
Network Working Group N. Mavrogiannopoulos
Internet-Draft Red Hat
Intended status: Informational September 23, 2016
Expires: March 27, 2017

The OpenConnect VPN Protocol Version 1.0
draft-mavrogiannopoulos-openconnect-00

Abstract

 This document specifies version 1.0 of the OpenConnect Virtual
 Private Network (VPN) protocol, a secure VPN protocol that provides
 communications privacy over the Internet. That protocol is believed
 to be compatible with CISCO's AnyConnect VPN protocol. The protocol
 allows the establishment of VPN tunnels in a way that is designed to
 prevent eavesdropping, tampering, or message forgery.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 27, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Mavrogiannopoulos Expires March 27, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft The OpenConnect Version 1.0 September 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Terminology 3
1.2. Goals of This Document 3

2. The OpenConnect Protocol 3
2.1. VPN Session Establishment 3
2.1.1. Server Authentication 3
2.1.2. Client Authentication 4
2.1.3. Exchange of Session Parameters 9
2.1.4. Establishment of Primary TCP Channel (CSTP) 10
2.1.5. Establishment of Secondary UDP Channel (DTLS) 11

2.2. The CSTP Channel Protocol 14
2.3. The DTLS Channel Protocol 15
2.4. The Channel Re-Key Protocol 15
2.5. The Keepalive and Dead Peer Detection Protocols 16

3. Security Considerations 17
4. Acknowledgements . 18
5. Normative References . 18
Appendix A. Name for Application-Layer Protocol Negotiation . . 21
Appendix B. Compression . 21
Appendix C. DTD declarations 21
C.1. config-auth.dtd . 21

 Author's Address . 22

1. Introduction

 The purpose of this document is to specify the OpenConnect VPN
 protocol in a detail in order to allow for multiple interoperable
 implementations. This is the protocol used by the OpenConnect client
 and server [OPENCONNECT-CLIENT][OPENCONNECT-SERVER], and is believed
 to be compatible with CISCO's AnyConnect protocol.

 While there are many competing VPN protocol solutions, none of them
 was ever described in a publicly available document. Even open
 source VPN solutions have their source code as the primary
 description of their protocol. That allowed no easy study of each
 protocol's properties and weaknesses, and that is the secondary goal
 of this document, to describe a deployed TLS based [RFC5246] VPN
 protocol.

https://datatracker.ietf.org/doc/html/rfc5246

Mavrogiannopoulos Expires March 27, 2017 [Page 2]

Internet-Draft The OpenConnect Version 1.0 September 2016

1.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Goals of This Document

 The OpenConnect protocol version 1.0 specification is intended
 primarily for readers who will be implementing the protocol and those
 doing cryptographic analysis of it.

2. The OpenConnect Protocol

 The OpenConnect protocol combines the TLS protocol [RFC5246],
 Datagram TLS protocol [RFC6347] and HTTP protocols [RFC2616] to
 provide an Internet-Layer VPN channel. The channel is designed to
 operate using UDP packets, and fallback on TCP if that's not
 possible.

 In brief the protocol initiates an HTTP over TLS connection on a
 known port, where client authentication is performed. After this
 step, the client initiates an HTTP CONNECT command to establish a VPN
 channel over TCP. A secondary VPN channel over UDP will be
 established using information provided by the server using HTTP
 headers. At that point the raw IP packets flow, over the VPN
 channels.

2.1. VPN Session Establishment

 The client and server establish a TLS connection over a known port,
 typically over 443, the port used for HTTPS. The client SHOULD
 negotiate TLS 1.1 or later, and support the following TLS protocol
 extensions.

 Server Name Indication [RFC6066]: the client SHOULD provide the
 DNS name of the server in the TLS handshake.

 Application-Layer Protocol Negotiation [RFC7301]: the client MAY
 provide this protocol name. The protocol name to be used is
 defined in Appendix A.

2.1.1. Server Authentication

 In the OpenConnect VPN protocol, the server is always authenticated
 using its certificate. Once a client establishes a TCP connection to
 the server's well known port, it initiates the TLS protocol. In the
 first connection to the server, the client SHOULD verify the provided

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc7301

Mavrogiannopoulos Expires March 27, 2017 [Page 3]

Internet-Draft The OpenConnect Version 1.0 September 2016

 by the server certificate, and SHOULD store its public key for
 verification of subsequent sessions. Thus, subsequent sessions
 SHOULD check whether the server's key match the initial.

