Crypto Forum Research Group	D. McGrew
Internet-Draft	M. Curcio
Intended status: Informational	Cisco Systems
Expires: January 5, 2015	July 4, 2014

Hash-Based Signatures
 draft-mcgrew-hash-sigs-02

Abstract

This note describes a digital signature system based on cryptographic hash functions, following the seminal work in this area. It specifies a one-time signature scheme based on the work of Lamport, Diffie, Winternitz, and Merkle (LDWM), and a general signature scheme, Merkle Tree Signatures (MTS). These systems provide asymmetric authentication without using large integer mathematics and can achieve a high security level. They are suitable for compact implementations, are relatively simple to implement, and naturally resist side-channel attacks. Unlike most other signature systems, hash-based signatures would still be secure even if it proves feasible for an attacker to build a quantum computer.

Status of this Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current InternetDrafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 5, 2015.
Copyright Notice
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction 5
1.1. Conventions Used In This Document 5
2. Notation 6
2.1. Data Types 6
2.1.1. Operators 6
2.1.2. Strings of w-bit elements 6
2.2. Functions 7
3. LDWM One-Time Signatures $\underline{9}$
3.1. Parameters $\underline{9}$
3.2. Hashing Functions $\underline{9}$
3.3. Signature Methods 10
3.4. Private Key 10
3.5. Public Key 11
3.6. Checksum 11
3.7. Signature Generation 12
3.8. Signature Verification 13
3.9. Notes 13
3.10. Formats 13
4. Merkle Tree Signatures 17
4.1. Private Key 17
4.2. MTS Public Key 17
4.3. MTS Signature 18
4.3.1. MTS Signature Generation 19
4.4. MTS Signature Verification 19
4.5. MTS Formats $\underline{20}$
5. Rationale $\underline{23}$
6. History $\underline{24}$
7. IANA Considerations $\underline{25}$
8. Security Considerations $\underline{28}$
8.1. Security of LDWM Checksum $\underline{29}$
8.2. Security Conjectures $\underline{29}$
8.3. Post-Quantum Security 30
9. Acknowledgements 31
10. References 32
10.1. Normative References 32
10.2. Informative References 32
Appendix A. LDWM Parameter Options 33
Appendix B. Example Data for Testing 35
B.1. Parameters 35
B.2. Key Generation 35
B.3. Signature Generation 41
B.4. Signature Verification 45
B.5. Intermediate Calculation Values 45
Authors' Addresses 51

1. Introduction

One-time signature systems, and general purpose signature systems built out of one-time signature systems, have been known since 1979 [Merkle79], were well studied in the 1990s, and have benefited from renewed development in the last decade. The characteristics of these signature systems are small private and public keys and fast signature generation and verification, but large signatures and relatively slow key generation. In recent years there has been interest in these systems because of their post-quantum security (see Section 8.3) and their suitability for compact implementations.

This note describes the original Lamport-Diffie-Winternitz-Merkle (LDWM) one-time signature system (following Merkle 1979 but also using a technique from Merkle's later work [C:Merkle87][C:
Merkle89a][C:Merkle89b]) and Merkle tree signature system (following Merkle 1979) with enough specificity to ensure interoperability between implementations.

A signature system provides asymmetric message authentication. The key generation algorithm produces a public/private key pair. A message is signed by a private key, producing a signature, and a message/signature pair can be verified by a public key. A One-Time Signature (OTS) system can be used to sign exactly one message securely. A general signature system can be used to sign multiple messages. The Merkle Tree Signatures (MTS) is a general signature system that uses an OTS system as a component. In principle the MTS can be used with any OTS system, but in this note we describe its use with the LDWM system.

This note is structured as follows. Notation is introduced in Section 2. The LDWM signature system is described in Section 3, and the Merkle tree signature system is described in Section 4. Sufficient detail is provided to ensure interoperability. Appendix B describes test considerations and contains test cases that can be used to validate an implementation. The IANA registry for these signature systems is described in Section 7. Security considerations are presented in Section 8.

1.1. Conventions Used In This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Notation

2.1. Data Types

Bytes and byte strings are the fundamental data types. A single byte is denoted as a pair of hexadecimal digits with a leading "0x". A byte string is an ordered sequence of zero or more bytes and is denoted as an ordered sequence of hexadecimal characters with a leading " $0 x$ ". For example, $0 x e 534 f 0$ is a byte string with a length of three. An array of byte strings is an ordered set, indexed starting at zero, in which all strings have the same length.

2.1.1. Operators

When a and b are real numbers, mathematical operators are defined as follows:
$\wedge: ~ a \wedge b$ denotes the result of a raised to the power of b

* : a * b denotes the product of a multiplied by b
/ : a / b denotes the quotient of a divided by b
$\%: a \% b$ denotes the remainder of the integer division of a by b
$+: a+b$ denotes the sum of a and b
- : a - b denotes the difference of a and b

The standard order of operations is used when evaluating arithmetic expressions.

If A and B are bytes, then A AND B denotes the bitwise logical and operation.

When B is a byte and i is an integer, then $B \gg i$ denotes the logical right-shift operation. Similarly, B << i denotes the logical leftshift operation.

If S and T are byte strings, then $S \| T$ denotes the concatenation of S and T.

The i^th byte string in an array A is denoted as A[i].

2.1.2. Strings of w-bit elements

If S is a byte string, then byte(S, i) denotes its i^th byte, where byte(S, 0) is the leftmost byte. In addition, bytes(S, i, j) denotes
the range of bytes from the i^{\wedge} th to the j^{\wedge} th byte, inclusive. For example, if $S=0 x 02040608$, then byte(S, 0) is 0×02 and bytes($\mathrm{S}, 1$, 2) is 0×0406.

A byte string can be considered to be a string of w-bit unsigned integers; the correspondence is defined by the function coef(S, i, w) as follows:

If S is a string, i is a positive integer, and w is a member of the set $\{1,2,4,8\}$, then $\operatorname{coef}(S, i, w)$ is the i^th, w-bit value, if S is interpreted as a sequence of w-bit values. That is,

$$
\begin{aligned}
\operatorname{coef}(S, i, w)= & \left(2^{\wedge}-1\right) \text { AND } \\
& (\text { byte(S, floor }(i * w / 8)) \gg \\
& (8-(w *(i \%(8 / w))+w)))
\end{aligned}
$$

For example, if S is the string 0×1234, then $\operatorname{coef}(\mathrm{S}, 7,1)$ is 0 and coef(S, 0, 4) is 1.

The return value of coef is an unsigned integer. If i is larger than the number of w-bit values in S, then $\operatorname{coef}(S, i, w)$ is undefined, and an attempt to compute that value should raise an error.

2.2. Functions

If r is a non-negative real number, then we define the following functions:
ceil(r) : returns the smallest integer larger than r
floor(r) : returns the largest integer smaller than r
lg(r) : returns the base-2 logarithm of r
When F is a function that takes r -byte strings as input and returns r-byte strings as output, we denote the repeated applications of F with itself a non-negative, integral number of times i as $\mathrm{F}^{\wedge} i$.

