFC-TBD]
 15 - 255 UNASSIGNED

 LURK tls12 Extension Type

 Value Description Reference
 --
 0 capabilities [RFC-TBD]
 1 ping [RFC-TBD]
 2 rsa_master [RFC-TBD]
 2 rsa_master_with_poh [RFC-TBD]
 3 rsa_extended_master [RFC-TBD]
 3 rsa_extended_master_with_poh [RFC-TBD]
 4 ecdhe [RFC-TBD]
 16 - 255 UNASSIGNED

11. Acknowledgments

 We would like to thank for their very useful feed backs: Yaron
 Sheffer, Yoav Nir, Stephen Farrell, Eric Burger, Thomas Fossati, Eric
 Rescorla, Mat Naslung, Rich Salz, Ilari Liusvaara, Scott Fluhrer.
 Many ideas in this document are from [I-D.erb-lurk-rsalg].

 We would also like to thank those that have supported LURK or raised
 interesting discussions. This includes among others Robert Skog,
 Hans Spaak, Salvatore Loreto, John Mattsson, Alexei Tumarkin, Richard
 Brunner, Stephane Dault, Dan Kahn Gillmor, Joe Hildebrand, Kelsey
 Cairns.

Migault & Boureanu Expires January 4, 2021 [Page 23]

Internet-Draft LURK/TLS 1.2 July 2020

12. Apendix

 ## LURK Exchange for TLS RSA Master Secret

 TLS Client Edge Server Key Server

 ClientHello
 server_version
 client_random
 cipher_suite
 TLS_RSA_*, ...
 -------->
 S = server_random
 server_random = freshness_funct(S)

 ServerHello
 tls_version
 server_random
 Cipher_suite=TLS_RSA
 Certificate
 RSA Public Key
 ServerHelloDone
 <--------

 ClientKeyExchange
 EncryptedPremasterSecret
 [ChangeCipherSpec]
 Finished
 -------->

 TLS12 Request Header
 TLS12MasterRSARequestPayload
 key_id
 freshness_funct
 prf_hash
 client_random
 S
 EncryptedPremasterSecret
 -------->

 server_random = freshness_funct(S)

 master_secret = PRF(\
 pre_master_secret + \
 "master secret" +\
 client_random +\
 server_random)[0..47];

Migault & Boureanu Expires January 4, 2021 [Page 24]

Internet-Draft LURK/TLS 1.2 July 2020

 TLS12 Response Header
 TLS12MasterResponsePayload
 master
 <--------

 [ChangeCipherSpec]
 Finished
 <--------
 Application Data <-------> Application Data

12.1. LURK Exchange for TLS RSA Master Secret with Proof of Handshake

 TLS Client Edge Server Key Server

 ClientHello
 server_version
 client_random
 cipher_suite
 TLS_RSA_*, ...
 -------->
 S = server_random
 server_random = freshness_funct(S)

 ServerHello
 tls_version
 server_random
 Cipher_suite=TLS_RSA
 Certificate
 RSA Public Key
 ServerHelloDone
 <--------

 ClientKeyExchange
 EncryptedPremasterSecret
 [ChangeCipherSpec]
 Finished
 -------->

 TLS12 Request Header
 TLS12MasterRSAWithPoHRequestPayload
 key_id
 freshness_funct
 handshake_messages
 finished
 -------->

 server_random = freshness_funct(S)

Migault & Boureanu Expires January 4, 2021 [Page 25]

Internet-Draft LURK/TLS 1.2 July 2020

 master_secret = PRF(\
 pre_master_secret + \
 "master secret" +\
 client_random +\
 server_random)[0..47];

 TLS12 Response Header
 TLS12MasterResponsePayload
 master
 <--------

 [ChangeCipherSpec]
 Finished
 <--------
 Application Data <-------> Application Data

12.2. LURK Exchange for TLS RSA Extended Master Secret

Migault & Boureanu Expires January 4, 2021 [Page 26]

Internet-Draft LURK/TLS 1.2 July 2020

 TLS Client Edge Server Key Server

 ClientHello
 tls_version
 cipher_suite
 TLS_RSA_*, ...
 Extension 0x0017
 -------->