 The server's identity in the certificate SHOULD be placed in the
 certificate's SubjectAlternativeName field, and unless a special
 profile is assumed, it will be of type DNSName.

2.1.2. Client Authentication

 The OpenConnect VPN protocol allows for the following types of client
 authentication, or combinations of them.

 1. Password: a user can authenticate itself using a password.

 2. Certificate: a user can authenticate itself using a PKIX
 certificate it possesses.

 3. HTTP SPNEGO: a user can authenticate itself using a Kerberos
 ticket, or any other mechanism supported by SPNEGO (i.e.,
 GSSAPI).

 The server is authenticated to the client using a PKIX certificate
 presented during the TLS negotiation.

 It is important to note that during the password and HTTP SPNEGO
 authentication methods, any headers allowed by the HTTP protocol can
 be present. In fact, there are legacy clients which assume that the
 server will keep a state using cookies, and send their username and
 password in different TLS and HTTP connections. This practice
 prevents the server from binding the TLS channel with the VPN session
 [RFC5056], and is discouraged. It is RECOMMENDED for clients to
 complete authentication in the same TLS session, and rely on TLS
 session resumption if reconnections to the server are needed.

 After the TLS session is established the client irrespective of the
 supported authentication methods, should send an HTTP POST request on
 "/" with a config-auth XML structure of type 'init'. An example of
 its contents follow.

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE config-auth SYSTEM "config-auth.dtd">
 <config-auth client="vpn" type="init">
 <version who="vpn">v5.01</version>
 </config-auth>

https://datatracker.ietf.org/doc/html/rfc5056

Mavrogiannopoulos Expires March 27, 2017 [Page 4]

Internet-Draft The OpenConnect Version 1.0 September 2016

 The precise DTD declarations for the contents of XML messages defined
 in this document are listed in Appendix C. Also the HTTP Content-
 Type to be used for these XML structures MUST be 'text/xml'.

2.1.2.1. Authentication using certificates

 During the initial TLS protocol handshake the server may require a
 client certificate to be presented, depending on its configuration.

 Because the client certificate is sent in the clear during the
 handshake it SHOULD NOT contain other identifying information other
 than a username, or a pseudonymus identifier. It is RECOMMENDED to
 place the user identifier in the DN field of the certificate, using
 the UID object identifier (0.9.2342.19200300.100.1.1) [RFC4519].

 After the TLS session is established and the the config-auth XML
 structure of type 'init' is sent, the server should send it reply.
 If the certificate sent by the client was successfully validated, it
 should reply using the HTTP response code 200, and the contents of
 the reply should be a config-auth XML structure of type 'complete',
 as follows.

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE config-auth SYSTEM "config-auth.dtd">
 <config-auth client="vpn" type="complete">
 <version who="sg">0.1(1)</version>
 <auth id="success">
 <title>SSL VPN Service</title>
 </auth>
 </config-auth>

 In that case the client should proceed to the establishment of the
 primary channel as in Section 2.1.4.

2.1.2.2. Authentication using passwords

 After the TLS session is established and the the config-auth XML
 structure of type 'init' is sent, the server will reply using forms
 the client software should prompt the user to fill in. Its reply
 utilizes a config-auth XML structure of type 'auth-request'.

Mavrogiannopoulos Expires March 27, 2017 [Page 5]

https://datatracker.ietf.org/doc/html/rfc4519

Internet-Draft The OpenConnect Version 1.0 September 2016

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE auth SYSTEM "config-auth.dtd">
 <config-auth client="vpn" type="auth-request">
 <auth id="main">
 <message>Please enter your username</message>
 <form action="/auth" method="post">
 <input label="Username:" name="username" type="text" />
 </form>
 </auth>
 </config-auth>

 The client may be asked to provide the information in separate forms
 as above, or may be asked combined as below.

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE auth SYSTEM "config-auth.dtd">
 <config-auth client="vpn" type="auth-request">
 <auth id="main">
 <message>Please enter your username</message>
 <form action="/auth" method="post">
 <input label="Username:" name="username" type="text"/>
 <input label="Password:" name="password" type="password"/>
 </form>
 </auth>
 </config-auth>

 The client software will then fill in the provided form and sent it
 back to the server using an HTTP POST on the location specified by
 the server (in the above examples it was "/auth"). The reply would
 then be of type 'auth-reply' as in the following example.