Thus for any m-byte string x ,

$$
\begin{aligned}
F^{\wedge} i(x)= & F\left(F^{\wedge}(i-1)(x)\right) & \text { for } i>0 \\
& x & \text { for } i=0 .
\end{aligned}
$$

For example, $F^{\wedge} 2(x)=F(F(x))$.

3. LDWM One-Time Signatures

This section defines LDWM signatures. The signature is used to validate the authenticity of a message by associating a secret private key with a shared public key. These are one-time signatures; each private key MUST be used only one time to sign any given message.

As part of the signing process, a digest of the original message is computed using the collision-resistant hash function H (see Section 3.2), and the resulting digest is signed.

3.1. Parameters

The signature system uses the parameters m, n, and w; they are all positive integers. The algorithm description also uses the values p and ls. These parameters are summarized as follows:
m : the length in bytes of each element of an LDWM signature
n : the length in bytes of the result of the hash function
w : the Winternitz parameter; it is a member of the set $\{1,2,4,8\}$
p : the number of m-byte string elements that make up the LDWM signature
ls : the number of left-shift bits used in the checksum function C (defined in Section 3.6).

The values of m and n are determined by the functions selected for use as part of the LDWM algorithm. They are chosen to ensure an appropriate level of security. The parameter w can be chosen to set the number of bytes in the signature; it has little effect on security. Note however, that there is a larger computational cost to generate and verify a shorter signature. The values of p and $l s$ are dependent on the choices of the parameters n and w, as described in Appendix A. A table illustrating various combinations of n, w, p, and ls is provided in Table 4.

3.2. Hashing Functions

The LDWM algorithm uses a collision-resistant hash function H and a one way (preimage resistant) function F. H accepts byte strings of any length, and returns an n-byte string. F has m-byte inputs and m-byte outputs.

3.3. Signature Methods

To fully describe a LDWM signature method, the parameters m, n, and w, as well as the functions H and F MUST be specified. This section defines several LDWM signature systems, each of which is identified by a name. Values for p and $l s$ are provided as a convenience.

Table 1
Here SHA512 and SHA256 denotes the NIST standard hash functions [FIPS180]. SHA256-20 denotes the SHA256 hash function with its final output truncated to return the leftmost 20 bytes.

3.4. Private Key

The LDWM private key is an array of size p containing m-byte strings. Let x denote the private key. This private key must be used to sign one and only one message. It must therefore be unique from all other private keys. The following algorithm shows pseudocode for generating x .

Algorithm 0: Generating a Private Key

```
    for ( i = 0; i < p; i = i + 1 ) {
        set x[i] to a uniformly random m-byte string
}
    return x
```

An implementation MAY use a pseudorandom method to compute x[i], as suggested in [Merkle79], page 46. The details of the pseudorandom method do not affect interoperability, but the cryptographic strength MUST match that of the LDWM algorithm.

3.5. Public Key

The LDWM public key is generated from the private key by applying the function $\mathrm{F}^{\wedge}\left(2^{\wedge} \mathrm{w}-1\right)$ to each individual element of x , then hashing all of the resulting values. The following algorithm shows pseudocode for generating the public key, where the array x is the private key.

Algorithm 1: Generating a Public Key From a Private Key

```
e = 2^w - 1
    for ( i = 0; i < p; i = i + 1 ) {
        y[i] = F^e(x[i])
}
return H(y[0] || y[1] || ... || y[p-1])
```


3.6. Checksum

A checksum is used to ensure that any forgery attempt that manipulates the elements of an existing signature will be detected. The security property that it provides is detailed in Section 8.

The checksum value is calculated using a non-negative integer, sum, whose width is sized an integer number of w-bit fields such that it is capable of holding the difference of the total possible number of applications of the function F as defined in the signing algorithm of Section 3.7 and the total actual number. In the worst case (i.e. the actual number of times F is iteratively applied is 0), the sum is (2^w - 1) * ceil($\left.8^{*} n / w\right)$. Thus for the purposes of this document, which describes signature methods based on H = SHA256 ($\mathrm{n}=32$ bytes) and $w=\{1,2,4,8$, let sum be a 16 -bit non-negative integer for all combinations of n and w. The calculation uses the parameter ls defined in Section 3.1 and calculated in Appendix A, which indicates the number of bits used in the left-shift operation. The checksum function C is defined as follows, where S denotes the byte string that is input to that function.

Algorithm 2: Checksum Calculation

```
sum \(=0\)
for ( i = 0; i < u; i = i + 1 ) \{
        sum \(=\) sum \(+\left(2^{\wedge} w-1\right)-\operatorname{coef}(S, i, w)\)
\}
return (sum << ls)
```

Because of the left-shift operation, the rightmost bits of the result of C will often be zeros. Due to the value of p, these bits will not be used during signature generation or verification.

Implementation Note: Based on the previous fact, an implementation MAY choose to optimize the width of sum to (v * w) bits and set ls to 0 . The rationale for this is given that (2^w - 1) * ceil ($8 * n / w$) is the maximum value of sum and the value of ($2^{\wedge} w-1$) is represented by w bits, the result of adding u w-bit numbers, where $u=$ ceil($8 * n / w)$, requires at most (ceil(lg(u)) + w) bits. Dividing by w and taking the next largest integer gives the total required number of w-bit fields and gives (ceil(lg(u)) / w) + 1, or v. Thus sum requires a minimum width of ($v *$ w) bits and no left-shift operation is performed.

3.7. Signature Generation

The LDWM signature is generated by using H to compute the hash of the message, concatenating the checksum of the hash to the hash itself, then considering the resulting value as a sequence of w-bit values, and using using each of the the w-bit values to determine the number of times to apply the function F to the corresponding element of the private key. The outputs of the function F are concatenated together and returned as the signature. The pseudocode for this procedure is shown below.

Algorithm 3: Generating a Signature From a Private Key and a Message

```
V = ( H(message) || C(H(message)) )
for ( i = 0; i < p; i = i + 1 ) {
    a = coef(V, i, w)
    y[i] = F^a(x[i])
}
return (y[0] || y[1] || ... || y[p-1])
```

Note that this algorithm results in a signature whose elements are intermediate values of the elements computed by the public key algorithm in Section 3.5.

The signature should be provided by the signer to the verifier, along
with the message and the public key.

3.8. Signature Verification

In order to verify a message with its signature (an array of m-byte strings, denoted as y), the receiver must "complete" the series of applications of F, using the w-bit values of the message hash and its checksum. This computation should result in a value that matches the provided public key.

Algorithm 4: Verifying a Signature and Message Using a Public Key

```
V = ( H(message) || C(H(message)) )
for ( i = 0; i < p; i = i + l ) {
        a = (2^w - 1) - coef(V, i, w)
        z[i] = F^a(y'[i])
}
if public key is equal to H(z[0] || z[1] || ... || z[p-1])
        return 1 (message signature is valid)
    else
        return 0 (message signature is invalid)
```


3.9. Notes

A future version of this specification may define a method for computing the signature of a very short message in which the hash is not applied to the message during the signature computation. That would allow the signatures to have reduced size.