 ServerHello
 edge_server_version
 cipher_suite=TLS_RSA
 Extension 0x0017
 Certificate
 RSA Public Key
 ServerHelloDone
 <--------
 ClientKeyExchange
 EncryptedPremasterSecret
 [ChangeCipherSpec]
 Finished
 -------->

 TLS12 Request Header
 TLS12ExtendedMasterRSARequestPayload
 key_id
 freshness_funct
 handshake_messages
 EncryptedPreMasterSecret
 -------->

 1. Computing Master Secret
 master_secret = master_prf(
 pre_master_secret +\
 "extended master secret" +\
 session_hash)[0..47]

 TLS12 Response Header
 TLS12MasterPayload
 master
 <--------

 [ChangeCipherSpec]
 Finished
 <--------
 Application Data <-------> Application Data

Migault & Boureanu Expires January 4, 2021 [Page 27]

Internet-Draft LURK/TLS 1.2 July 2020

12.3. LURK Exchange for TLS RSA Extended Master Secret with proof of
 handshake

Migault & Boureanu Expires January 4, 2021 [Page 28]

Internet-Draft LURK/TLS 1.2 July 2020

 TLS Client Edge Server Key Server

 ClientHello
 tls_version
 cipher_suite
 TLS_RSA_*, ...
 Extension 0x0017
 -------->

 ServerHello
 edge_server_version
 cipher_suite=TLS_RSA
 Extension 0x0017
 Certificate
 RSA Public Key
 ServerHelloDone
 <--------
 ClientKeyExchange
 EncryptedPremasterSecret
 [ChangeCipherSpec]
 Finished
 -------->

 TLS12 Request Header
 TLS12ExtendedMasterWithPoHRequestPayload
 key_id
 freshness_funct
 handshake_messages
 finished
 -------->

 1. Computing Master Secret
 master_secret = master_prf(
 pre_master_secret +\
 "extended master secret" +\
 session_hash)[0..47]

 TLS12 Response Header
 TLS12MasterPayload
 master
 <--------

 [ChangeCipherSpec]
 Finished
 <--------
 Application Data <-------> Application Data

Migault & Boureanu Expires January 4, 2021 [Page 29]

Internet-Draft LURK/TLS 1.2 July 2020

12.4. LURK Exchange for TLS ECDHE Signature

 TLS Client Edge Server Key Server

 ClientHello
 tls_version
 client_random
 cipher_suite
 TLS_ECDHE_ECDSA_*, TLS_ECDHE_RSA_*, ...
 Extension Supported EC, Supported Point Format
 -------->
 S = server_random
 server_random = freshness_funct(S)

 TLS12 Request Header
 TLS12ECDHEInputPayload
 key_id
 client_random
 S
 ecdhe_params
 -------->
 server_random = freshness_funct(S)

 signature = ECDSA(client_random +\
 server_random + ecdhe_params)

 TLS12 Response Header
 TLS12DigitallySignedPayloads
 signature
 <--------

 ServerHello
 tls_version
 server_random
 Cipher_suite=TLS_ECDHE_ECDSA
 Extension Supported EC,
 Supported Point Format
 Certificate
 ECDSA Public Key
 ServerKeyExchange
 ecdhe_params
 signature
 ServerHelloDone
 <--------

 ClientKeyExchange
 [ChangeCipherSpec]

Migault & Boureanu Expires January 4, 2021 [Page 30]

Internet-Draft LURK/TLS 1.2 July 2020

 Finished
 -------->
 [ChangeCipherSpec]
 Finished
 <--------
 Application Data <-------> Application Data

13. References

13.1. Normative References

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, DOI 10.17487/RFC5480, March 2009,
 <https://www.rfc-editor.org/info/rfc5480>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/info/rfc7250>.