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE config-auth SYSTEM "config-auth.dtd">
 <config-auth client="vpn" type="auth-reply">
 <version who="vpn">v5.01</version>
 <auth><username>test</username>
 </auth>
 </config-auth>

 As mentioned above, the server may ask repeatedly for information
 until it believes the user is authenticated. For example, the server
 could present a second form asking for the password, after the
 username is provided, or ask for a second password if that is
 necessary. In these cases the server should respond with an HTTP 200
 OK status code, and proceed sending its new request.

 If client authentication fails, the server MUST respond with an HTTP
 401 unauthorized status code. Otherwise, on successful

Mavrogiannopoulos Expires March 27, 2017 [Page 6]

Internet-Draft The OpenConnect Version 1.0 September 2016

 authentication the server should reply with a 200 HTTP code and use
 the 'complete' config-auth XML structure as in Section 2.1.2.1.

 Note, that sending the username and password in different messages
 will reveal the length of them to a passive eavesdropper. For that
 is is RECOMMENDED for clients to use the 'X-Pad' HTTP header, which
 will contain arbitrary printable data to make the message length a
 multiple of 64 bytes.

 An example session is shown in figure Figure 1.

 ,-.
 `-'
 /|\
 | ,------. ,----------.
 / \ |Server| |ServerDTLS|
 Client `--+---' `----+-----'
 | TLS handshake Client Hello | |
 | -----------------------------------> |
 | | |
 | TLS handshake Finished | |
 | <----------------------------------- |
 | | |
 | HTTP POST config-auth init | ,--------------------!.
 | -----------------------------------> |This is an HTTP over|_\
 | | |TLS session. |
 | | `----------------------'
 | config-auth auth-request | |
 | <----------------------------------- |
 | | |
 | HTTP POST config-auth auth-reply | |
 | -----------------------------------> |
 | | |
 | config-auth complete | |
 | <----------------------------------- |
 | | |
 | HTTP CONNECT | |
 | -----------------------------------> |
 | | |
 | | |
 | =================================== |
====================== CSTP VPN session is established =======================
 | =================================== |
 | | |
 | | ,-------------------------!.
 | TLS record packet with CSTP payload| |These packets show |_\
 | -----------------------------------> |that IP traffic can start |
 | | |prior to the DTLS channel |

Mavrogiannopoulos Expires March 27, 2017 [Page 7]

Internet-Draft The OpenConnect Version 1.0 September 2016

 | | |establishment. |
 | | `---------------------------'
 | TLS record packet with CSTP payload| |
 | <----------------------------------- |
 | | |
 | DTLS handshake Client Hello |
 | - >
 | | |
 | DTLS handshake Finished |
 | <- -
 | | |
 | | |
 | =================================== |
====================== DTLS VPN channel is established =======================
 | =================================== |
 | | |
 | DTLS record packet with payload |
 | - >
 | | |
 | DTLS record packet with payload |
 | <- -
 Client ,--+---. ,----+-----.
 ,-. |Server| |ServerDTLS|
 `-' `------' `----------'
 /|\
 |
 / \

 Figure 1

2.1.2.3. HTTP Authentication using SPNEGO

 That type of authentication is performed using the HTTP SPNEGO
 protocol [RFC4559], a method which is available using the Generic
 Security Service API [RFC2743]. The following approach is used to
 advertise the availability of the HTTP SPNEGO protocol by the client.
 A client which supports the HTTP SPNEGO protocol, SHOULD indicate it
 using the following header on in its initial request to the server
 with the config-auth 'init' XML structure.

 X-Support-HTTP-Auth: true

 After that the server would report a "401 Unauthorized" status code
 and authentication would proceed as specified in the HTTP SPNEGO
 protocol. The server may utilize the following header, to indicate
 that alternative authentication methods are available (e.g., with
 plain password), if authentication fails.

https://datatracker.ietf.org/doc/html/rfc4559
https://datatracker.ietf.org/doc/html/rfc2743

Mavrogiannopoulos Expires March 27, 2017 [Page 8]

Internet-Draft The OpenConnect Version 1.0 September 2016

 X-Support-HTTP-Auth: fallback

 If client authentication fails, the server MUST respond with an HTTP
 401 unauthorized status code. In that case, a client which received
 the previous header should retry authenticating to the server without
 sending the "X-Support-HTTP-Auth: true" header.