3.10. Formats

The signature and public key formats are formally defined using XDR [RFC4506] in order to provide an unambiguous, machine readable definition. For clarity, we also include a private key format as well, though consistency is not needed for interoperability and an implementation MAY use any private key format. Though XDR is used, these formats are simple and easy to parse without any special tools. To avoid the need to convert to and from network / host byte order, the enumeration values are all palindromes. The definitions are as follows:

```
/*
    * ots_algorithm_type identifies a particular signature algorithm
    */
enum ots_algorithm_type {
    ots_reserved = 0,
    ldwm_sha256_m20_w1 = 0x01000001,
```

```
    ldwm_sha256_m20_w2 = 0x02000002,
    ldwm_sha256_m20_w4 = 0x03000003,
    ldwm_sha256_m20_w8 = 0x04000004,
    ldwm_sha256_m32_w1 = 0x05000005,
    ldwm_sha256_m32_w2 = 0x06000006,
    ldwm_sha256_m32_w4 = 0x07000007,
    ldwm_sha256_m32_w8 = 0x08000008,
    ldwm_sha512_m64_w1 = 0x09000009,
    ldwm_sha512_m64_w2 = 0x0a00000a,
    ldwm_sha512_m64_w4 = 0x0b00000b,
    ldwm_sha512_m64_w8 = 0x0c00000c
};
/*
    * byte string
    */
typedef opaque bytestring20[20];
typedef opaque bytestring32[32];
typedef opaque bytestring64[64];
union ots_signature switch (ots_algorithm_type type) {
    case ldwm_sha256_m20_w1:
    bytestring20 y_m20_p265[265];
    case ldwm_sha256_m20_w2:
    bytestring20 y_m20_p133[133];
    case ldwm sha256 m20 w4:
    bytestring20 y_m20_p67[67];
    case ldwm_sha256_m20_w8:
    bytestring20 y_m20_p34[34];
    case ldwm_sha256 m32_w1:
    bytestring32 y_m32_p265[265];
    case ldwm_sha256_m32_w2:
    bytestring32 y_m3_p133[133];
    case ldwm_sha256_m32_w4:
        bytestring32 y_m32_y_p67[67];
    case ldwm_sha256_m32_w8:
        bytestring32 y_m32_p34[34];
    case ldwm_sha512_m64_w1:
        bytestring64 y_m64_p265[265];
    case ldwm_sha512_m64_w2:
        bytestring64 y_m64_p133[133];
    case ldwm_sha512 m64_w4:
        bytestring64 y_m64_y_p67[67];
    case ldwm sha512 m64 w8:
        bytestring64 y_m64_p34[34];
    default:
    void; /* error condition */
};
```

```
union ots_public_key switch (ots_algorithm_type type) {
    case ldwm_sha256_m20_w1:
    case ldwm_sha256_m20_w2:
    case ldwm_sha256_m20_w4:
    case ldwm_sha256_m20_w8:
    case ldwm_sha256_m32_w1:
    case ldwm_sha256_m32_w2:
    case ldwm_sha256_m32_w4:
    case ldwm_sha256_m32_w8:
        bytestring32 y32;
    case ldwm_sha512_m64_w1:
    case ldwm_sha512 m64_w2:
    case ldwm_sha512_m64_w4:
    case ldwm_sha512_m64_w8:
            bytestring64 y64;
default:
        void; /* error condition */
    };
union ots_private_key switch (ots_algorithm_type type) {
    case ldwm_sha256_m20_w1:
    case ldwm_sha256_m20_w2:
    case ldwm_sha256_m20_w4:
    case ldwm_sha256_m20_w8:
            bytestring20 x20;
case ldwm_sha256_m32_w1:
case ldwm_sha256_m32_w2:
case ldwm_sha256_m32_w4:
case ldwm_sha256_m32_w8:
    bytestring32 x32;
case ldwm_sha512 m64_w1:
case ldwm_sha512_m64_w2:
case ldwm_sha512_m64_w4:
case ldwm_sha512_m64_w8:
            bytestring64 y64;
default:
    void; /* error condition */
};
```

Though the data formats are formally defined by XDR, we diagram the format as well as a convenience to the reader. An example of the format of an ldwm_signature is illustrated below, for ldwm_sha256_m32_w1. An ots_signature consists of a 32-bit unsigned integer that indicates the ots_algorithm_type, followed by other data, whose format depends only on the ots_algorithm_type. In the case of LDWM, the data is an array of equal-length byte strings. The number of bytes in each byte string, and the number of elements in the array, are determined by the ots_algorithm_type field. In the
case of ldwm_sha256_m32_w1, the array has 265 elements, each of which is a 32 -byte string. The XDR array y_m32_p265 denotes the array y as used in the algorithm descriptions above, using the parameters of $\mathrm{m}=32$ and $\mathrm{p}=265$ for ldwm_sha256_m32_w1.

A verifier MUST check the ots_algorithm_type field, and a verification operation on a signature with an unknown ldwm_algorithm_type MUST return FAIL.

4. Merkle Tree Signatures

Merkle Tree Signatures (MTS) are a method for signing a potentially large but fixed number of messages. An MTS system uses two cryptographic components: a one-time signature method and a collision-resistant hash function. Each MTS public/private key pair is associated with a perfect k-ary tree, each node of which contains an n-byte value. Each leaf of the tree contains the value of the public key of an LDWM public/private key pair. The value contained by the root of the tree is the MTS public key. Each interior node is computed by applying the hash function to the concatenation of the values of its children nodes.

An MTS system has the following parameters:
k : the number of children nodes of an interior node,
h : the height (number of levels - 1) in the tree, and
n : the number of bytes associated with each node.
There are k^h leaves in the tree.

4.1. Private Key

An MTS private key consists of k^h one-time signature private keys and the leaf number of the next LDWM private key that has not yet been used. The leaf number is initialized to zero when the MTS private key is created.

An MTS private key MAY be generated pseudorandomly from a secret value, in which case the secret value MUST be at least n bytes long, be uniformly random, and MUST NOT be used for any other purpose than the generation of the MTS private key. The details of how this process is done do not affect interoperability; that is, the public key verification operation is independent of these details.

4.2. MTS Public Key

An MTS public key is defined as follows, where we denote the public key associated with the i^th LDWM private key as ldwm_public_key(i).

The MTS public key can be computed using the following algorithm or any equivalent method. The algorithm uses a stack of hashes for data and a separate stack of integers to keep track of the level of the Merkle tree.

```
Algorithm 5: Generating an MTS Public Key From an MTS Private Key
    for ( i = 0; i < num_ldwm_keys; i = i + k ) \{
        level = 0;
        for ( \(j=0 ; j<k ; j=j+1\) ) \{
            push ldwm_public_key(i+j) onto the data stack
            push level onto the integer stack
        \}
        while ( height of the integer stack >= k ) \{
            if level of the top \(k\) elements on the integer stack are equal \{
                hash_init()
                siblings = ""
                repeat ( k ) \{
                    siblings = (pop(data stack) || siblings)
                    level = pop(integer stack)
            \}
                hash_update(siblings)
                push hash_final() onto the data stack
                push (level + 1) onto the integer stack
            \}
    \}
\}
    public_key \(=\) pop(data stack)
```

Note that this pseudocode expects, as was defined earlier, the Merkle Tree to be perfect. That is, all h^k leaves of the tree have equal depth. Also, neither stack ever contains more than h*(k-1)+1 elements. For typical parameters, it will hold roughly 2032 -byte values.