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",

RFC 7627, DOI 10.17487/RFC7627, September 2015,
 <https://www.rfc-editor.org/info/rfc7627>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",

RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [RFC8422] Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
 Curve Cryptography (ECC) Cipher Suites for Transport Layer
 Security (TLS) Versions 1.2 and Earlier", RFC 8422,
 DOI 10.17487/RFC8422, August 2018,
 <https://www.rfc-editor.org/info/rfc8422>.

https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5480
https://www.rfc-editor.org/info/rfc5480
https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7250
https://www.rfc-editor.org/info/rfc7250
https://datatracker.ietf.org/doc/html/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://datatracker.ietf.org/doc/html/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://datatracker.ietf.org/doc/html/rfc8422
https://www.rfc-editor.org/info/rfc8422

Migault & Boureanu Expires January 4, 2021 [Page 31]

Internet-Draft LURK/TLS 1.2 July 2020

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

13.2. Informative References

 [I-D.erb-lurk-rsalg]
 Erb, S. and R. Salz, "A PFS-preserving protocol for LURK",

draft-erb-lurk-rsalg-01 (work in progress), May 2016.

 [I-D.fieau-cdni-https-delegation]
 Fieau, F., Emile, S., and S. Mishra, "HTTPS delegation in
 CDNI", draft-fieau-cdni-https-delegation-02 (work in
 progress), July 2017.

 [I-D.ietf-acme-acme]
 Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
 Kasten, "Automatic Certificate Management Environment
 (ACME)", draft-ietf-acme-acme-18 (work in progress),
 December 2018.

 [I-D.ietf-acme-star]
 Sheffer, Y., Lopez, D., Dios, O., Pastor, A., and T.
 Fossati, "Support for Short-Term, Automatically-Renewed
 (STAR) Certificates in Automated Certificate Management
 Environment (ACME)", draft-ietf-acme-star-11 (work in
 progress), October 2019.

 [I-D.mglt-lurk-lurk]
 Migault, D., "LURK Protocol version 1", draft-mglt-lurk-

lurk-00 (work in progress), February 2018.

 [I-D.mglt-lurk-tls-use-cases]
 Migault, D., Ma, K., Salz, R., Mishra, S., and O. Dios,
 "LURK TLS/DTLS Use Cases", draft-mglt-lurk-tls-use-

cases-02 (work in progress), June 2016.

 [I-D.rescorla-tls-subcerts]
 Barnes, R., Iyengar, S., Sullivan, N., and E. Rescorla,
 "Delegated Credentials for TLS", draft-rescorla-tls-

subcerts-02 (work in progress), October 2017.

 [I-D.sheffer-acme-star-request]
 Sheffer, Y., Lopez, D., Dios, O., Pastor, A., and T.
 Fossati, "Generating Certificate Requests for Short-Term,
 Automatically-Renewed (STAR) Certificates", draft-sheffer-

acme-star-request-02 (work in progress), June 2018.

https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://datatracker.ietf.org/doc/html/draft-erb-lurk-rsalg-01
https://datatracker.ietf.org/doc/html/draft-fieau-cdni-https-delegation-02
https://datatracker.ietf.org/doc/html/draft-ietf-acme-acme-18
https://datatracker.ietf.org/doc/html/draft-ietf-acme-star-11
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-lurk-00
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-lurk-00
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-tls-use-cases-02
https://datatracker.ietf.org/doc/html/draft-mglt-lurk-tls-use-cases-02
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-subcerts-02
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-subcerts-02
https://datatracker.ietf.org/doc/html/draft-sheffer-acme-star-request-02
https://datatracker.ietf.org/doc/html/draft-sheffer-acme-star-request-02

Migault & Boureanu Expires January 4, 2021 [Page 32]

Internet-Draft LURK/TLS 1.2 July 2020

 [RFC8235] Hao, F., Ed., "Schnorr Non-interactive Zero-Knowledge
 Proof", RFC 8235, DOI 10.17487/RFC8235, September 2017,
 <https://www.rfc-editor.org/info/rfc8235>.

Authors' Addresses

 Daniel Migault
 Ericsson
 8275 Trans Canada Route
 Saint Laurent, QC 4S 0B6
 Canada

 EMail: daniel.migault@ericsson.com

 Ioana Boureanu
 University of Surrey
 Stag Hill Campus
 Guildford GU2 7XH
 UK

 EMail: i.boureanu@surrey.ac.uk

Migault & Boureanu Expires January 4, 2021 [Page 33]

https://datatracker.ietf.org/doc/html/rfc8235
https://www.rfc-editor.org/info/rfc8235