 Otherwise, on successful authentication the server should reply with
 a 200 HTTP code and use the 'complete' config-auth XML structure as
 in Section 2.1.2.1.

2.1.3. Exchange of Session Parameters

 By the receipt of a success XML structure, the client SHOULD issue an
 HTTP CONNECT request. In addition it may provide the following
 headers.

 X-CSTP-Address-Type: A comma separated list of the requested
 address types.

 IPv4: when the client only supports IPv4 addresses.

 IPv6: when the client only supports IPv6 addresses.

 IPv4,IPv6: when the client supports both types of IP addresses.

 X-CSTP-Base-MTU: The MTU of the link as estimated by the client.

 X-CSTP-Accept-Encoding: A comma separated list of accepted
 compression algorithms for the CSTP channel.

 User-Agent: A string identifying the client software.

 For the options related to compression see Appendix B for more
 information.

 An example CONNECT request is shown below.

 User-Agent: Open AnyConnect VPN Agent v5.01
 X-CSTP-Base-MTU: 1280
 X-CSTP-Address-Type: IPv4,IPv6
 CONNECT /CSCOSSLC/tunnel HTTP/1.1

 After a successful receipt of an HTTP CONNECT request, the server
 should reply and provide the client with configuration parameters.
 The available options follow.

Mavrogiannopoulos Expires March 27, 2017 [Page 9]

Internet-Draft The OpenConnect Version 1.0 September 2016

 X-CSTP-Address: The IPv4 address of the client, if IPv4 has been
 requested.

 X-CSTP-Netmask: An IPv4 netmask to be pushed to the client, if
 IPv4 has been requested. This should contain the mask on the
 P-t-P link and is RECOMMENDED the server address to be the first
 in defined network.

 X-CSTP-Address-IP6: The IPv6 address of the client in CIDR
 notation, if IPv6 has been requested. The prefix length is
 RECOMMENDED to be set to 127-bits according to [RFC6164].

 X-CSTP-DNS: The IP address of a DNS server that can be used for
 that session.

 X-CSTP-Default-Domain: The DNS domains the provided DNS servers
 respond for.

 X-CSTP-Split-Include: The network address of a route which is
 provided by this server.

 X-CSTP-Split-Exclude: The network address of a route that is not
 provided by this server.

 X-CSTP-Base-MTU: The MTU of the link as estimated by this server.

 X-CSTP-DynDNS: Set to "true" if the server is operating with a
 dynamic DNS address.

 X-CSTP-Content-Encoding: if present is it set to one of the values
 presented by the client in 'X-CSTP-Accept-Encoding' header. It
 will be the compression algorithm used in the CSTP channel.

 X-DTLS-Content-Encoding: if present is it set to one of the values
 presented by the client in 'X-DTLS-Accept-Encoding' header. It
 will be the compression algorithm used in the DTLS channel.

 The client is expected to treat the received parameters as his
 networking settings. If no "X-CSTP-Split-Include" headers are
 present, the client is expected to assign its default route through
 the VPN.

2.1.4. Establishment of Primary TCP Channel (CSTP)

 The previous HTTP message is the last HTTP message sent by the
 server. After that message, the established TCP channel is used to
 transport IP packets between the client and the server. The

https://datatracker.ietf.org/doc/html/rfc6164

Mavrogiannopoulos Expires March 27, 2017 [Page 10]

Internet-Draft The OpenConnect Version 1.0 September 2016

 transferred packets encoding is discussed in Section 2.2. This
 channel will be referred as CSTP in the rest of this document.

2.1.5. Establishment of Secondary UDP Channel (DTLS)

 To establish the secondary UDP-based channel, which will be referred
 to as the DTLS channel, the client must advertise support for it
 during the issue of the HTTP CONNECT request (see Section 2.1.3).
 This is done by appending the following headers to the request.

 X-DTLS-Accept-Encoding: A comma separated list of accepted
 compression algorithms for the DTLS channel.

 X-DTLS-CipherSuite: Must contain the keyword PSK-NEGOTIATE.