4.3. MTS Signature

An MTS signature consists of
an LDWM signature,
a node number that identifies the leaf node associated with the signature, and
an array of values that is associated with the path through the tree from the leaf associated with the LDWM signature to the root.

The array of values contains contains the siblings of the nodes on the path from the leaf to the root but does not contain the nodes on the path itself. The array for a tree with branching number k and height h will have (k-1)*h values. The first (k-1) values are the siblings of the leaf, the next (k-1) values are the siblings of the parent of the leaf, and so on.

4.3.1. MTS Signature Generation

To compute the MTS signature of a message with an MTS private key, the signer first computes the LDWM signature of the message using the leaf number of the next unused LDWM private key. Before releasing the signature, the leaf number in the MTS private key MUST be incremented to prevent the LDWM private key from being used again. The node number in the signature is set to the leaf number of the MTS private key that was used in the signature.

The array of node values MAY be computed in any way. There are many potential time/storage tradeoffs. The fastest alternative is to store all of the nodes of the tree and set the array in the signature by copying them. The least storage intensive alternative is to recompute all of the nodes for each signature. Note that the details of this procedure are not important for interoperability; it is not necessary to know any of these details in order to perform the signature verification operation.

4.4. MTS Signature Verification

An MTS signature is verified by first using the LDWM signature verification algorithm to compute the LDWM public key from the LDWM signature and the message. The value of the leaf associated with the LDWM signature is assigned to the public key. Then the root of the tree is computed from the leaf value and the node array (path[]) as described below. If the root value matches the public key, then the signature is valid; otherwise, the signature fails.

Algorithm 6: Computing the MTS Root Value

```
    \(\mathrm{n}=\) node number
    v = leaf
    step \(=0\)
    for ( i = 0; i < h; i = i + 1 ) \{
        position \(=\mathrm{n} \% \mathrm{k}\)
        hash_init()
        for ( j = 0; j < position; j = j + 1 ) \{
            hash_update(path[step + j])
        \}
        hash_update(v)
        for ( \(\mathrm{j}=\) position; j < (k-1); j = j + 1 ) \{
            hash_update(path[step + j])
        \}
        v = hash_final()
        \(\mathrm{n}=\mathrm{floor}(\mathrm{n} / \mathrm{k})\)
        step \(=\) step + (k-1)
\}
```

Upon completion, v contains the value of the root of the Merkle Tree for comparison.

This algorithm uses the typical init/update/final interface to hash functions; the result of the invocations hash_init(), hash_update(N[1]), hash_update(N[2]), ... , hash_update(N[n]), v = hash_final(), in that order, is identical to that of the invocation of $H(N[1]$ || $N[2]$ || ... || $N[n])$.

This algorithm works because the leaves of the MTS tree are numbered starting at zero. Therefore leaf n is in the position ($\mathrm{n} \% \mathrm{k}$) in the highest level of the tree.

The verifier MAY cache interior node values that have been computed during a successful signature verification for use in subsequent signature verifications. However, any implementation that does so MUST make sure any nodes that are cached during a signature verification process are deleted if that process does not result in a successful match between the root of the tree and the MTS public key.

A full test example that combines the LDWM OTS and MTS algorithms is given in Appendix B.

4.5. MTS Formats

MTS signatures and public keys are defined using XDR syntax as follows:

```
enum mts_algorithm_type {
    mts_reserved = 0x00000000,
    mts_sha256_k2_h20 = 0x01000001,
    mts_sha256_k4_h10 = 0x02000002,
    mts_sha256_k8_h7 = 0x03000003,
    mts_sha256_k16_h5 = 0x04000004,
    mts_sha512_k2_h20 = 0x05000005,
    mts_sha512_k4_h10 = 0x06000006,
    mts_sha512_k8_h7 = 0x07000007,
    mts_sha512_k16_h5 = 0x08000008
};
union mts_path switch (mts_algorithm_type type) {
    case mts_sha256_k2_h20:
        bytestring32 path_n32_t20[20];
    case mts_sha256_k4_h10:
        bytestring32 path_n32_t30[30];
    case mts_sha256_k8_h7:
        bytestring32 path_n32_t49[49];
    case mts_sha256_k16_h5:
        bytestring32 path_n32_t75[75];
    case mts sha512_k2 h20:
        bytestring64 path_n64_t20[20];
    case mts_sha512_k4_h10:
        bytestring64 path_n64_t30[30];
    case mts_sha512_k8_h7:
        bytestring64 path_n64_t49[49];
    case mts_sha512_k16_h5:
        bytestring64 path_n64_t75[75];
    default:
        void; /* error condition */
};
struct mts_signature {
        ots_signature ots_sig;
        unsigned int signature_leaf_number;
        mts path nodes;
};
struct mts_public_key_n32 {
        ots_algorithm_type ots_alg_type;
        opaque value[32]; /* public key */
};
struct mts_public_key_n64 {
        ots_algorithm_type ots_alg_type;
        opaque value[64]; /* public key */
};
```

```
union mts_public_key switch (mts_algorithm_type type) {
    case mts_sha256_k2_h20:
    case mts_sha256_k4_h10:
    case mts_sha256_k8_h7:
    case mts_sha256_k16_h5:
            mts_public_key_n32 z_n32;
    case mts_sha512_k2_h20:
    case mts_sha512_k4_h10:
    case mts_sha512_k8_h7:
    case mts_sha512_k16_h5:
            mts_public_key_n64 z_n64;
        default:
        void; /* error condition */
};
struct mts_private_key_n32 {
    ots_algorithm_type ots_alg_type;
    unsigned int next_ldwm_leaf_number; /* leaf # for next signature */
    opaque value[32]; /* private key */
};
struct mts_private_key_n64 {
    ots_algorithm_type ots_alg_type;
    unsigned int next_ldwm_leaf_number; /* leaf # for next signature */
    opaque value[64]; /* private key */
};
union mts_private_key switch (mts_algorithm_type mts_alg_type) {
    case mts_sha256_k2_h20:
    case mts_sha256_k4_h10:
    case mts_sha256_k8_h7:
    case mts_sha256_k16_h5:
            mts_private_key_n32 body_n32;
    case mts_sha512_k2_h20:
    case mts_sha512_k4_h10:
    case mts_sha512_k8_h7:
    case mts_sha512_k16_h5:
            mts_private_key_n64 body_n64;
    default:
        void; /* error condition */
};
```


5. Rationale

The goal of this note is to describe the LDWM and MTS algorithms following the original references and present the modern security analysis of those algorithms. Other signature methods are out of scope and may be interesting follow-on work.

The signature and public key formats are designed so that they are easy to parse. Each format starts with a 32 -bit enumeration value that indicates all of the details of the signature algorithm and hence defines all of the information that is needed in order to parse the format.

The enumeration values used in this note are palindromes, which have the same byte representation in either host order or network order. This fact allows an implementation to omit the conversion between byte order for those enumerations. Note however that the leaf number field used in the MTS signature and keys must be properly converted to and from network byte order; this is the only field that requires such conversion. There are 2^32 XDR enumeration values, $2^{\wedge} 16$ of which are palindromes, which is more than enough for the foreseeable future. If there is a need for more assignments, non-palindromes can be assigned.

6. History

This is the initial version of this draft.
This section is to be removed by the RFC editor upon publication.

7. IANA Considerations

The Internet Assigned Numbers Authority (IANA) is requested to create two registries: one for OTS signatures, which includes all of the LDWM signatures as defined in Section 3, and one for Merkle Tree Signatures, as defined in Section 4. Additions to these registries require that a specification be documented in an RFC or another permanent and readily available reference in sufficient detail that interoperability between independent implementations is possible. Each entry in the registry contains the following elements:
a short name, such as "MTS_SHA256_K16_H5",
a positive number, and
a reference to a specification that completely defines the signature method test cases that can be used to verify the correctness of an implementation.

Requests to add an entry to the registry MUST include the name and the reference. The number is assigned by IANA. These number assignments SHOULD use the smallest available palindromic number. Submitters SHOULD have their requests reviewed by the IRTF Crypto Forum Research Group (CFRG) at cfrg@ietf.org. Interested applicants that are unfamiliar with IANA processes should visit http://www.iana.org.

The numbers between 0xDDDDDDDD (decimal 3,722,304,989) and 0xFFFFFFFF (decimal 4,294,967,295) inclusive, will not be assigned by IANA, and are reserved for private use; no attempt will be made to prevent multiple sites from using the same value in different (and incompatible) ways [RFC2434].

The LDWM registry is as follows.

Table 2
The MTS registry is as follows.

Table 3

An IANA registration of a signature system does not constitute an endorsement of that system or its security.

8. Security Considerations

The security goal of a signature system is to prevent forgeries. A successful forgery occurs when an attacker who does not know the private key associated with a public key can find a message and signature that are valid with that public key (that is, the Signature Verification algorithm applied to that signature and message and public key will return "valid"). Such an attacker, in the strongest case, may have the ability to forge valid signatures for an arbitrary number of other messages.

The security of the algorithms defined in this note can be roughly described as follows. For a security level of roughly 128 bits, assuming that there are no quantum computers, use the LDWM algorithms with $\mathrm{m}=32$ and MTS with $\mathrm{n}=32$. For a security level of roughly 128 bits, assuming that there are quantum computers, use the LDWM algorithms with $m=64$ and the MTS algorithms with $n=64$. For the smallest possible signatures that provide a currently adequate security level, use the LDWM algorithms with m=20 and MTS algorithms with $\mathrm{n}=32$. We emphasize that this is a rough estimate, and not a security proof.

LDWM signatures rely on the fact that, given an m-byte string y, it is prohibitively expensive to compute a value x such that $\mathrm{F}^{\wedge} i(x)=y$ for any i. Informally, F is said to be a "one-way" function, or a preimage-resistant function. Both LDWM and MTS signatures rely on the fact that H is collision-resistant, that is, it is prohibitively expensive for an attacker to find two byte strings a and b such that $H(a)=H(b)$.

There are several formal security proofs for one time signatures and Merkle tree signatures in the cryptographic literature. Several of these analyze variants of those algorithms, and are not directly applicable to the original algorithms; thus caution is needed when applying these analyses. The MTS scheme has been shown to provide roughly b bits of security when used with a hash function with an output size of $2 *$ b bits [BDM08]. (A cryptographic scheme has b bits of security when an attacker must perform $0\left(2^{\wedge} b\right)$ computations to defeat it.) More precisely, that analysis shows that MTS is existentially unforgeable under an adaptive chosen message attack. However, the analysis assumes that the hash function is chosen uniformly at random from a family of hash functions, and thus is not completely applicable. Similarly, LDWM with $w=1$ has been shown to be existentially unforgeable under an adaptive chosen message attack, when F is a one-way function [BDM08], when F is chosen uniformly at random from a family of one-way functions; when F has c-bit inputs and outputs, it provides roughly b bits of security. LDWM signatures, as specified in this note, have been shown to be secure
based on the collision resistance of F [C:Dods05]; that analysis provides a lower bound on security (and it appears to be pessimistic, especially in the case of the $m=20$ signatures).

It may be desirable to adapt this specification in a way that better aligns with the security proofs. In particular, a random "salt" value could be generated along with the key, used as an additional input to F and H, and then provided as part of the public key. This change appears to make the analysis of [BDM08] applicable, and it would improve the resistance of these signature schemes against key collision attacks, that is, scenarios in which an attacker concurrently attacks many signatures made with many private keys.

8.1. Security of LDWM Checksum

To show the security of LDWM checksum, we consider the signature y of a message with a private key x and let $\mathrm{h}=\mathrm{H}$ (message) and c = C(H(message)) (see Section 3.7). To attempt a forgery, an attacker may try to change the values of h and c. Let h^{\prime} and c^{\prime} denote the values used in the forgery attempt. If for some integer j in the range 0 to (u-1), inclusive,

$$
\begin{aligned}
& a^{\prime}=\operatorname{coef}\left(h^{\prime}, j, w\right), \\
& a=\operatorname{coef}(h, j, w), \text { and } \\
& a^{\prime}>a
\end{aligned}
$$

then the attacker can compute $\mathrm{F}^{\wedge} \mathrm{a}^{\prime}(x[j])$ from $\mathrm{F}^{\wedge} a(x[j])=y[j]$ by iteratively applying function F to the j^{\wedge} th term of the signature an additional (a' - a) times. However, as a result of the increased number of hashing iterations, the checksum value c' will decrease from its original value of c. Thus a valid signature's checksum will have, for some number k in the range u to ($p-1$), inclusive,

$$
\begin{aligned}
& b^{\prime}=\operatorname{coef}\left(c^{\prime}, k, w\right), \\
& b=\operatorname{coef}(c, k, w), \text { and } \\
& b^{\prime}<b
\end{aligned}
$$

Due to the one-way property of F, the attacker cannot easily compute $\mathrm{F}^{\wedge} \mathrm{b}^{\prime}(x[k])$ from $\mathrm{F}^{\wedge} b(x[k])=y[k]$.

8.2. Security Conjectures

LDWM and MTS signatures rely on a minimum of security conjectures.
In particular, their security does not rely on the computational
difficulty of factoring composites with large prime factors (as does RSA) or the difficulty of computing the discrete logarithm in a finite field (as does DSA) or an elliptic curve group (as does ECDSA). All of these signature schemes also rely on the security of the hash function that they use, but with LDWM and MTS, the security of the hash function is sufficient.