 The DTLS channel utilizes the PSK key exchange method. The key
 material for this session is a 256-bit value generated with an
 [RFC5705] exporter. The key material exporter uses the label
 "EXPORTER-openconnect-psk" without the quotes, and without any
 context value.

 In its client hello message the client must copy the value received
 in the 'X-DTLS-App-ID' header (after hex decoding it), to a TLS
 application-specific ID field [I-D.mavrogiannopoulos-app-id]. That
 identifier, can be used by the server to associate the client
 initiated DTLS channel with the CSTP channel. The following headers
 are used by the server's response to CONNECT, and are related to the
 DTLS channel establishment.

 X-DTLS-App-ID: A hex encoded value to be used as a DTLS
 application-specific identifier by the client. It serves as an
 identifier for the server to associate the incoming DTLS session
 with the TLS session.

 X-DTLS-Port: The port number to which the client should send UDP
 packets for DTLS.

 X-DTLS-CipherSuite: It must contain the value "PSK-NEGOTIATE"
 without any quotes.

 X-DTLS-Rekey-Time: The time (in seconds) after which the DTLS
 session should rekey, see Section 2.4. Only considered if
 applicable to the negotiated DTLS protocol.

 X-DTLS-Rekey-Method: The method used in DTLS rekey, see
Section 2.4. Only considered if applicable to the negotiated DTLS

 protocol.

https://datatracker.ietf.org/doc/html/rfc5705

Mavrogiannopoulos Expires March 27, 2017 [Page 11]

Internet-Draft The OpenConnect Version 1.0 September 2016

2.1.5.1. Legacy Establishment of Secondary UDP Channel (DTLS)

 Previous versions of this protocol utilized a special DTLS protocol
 negotiation, based on an unpublished description of the DTLS
 protocol. This section attempts to summarize this negotiation, but
 may not be entirely accurate.

 To establish the legacy UDP-based channel, the client must advertise
 support for it during the issue of the HTTP CONNECT request (see

Section 2.1.3). This is done by appending the following headers to
 the request.

 X-DTLS-Accept-Encoding: A comma separated list of accepted
 compression algorithms for the DTLS channel.

 X-DTLS-Master-Secret: A hex encoded pre-master secret to be used
 in the legacy DTLS session negotiation.

 X-DTLS-CipherSuite: A colon-separated list of ciphers (e.g., the
 string PSK-NEGOTIATE:AES256-SHA:AES128-SHA:DES-CBC3-SHA).

 The DTLS channel utilizes session resumption as a method for
 preshared-key authentication. That is the value presented in X-DTLS-
 Master-Secret is set as a master secret to be resumed. The session
 ID value is sent by the server on the response to CONNECT using the
 'X-DTLS-Session-ID' header. That header provides a hex-encoded value
 of the DTLS session ID to be used by the client. The following
 headers are used by the server's response to CONNECT, and are related
 to the DTLS channel establishment.

 X-DTLS-Session-ID: A hex encoded value to be used as a DTLS
 session ID by the client. It also serves as an identifier for the
 server to associate the incoming DTLS session with the TLS
 session.

 X-DTLS-Port: The port number to which the client should send UDP
 packets for DTLS.

 X-DTLS-CipherSuite: The ciphersuite selected by the server. It
 should be one of the options present in the client's X-DTLS-
 CipherSuite header.

 X-DTLS-Rekey-Time: The time (in seconds) after which the DTLS
 session should rekey, see Section 2.4.

 X-DTLS-Rekey-Method: The method used in DTLS rekey, see
Section 2.4.

Mavrogiannopoulos Expires March 27, 2017 [Page 12]

Internet-Draft The OpenConnect Version 1.0 September 2016

 The following table lists the ciphers negotiated via the X-DTLS-
 CipherSuite header, and the corresponding DTLS ciphersuite.