8.3. Post-Quantum Security

A post-quantum cryptosystem is a system that is secure against quantum computers that have more than a trivial number of quantum bits. It is open to conjecture whether or not it is feasible to build such a machine.

The LDWM and Merkle signature systems are post-quantum secure if they are used with an appropriate underlying hash function, in which the size of m and n are double what they would be otherwise, in order to protect against quantum square root attacks due to Grover's algorithm. In contrast, the signature systems in wide use (RSA, DSA, and ECDSA) are not post-quantum secure.

9. Acknowledgements

Thanks are due to Chirag Shroff for constructive feedback, and to Andreas Hulsing, Burt Kaliski, Eric Osterweil, Ahmed Kosba, and Russ Housley for valuable detailed review.

10. References

10.1. Normative References

[FIPS180] National Institute of Standards and Technology, "Secure Hash Standard (SHS)", FIPS 180-4, March 2012.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.
[RFC4506] Eisler, M., "XDR: External Data Representation Standard", STD 67, RFC 4506, May 2006.

10.2. Informative References

[BDM08] Buchmann, J., Dahmen, E., and M. Szydlo, "Hash-based Digital Signature Schemes", Technische Universitat Darmstadt Technical Report https:// www.cdc.informatik.tu-darmstadt.de/~dahmen/papers/ hashbasedcrypto.pdf, 2008.
[C:Dods05]
Dods, C., Smart, N., and M. Stam, "Hash Based Digital Signature Schemes", Lecture Notes in Computer Science vol. 3796 Cryptography and Coding, 2005.
[C:Merkle87]
Merkle, R., "A Digital Signature Based on a Conventional Encryption Function", Lecture Notes in Computer Science crypto87vol, 1988.
[C:Merkle89a]
Merkle, R., "A Certified Digital Signature", Lecture Notes in Computer Science crypto89vol, 1990.
[C:Merkle89b]
Merkle, R., "One Way Hash Functions and DES", Lecture Notes in Computer Science crypto89vol, 1990.
[Merkle79]
Merkle, R., "Secrecy, Authentication, and Public Key Systems", Stanford University Information Systems Laboratory Technical Report 1979-1, 1979.

Appendix A. LDWM Parameter Options

A table illustrating various combinations of n and w with the associated values of $u, v, l s, ~ a n d ~ p i s ~ p r o v i d e d ~ i n ~ T a b l e ~ 4 . ~$

The parameters $u, v, l s$, and p are computed as follows:

```
u = ceil(8*n/w)
v = ceil((floor(lg((2^w - 1) * u)) + 1) / w)
ls = (number of bits in sum) - (v * w)
p = u + v
```

Here u and v represent the number of w-bit fields required to contain the hash of the message and the checksum byte strings, respectively. The "number of bits in sum" is defined according to Section 3.6. And as the value of p is the number of w-bit elements of (H (message) || C(H(message))), it is also equivalently the number of byte strings that form the private key and the number of byte strings in the signature.

Table 4

Appendix B. Example Data for Testing

As with all cryptosystems, implementations of LDWM signatures and Merkle signatures need to be tested before they are used. This section contains sample data generated from the signing and verification operations of software that implements the algorithms described in this document.

B.1. Parameters

The example contained in this section demonstrates the calculations of LDWM_SHA256_M20_W4 using a Merkle Tree Signature of degree 4 and height 2. This corresponds to the following parameter values:

Table 5
The non-standard size of the Merkle tree ($h=2$) has been selected specifically for this example to reduce the amount of data presented.

B.2. Key Generation

The LDWM algorithm does not define a required method of key generation. This is left to the implementer. The selected method, however, must satisfy the requirement that the private keys of the one-time signatures are uniformly random, independent, and unpredicable. In addition, all LDWM key pairs must be generated in advance in order to calculate the value of the Merkle public key.

For the test data presented here, a summary of the key generation method is as follows:

1. MTS Private Key - Set mts_private_key to a pseudorandomly generated n-byte value.
2. OTS Private Keys - Use the mts_private_key as a key derivation key input to some key derivation function, thereby producing $n^{\wedge} k$ derived keys. Then use each derived key as an input to the same function again to further derive p elements of n-bytes each. This accomplishes the result of Algorithm 0 of Section 3.4 for each leaf of the Merkle tree.
3. OTS Public Keys - For each OTS private key, calculate the corresponding OTS public key as in Algorithm 1 of Section 3.5.
4. MTS Public Key - Each OTS public key is the value of a leaf on the Merkle tree. Calculate the MTS public key using the pseudocode algorithm of Section 4.2 or some equivalent implementation.

The above steps result in the following data values associated with the first leaf of the Merkle tree, leaf 0.

Table 6

Key Element Index (i)	OTS Private Key 0 Element (x[i])
0	0xbfb757383fb08d324629115a84daf00b
	188d5695303c83c184e1ec7a501c431f
1	0x7ce628fb82003a2829aab708432787d0
	fc735a29d671c7d790068b453dc8c913
2	0x8174929461329d15068a4645a34412bd
	446d4c9e757463a7d5164efd50e05c93
3	0xf283f3480df668de4daa74bb0e4c5531
	5bc00f7d008bb6311e59a5bbca910fd7
4	0xe62708eaf9c13801622563780302a068
	0ba9d39c078daa5ebc3160e1d80a1ea7
5	0x1f002efad2bfb4275e376af7138129e3
	$3 e 88 c f 7512 e c 1 d c d c 7 d f 8 d 5270 b c 0 f d 7$
6	0x8ed5a703e9200658d18bc4c05dd0ca8a
	356448a26f3f4fe4e0418b52bd6750a2
7	0xc74e56d61450c5387e86ddad5a8121c8
	8b1bc463e64f248a1f1d91d950957726

N	N	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\circ}$	\bullet	$\stackrel{\sim}{\infty}$	$\stackrel{\square}{ }$	Ю	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$	$\stackrel{\bullet}{\odot}$	\bullet

[^0]Table 7
Using the value of the OTS private key above, the corresponding public key is given below. Intermediate values of the SHA256-20 function $\mathrm{F}^{\wedge}\left(2^{\wedge} \mathrm{W}-1\right)(x[i])$ are provided in Table 13.

Table 8

Following the creation of all OTS public/private key pairs, the OTS public keys in Table 14 are used to determine the MTS public key below. Intermediate values of the interior nodes of the Merkle tree are provided in Table 15.

\|	MTS Public Key
\|	0x6610803d9a3546fb0a7895f6a4a0cfed
\|	3a07d45e51d096e204b018e677453235

Table 9

B.3. Signature Generation

In order to test signature generation, a text file containing the content "Hello world!\n", where '\n' represents the ASCII line feed character, was created and signed. A raw hex dump of the file contents is shown in the table below.

\| Hexadecimal Byte Values	ASCII Representation ('.' is substituted for non-printing characters)
\| 0x48 0x65 0x6c 0x6c 0x6f 0x20	Hello world!.
\| 0x77 0x6f 0x72 0x6c 0x64 0x21	
\| 0x0a	

Table 10

The SHA256 hash of the text file is provided below.

Table 11

This value was subsequently used in Algorithm 3 of Section 3.7 to create the one-time signature of the message. Algorithm 2 of Section 3.6 was applied to calculate a checksum of $0 x 1 c c$. The resulting signature is shown in the following table.

OTS	Function	OTS Element (y[i] = $\mathrm{F}^{\wedge} \mathrm{a}(\mathrm{x}[\mathrm{i}]) \mathrm{)}$	
Element	Iteration		
Index	Count		
(i)	($\mathrm{a}=$ coef $($		
	H(msg) \|		
	$\mathrm{C}(\mathrm{H}(\mathrm{msg}))^{\text {, }}$		
	i, w))		
0	0	0xbfb757383fb08d324629115a84daf00b188d5695	
1	11	0x4af079e885ddfd3245f29778d265e868a3bfeaa4	
2	10	0xfbad1928bfc57b22bcd949192452293d07d6b9ad	
3	9	0xb98063e184b4cb949a51e1bb76d99d4249c0b448	
4	0	0xe62708eaf9c13801622563780302a0680ba9d39c	
5	4	0x39343cba3ffa6d75074ce89831b3f3436108318c	
6	14	0xfe08aa73607aec5664188a9dacdc34a295588c9a	
7	10	0xd3346382119552d1ceb92a78597a00c956372bf0	
8	14	0xf1dd245ec587c0a7a1b754cc327b27c839a6e46a	
9	8	0xa5f158adc1decaf0c1edc1a3a5d8958d726627b5	
10	7	0x06d2990f62f22f0c943a418473678e3ffdbff482	
11	7	0xf3390b8d6e5229ae9c5d4c3f45e10455d8241a49	
12	3	0x22dd5f9d3c89180caa0f695203d8cf90f3c359be	
13	11	0x67999c4043f95de5f07d82b741347a3eb6ac0c25	
14	7	0xc4ffe472d48adeb37c7360da70711462013b7a4e	
15	0	0x5de81ec17090a82cb722f616362d380830f04841	
16	12	0x2f892c824af65cc749f912a36dfa8ade2e4c3fd1	
17	7	0xb644393e8030924403b594fb5cacd8b2d28862e2	
18	5	0x31b8d2908911dbbf5balf479a854808945d9e948	
19	3	0xa9a02269d24eb8fed6fb86101cbd0d8977219fb1	

20	3	0xe4aae6e6a9fe1b0d5099513f170c111dee95714d
21	3	0xd79c16e7f2d4dd790e28bab0d562298c864e31e9
22	13	0xc29678f0bb4744597e04156f532646c98a0b42e8
23	11	0x57b31d75743ff0f9bcf2db39d9b6224110b8d27b
24	4	0x0a336d93aac081a2d849c612368b8cbb2fa9563a
25	13	0x917be0c94770a7bb12713a4bae801fb3c1c43002
26	14	0x91586feaadcf691b6cb07c16c8a2ed0884666e84
27	2	0xdd4e4b720fb2517c4bc6f91ccb8725118e5770c6
28	15	0x491f6ec665f54c4b3cffaa02ec594d31e6e26c0e
29	3	0x4f5a082c9d9c9714701de0bf426e9f893484618c
30	10	0x11f7017313f0c9549c5d415a8abc25243028514d
31	12	0x6839a994fccb9cb76241d809146906a3d13f89f1
32	4	0x71cd1d9163d7cd563936837c61d97bb1a5337cc0
33	5	0x77c9034ffc0f9219841aa8e1edbfb62017ef9fd1
34	10	0xad9f6034017d35c338ac35778dd6c4c1abe4472a
35	8	0x4a1c396b22e4f5cc2428045b36d13737c4007515
36	10	0x98cb57b779c5fd3f361cd5debc243303ae5baefd
37	13	0x29857298f274d6bf595eadc89e5464ccf9608a6c
38	4	0x95e35a26815a3ae9ad84a24464b174a29364da18
39	13	0x4afeb3b95b5b333759c0acdd96ce3f26314bb22b
40	13	0x325a37ee5e349b22b13b54b24be5145344e7b8f3
41	11	0x4f772c93f56fd6958ce135f02847996c67e1f2ef
42	10	0xd4f6d91c577594060be328b013c9e9b0e8a2e5d8
43	1	0x717e1a81c325cdccacb6e9fd9e92dd3e1bb84ae8

44	11	0x1dd363724ec66c090a1228dfa1cd3d9cc806f346
45	2	0x64b4110476dd0beea78714c5ab71278818792cfa
46	4	0xe22290e740056a144af50f0b10962b5bcc18fc82
47	2	0x34fd87046a183f4732a52bb7805ce207eebdafc5
48	15	0xbd2fdc5e4e8d0ed7c48c1bad9c2f7793fc2c9303
49	0	0xb3f47e2e8e2dcdd890ea00934b9d8234830dbc4a
50	11	0xcd29719c56cdb507030e6132132179e5807e1d3b
51	3	0xf9edb9b301916217de0d746a0542316bebe9e806
52	12	0x7a3801cbfe0cafed863d81210c1ec721eede49e5
53	15	0x5caba3ec960efa210f5f3e1c22c567ca475ef3ec
54	12	0xf911b5d148e1b03fe6983c53411f76ea78772379
55	1	0x06da2baa75c6ef752bf59f3812fa042ff8181209
56	9	0x2b29f5aa2f34af51a78a5fac586004f749c6e6dc
57	9	0x55e033ababac0845cc9142e24f9ef0a641c51cbe
58	3	0xb62d207bb700071fba8a68312ca204ce4d994c33
59	9	0x551d5c00fad905bdb99c4f70ec7590a10d3ff8ca
60	1	0x0d03b1845b5f8838d735142f185f9cf8f8d2db6c
61	13	0x3b5d9e49e7ede41cd9aa5a09f72a0384fd4ff511
62	13	0xa766b0278d14a9b7d32bf0307c0737a8ecf82ab1
63	8	0xca85296f354e6e3d2a96ab497c01e5ccd4530cf1
64	1	0x7bb29db7dd8aaaf1cd11487cea0d13730edb1df3
65	12	0x547ef341b3cf3208753bb1b62d85a4e3fc2cffe0
66	12	0xb890ela99da4b2e0a9dde42f82f92d0946327cee

Table 12

Finally, based on the fact that the message is the first to be signed by the Merkle tree (i.e. using leaf node 0), the values of the leaf and interior nodes that compose the authentication path from leaf to root are determined as described in Section 4.3. These values are marked with an asterisk ('*') in Table 14 and Table 15.

B.4. Signature Verification

The signature verification step was provided the following items:

1. $\quad 0 T S=(y[0]| | y[1]| | \ldots| | y[p-1])$ - from Table 12.
2. Authentication Path = concatenation of (k-1)*h Merkle tree node values - from Table 14 and Table 15.
3. Message Number = leaf number of Merkle tree.
4. Merkle Public Key $=$ root of Merkle tree - from Table 9.