 +--------------------+---------------------------------+------------+
 | OpenConnect cipher | DTLS ciphersuite | DTLS |
 | | | version |
 +--------------------+---------------------------------+------------+
DES-CBC3-SHA	TLS_RSA_WITH_3DES_EDE_CBC_SHA1	DTLS 0.9
		(pre-draft
		version)
AES128-SHA	TLS_RSA_WITH_AES_128_CBC_SHA1	DTLS 0.9
		(pre-draft
		version)
AES256-SHA	TLS_RSA_WITH_AES_256_CBC_SHA1	DTLS 0.9
		(pre-draft
		version)
OC-	TLS_RSA_WITH_AES_128_GCM_SHA256	DTLS 1.2
DTLS1_2-AES128-GCM		
OC-	TLS_RSA_WITH_AES_256_GCM_SHA256	DTLS 1.2
DTLS1_2-AES256-GCM		
 +--------------------+---------------------------------+------------+

 Table 1

 The legacy DTLS protocol negotiation described in this section, is
 similar to DTLS 1.0 except for the following deviations:

 The negotiated protocol version for the handshake and record
 headers is 1.0 instead of 254.255.

 The Hello Verify and Hello verify request messages are included in
 the handshake hashes.

 The handshake header is not included as part of the handshake
 hashes.

 The ChangeCipherSpec message is 3 byte long instead of 1, and
 contains the handshake sequence number (2-bytes long) appended to
 the message id.

Mavrogiannopoulos Expires March 27, 2017 [Page 13]

Internet-Draft The OpenConnect Version 1.0 September 2016

2.2. The CSTP Channel Protocol

 The format of the packets sent over the primary channel consists of
 an 8-bytes header followed by data. The whole packet in encapsulated
 in a TLS record (see [RFC5246]). The bytes of the header indicate
 the type of data that follow, and their contents are explained in
 Table 2.

 +---------------------+---+
 | byte | value |
 +---------------------+---+
0	fixed to 0x53 (S)
1	fixed to 0x54 (T)
2	fixed to 0x46 (F)
3	fixed to 0x01
4-5	The length of the packet that follows this
	header in big endian order
6	The type of the payload that follows (see
	Table 3 for available types)
7	fixed to 0x00
 +---------------------+---+

 Table 2

 The available payload types are listed in Table 3.

Mavrogiannopoulos Expires March 27, 2017 [Page 14]

https://datatracker.ietf.org/doc/html/rfc5246

Internet-Draft The OpenConnect Version 1.0 September 2016

 +---------------------+---+
 | Value | Description |
 +---------------------+---+
0x00	DATA: the TLS record packet contains an
	IPv4 or IPv6 packet
0x03	DPD-REQ: used for dead peer detection. Once
	sent the peer should reply with a DPD-RESP
	packet, that has the same contents as the
	original request.
0x04	DPD-RESP: used as a response to a
	previously received DPD-REQ.
0x05	DISCONNECT: sent by the client (or server)
	to terminate the session. No data is
	associated with this request. The session
	will be invalidated after such request.
0x07	KEEPALIVE: sent by any peer. No data is
	associated with this request.
0x08	COMPRESSED DATA: a Data packet which is
	compressed prior to encryption.
0x09	TERMINATE: sent by the server to indicate
	that the server is shutting down. No data
	is associated with this request.
 +---------------------+---+

 Table 3

2.3. The DTLS Channel Protocol

 The format of the packets sent over the UDP channel consists of an
 1-byte header followed by data. The header byte indicates the type
 of data that follow as in Table 3. The header and the data are
 encapsulated in a DTLS record packet (see [RFC6347]).

2.4. The Channel Re-Key Protocol

 During the exchange of session parameters (Section 2.1.3), the server
 advertizes the methods available for session rekey using the "X-CSTP-
 Rekey-Method" and "X-DTLS-Rekey-Method" HTTP headers. The available
 options for both the server and client are listed below.

 1. none: no rekey; the session will go on until 2^48 DTLS records
 have been exchanged, or 2^64 TLS records.

https://datatracker.ietf.org/doc/html/rfc6347

Mavrogiannopoulos Expires March 27, 2017 [Page 15]

Internet-Draft The OpenConnect Version 1.0 September 2016

 2. ssl: a TLS or DTLS rehandshake will be performed periodically.

 3. new-tunnel: the session will tear down and the client will
 reconnect periodically.

 When the value is other than "none" the rekey period is determinated
 by the "X-CSTP-Rekey-Time" and "X-DTLS-Rekey-Time" headers. These
 headers contain the time in seconds after which a session should
 rekey.

 It should be noted that when the "ssl" rekey option is used, care
 must be taken by both the client and the server to ensure that either
 safe renegotiation is used ([RFC5746]), or that the identity of the
 peer remained the same.