Using Algorithm 4 of Section 3.8 as a start, the potential OTS public key was calculated from the value of the OTS. Since the actual OTS public key was not provided to the verifier, the calculated key was checked for validity using the pseudocode algorithm of Section 4.4 and the provided values of the Authentication Path and Message Number. Since the message was valid, the calculated value of the root matched the Merkle public key. Otherwise, verification would have failed.

B.5. Intermediate Calculation Values

Key Element Index (i)	SHA256-20 Result for $w=4$ ($\mathrm{F}^{\wedge} 15(\mathrm{x}[\mathrm{i}])$)
0	0x6eff4b0c224874ecc4e4f4500da53dbe2a030e45
1	0x58ac2c6c451c7779d67efefdb12e5c3d85475a94
2	0xb1f3e42e29c710d69268eed1bbdb7f5a500b7937
3	0x51d28e573aac2b84d659abb961c32c465e911b55
4	0xa0ed62bccac5888f5000ca6a01e5ffefd442a1c6
5	0x44da9e145666322422c1e2b5e21627e05aeb4367
6	0x04e7ff9213c2655f28364f659c35d3086d7414e1

7	0x414cdb3215408b9722a02577eeb71f9e016e4251
8	0xa3ab06b90a2b20f631175daa9454365a4f408e9e
9	0xe38acfd3c0a03faa82a0f4aeac1a7c04983fad25
10	0xd95a289094ccce8ad9ff1d5f9e38297f9bb306ff
11	0x593d148b22e33c32f18b66340bdaffceb3ad1a55
12	0x16b53fbea11dc7ab70c8336ec3c23881ae5d51bf
13	0xa639ca0cf871188cadd0020832c4f06e6ebd5f98
14	0xe3ab3e0c5ad79d6c8c2a7e9a79856d4380941fe0
15	0x8368c2933dabcde69c373867a9bf2dc78df97bea
16	0xe3609fca11545da156a7779ae565b1e3c87902c0
17	0xab029e62c7011772dc0589d79fad01aacf8d2177
18	0xa8310f1c27c1aa481192de07d4397b8c4716e25f
19	0xdbdbb14dbd9a5f03c1849af24b69b9e3f80faca2
20	0x1a17399d555dec07d3d4f6d54b2b87d2bcaa398b
21	0xf81c66cc522bfb203232e44d0003ed65d2462867
22	0x202a625b8c5f22de6ea081af6da077cf5c63202f
23	0x2e080f3591f5ff3d5de39c2698846cc107a09816
24	0xa1d9c78c22f9810e3b7db2d59ad9f5fdd259f4d4
25	0x658eeb85ebe0f4542c4d32dced2d7226929266b2
26	0x67faela784f919577afc091504d82d31b4ba9fc7
27	0xfc39fb43677fb2d433a6292f19c6e7320279655a
28	0x491f6ec665f54c4b3cffaa02ec594d31e6e26c0e
29	0x17cec813a5781409b11d2e4a85f62301c2fd8873
30	0xc578eb105454d900c053eb55833db607aa5757e0

0xaed094323290a41fd4b546919620e2f6b23916c8

55	0xe1c498c32169c869174ccf2f1e71e7202f45fba7
56	0x5b8519a40d4305813936c7c00a96f5b4ceb603f1
57	0x3b942ae6a6bd328d08804ade771a0775bb3ff8f8
58	0x6f3be60ee1c34372599b8d634be72e168453bf10
59	0xf700c70bac24db0aab1257940661f5b57da6e817
60	0x85ccf60624b13663a290fa808c6bbecaf89523cd
61	0xd049be55ab703c44f42167d5d9e939c830df960f
162	0xd27a178ccc3b364c7e03d2266093a0d1dfdd9d51
$1 \times$	
63	0xd73c53fdddbe196b9ab56fcc5c9a4a57ad868cd1
\|	
64	0xb59a70a7372f0c121fa71727baaf6588eccec400
\|	
65	0x9b5bf379f989f9a499799c12a3202db58b084eed
66	0xccabf40f3c1dacf114b5e5f98a73103b4c1f9b55

Table 13

Table 14

MTS	Node Value	Member of					
Interior	(H(child_0 \|	child_1		...			Authentication
(Level 2)	child_k-1))	Path of					
Node		Message 0					
Number							
0	0xb6a310deb55ed48004133ece2aebb25e						
	d74defb77ebd8d63c79a42b5b4191b0c						
1	0x71a0c8b767ade2c97ebac069383e4dfb	*					
	a1c06d5fd3f69a775711ea6470747664						
2	0x91109fa97662dc88ae63037391ac2650	*					
	f6c664ac2448b54800aldf748953af31						
3	0xd277fb8c89689525f90de567068d6c93	*					
	565df3588b97223276ef8e9495468996						

Table 15

Authors' Addresses

David McGrew
Cisco Systems
13600 Dulles Technology Drive
Herndon, VA 20171
USA
Email: mcgrew@cisco.com

Michael Curcio
Cisco Systems
7025-2 Kit Creek Road
Research Triangle Park, NC 27709-4987
USA
Email: micurcio@cisco.com

[^0]: 0x629f18b6a2a4ea65fff4cf758b57333f e1d34af05b1cd7763696899c9869595f

 0x1741c31fdbb4864712f6b17fadc05d45 926c831c7a755b7d7af57ac316ba6c2a

 0xe59a7b81490c5d1333a9cdd48b9cb364 56821517a3a13cb7a8ed381d4d5f3545

 0x3ba97fe8b2967dd74c8b10f31fc5f527 a23b89c1266202a4d7c281e1f41fa020

 0xa262a9287cc979aaa59225d75df51b82 57b92e780d1ab14c4ac3ecdac58f1280

 0x9dfe0af1a3d9064338d96cb8eae88baa 6a69265538873b4c17265fa9d573bcff

 0xde9c5c6a5c6a274eabe90ed2a8e6148c 720196d237a839aaf5868af8da4d0829

 0x5de81ec17090a82cb722f616362d3808 30f04841191e44f1f81b9880164b14cd

 0xc0d047000604105bad657d9fa2f9ef10 1cfd9490f4668b700d738f2fa9e1d11a

 0xf45297ef310941e1e855f97968129bb1 73379193919f7b0fee9c037ae507c2d2

 0x46ef43a877f023e5e66bbcd4f06b839f 3bfb2b64de25cd67d1946b0711989129

 0x46e2a599861bd9e8722ad1b55b8f0139 305fcf8b6077d545d4488c4bcb652f29

 0xe1ad4d2d296971e4b0b7a57de305779e 82319587b58d3ef4daeb08f630bd5684

 0x7a07fa7aed97cb54ae420a0e6a58a153 38110f7743cab8353371f8ca710a4409

 0x40601f6c4b35362dd4948d5687b5cb6b 5ec8b2ec59c2f06fd50f8919ebeaae92

 0xa061b0ba9f493c4991be5cd3a9d15360 a9eb94f6f7adc28dddf174074f3df3c4