2.5. The Keepalive and Dead Peer Detection Protocols

 In OpenConnect there are two packet types that can be used for keep-
 alive or dead peer detection, as shown in Table 3. These are the
 DPD-REQ and KeepAlive packets.

 The timings of the transmission of these packets are set by the
 server, and they for the DPD are advisory to a client. However, any
 peer receiving these packets MUST response with the appropriate
 packet. For DPD-REQ packets, the response MUST be DPD-RESP, and for
 KeepAlive packets the response must be another KeepAlive packet. The
 main difference between these two types of packets, is that the DPD
 packets similarly to [RFC3706] are sent when there is no traffic or
 when the other party requests them, and allow for arbitrary data to
 be attached, making them suitable for Path MTU detection.

 The server advertizes the suggested periods during the exchange of
 session parameters (Section 2.1.3). The available headers are listed
 below.

 X-CSTP-DPD: applicable to CSTP channel; contains a relative time
 in seconds.

 X-CSTP-Keepalive: applicable to CSTP channel; contains a relative
 time in seconds.

 X-DTLS-DPD: applicable to DTLS channel; contains a relative time
 in seconds.

 X-DTLS-Keepalive: applicable to DTLS channel; contains a relative
 time in seconds.

https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc3706

Mavrogiannopoulos Expires March 27, 2017 [Page 16]

Internet-Draft The OpenConnect Version 1.0 September 2016

3. Security Considerations

 This document provides a description of a protocol to establish a VPN
 over a TLS channel. All security considerations of the referenced
 documents in particular [RFC5246] and [RFC6347] are applicable, in
 addition the following considerations.

 The protocol is designed to be as compatible as possible with a
 legacy VPN protocol and as such it carries cruft, such as partial
 dependence on a non-standard DTLS version, and utilization of an
 awkward method to establish a DTLS session which relies on session
 resumption. Nevertheless, these particularities are not believed to
 cause a degradation of the overall protocol security, and could be
 addressed with a backwards compatible protocol upgrade.

 The protocol provides a VPN channel which carries payload hidden from
 eavesdroppers. However, the payload's length remain visible and in
 certain scenarios that may be sufficient to determine the transferred
 payload. Furthermore, there are scenarios where compressed payload
 lengths may reveal more information than the uncompressed data
 [COMP-ISSUES][COMP-ISSUES2]. For that we RECOMMEND that
 implementations don't enable compression by default, and only allow
 it after notifying the users and administrators about the
 consequences.

 This protocol could sometimes be used because of the fact that it
 ressembles the TLS protocol and thus is not detected by the available
 VPN blockers. While an implementation could intentionally masquerade
 its packets to ressemble a typical HTTPS session, a fully compliant
 implementation will be distinct from an average HTTP session due to
 the DTLS session establishment, and the transferred packet sizes.

 For certificate authentication OpenConnect relies on the TLS
 protocol. However, as mentioned in the text, TLS version 1.2 and
 earlier do not protect the client's (or the server's) certificate
 from eavesdroppers. For that it is RECOMMENDED that certificates to
 be used with this protocol contain the minimum possible identifying
 information.

 This document defines a protocol name for Application-Layer Protocol
 Negotiation. That, if used by a client would indicate to any
 eavesdropping parties that the client wishes to use VPN, thus
 compromising its intention privacy. On the other hand, providing
 that information would help a server that re-uses the same port for
 different protocols under TLS, to forward to the appropriate handler
 of the connection. That is, it would allow hosting a plain HTTPS
 server serving content, and a VPN server using openconnect at the

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347

Mavrogiannopoulos Expires March 27, 2017 [Page 17]

Internet-Draft The OpenConnect Version 1.0 September 2016

 same port. It is left to the client to decide the balance between
 privacy and usability with such servers.

4. Acknowledgements

 None yet.

5. Normative References

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
 <http://www.rfc-editor.org/info/rfc5746>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616,
 DOI 10.17487/RFC2616, June 1999,
 <http://www.rfc-editor.org/info/rfc2616>.

 [RFC4559] Jaganathan, K., Zhu, L., and J. Brezak, "SPNEGO-based
 Kerberos and NTLM HTTP Authentication in Microsoft
 Windows", RFC 4559, DOI 10.17487/RFC4559, June 2006,
 <http://www.rfc-editor.org/info/rfc4559>.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743,
 DOI 10.17487/RFC2743, January 2000,
 <http://www.rfc-editor.org/info/rfc2743>.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
 <http://www.rfc-editor.org/info/rfc5056>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <http://www.rfc-editor.org/info/rfc5705>.

https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5746
http://www.rfc-editor.org/info/rfc5746
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc2616
http://www.rfc-editor.org/info/rfc2616
https://datatracker.ietf.org/doc/html/rfc4559
http://www.rfc-editor.org/info/rfc4559
https://datatracker.ietf.org/doc/html/rfc2743
http://www.rfc-editor.org/info/rfc2743
https://datatracker.ietf.org/doc/html/rfc5056
http://www.rfc-editor.org/info/rfc5056
https://datatracker.ietf.org/doc/html/rfc5705
http://www.rfc-editor.org/info/rfc5705

Mavrogiannopoulos Expires March 27, 2017 [Page 18]

Internet-Draft The OpenConnect Version 1.0 September 2016

 [RFC4519] Sciberras, A., Ed., "Lightweight Directory Access Protocol
 (LDAP): Schema for User Applications", RFC 4519,
 DOI 10.17487/RFC4519, June 2006,
 <http://www.rfc-editor.org/info/rfc4519>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <http://www.rfc-editor.org/info/rfc6066>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <http://www.rfc-editor.org/info/rfc7301>.

 [RFC6164] Kohno, M., Nitzan, B., Bush, R., Matsuzaki, Y., Colitti,
 L., and T. Narten, "Using 127-Bit IPv6 Prefixes on Inter-
 Router Links", RFC 6164, DOI 10.17487/RFC6164, April 2011,
 <http://www.rfc-editor.org/info/rfc6164>.

 [RFC3706] Huang, G., Beaulieu, S., and D. Rochefort, "A Traffic-
 Based Method of Detecting Dead Internet Key Exchange (IKE)
 Peers", RFC 3706, DOI 10.17487/RFC3706, February 2004,
 <http://www.rfc-editor.org/info/rfc3706>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [I-D.mavrogiannopoulos-app-id]
 Mavrogiannopoulos, N. and D. Woodhouse, "A TLS
 application-specific identifier", draft-mavrogiannopoulos-

app-id-00 (work in progress), September 2016.

 [COMP-ISSUES]
 Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A.,
 and P-Y. Strub, "TLS Compression Fingerprinting and a
 Privacy-aware API for TLS", 2012.

 [COMP-ISSUES2]
 Kelsey, J., "Compression and information leakage of
 plaintex", International Workshop on Fast Software
 Encryption , 2002.

 [OPENCONNECT-CLIENT]
 Woodhouse, D., "http://www.infradead.org/openconnect/",
 2016.

https://datatracker.ietf.org/doc/html/rfc4519
http://www.rfc-editor.org/info/rfc4519
https://datatracker.ietf.org/doc/html/rfc6066
http://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc7301
http://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc6164
http://www.rfc-editor.org/info/rfc6164
https://datatracker.ietf.org/doc/html/rfc3706
http://www.rfc-editor.org/info/rfc3706
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-mavrogiannopoulos-app-id-00
https://datatracker.ietf.org/doc/html/draft-mavrogiannopoulos-app-id-00

Mavrogiannopoulos Expires March 27, 2017 [Page 19]

Internet-Draft The OpenConnect Version 1.0 September 2016

 [OPENCONNECT-SERVER]
 Mavrogiannopoulos, N., "http://www.infradead.org/ocserv/",
 2016.

Mavrogiannopoulos Expires March 27, 2017 [Page 20]

Internet-Draft The OpenConnect Version 1.0 September 2016

Appendix A. Name for Application-Layer Protocol Negotiation

 Protocol: openconnect-vpn/1.0
 Identification Sequence:
 0x6f 0x70 0x65 0x6e 0x63 0x6f 0x6e 0x6e 0x65 0x63
 0x74 0x2d 0x76 0x70 0x6e 0x2f 0x31 0x2e 0x30

Appendix B. Compression

 The available compression algorithms for the CSTP and DTLS channels
 are shown in Table 4. Note, that all algorithms are intentionally
 stateless to prevent the influence of independent packets (e.g., from
 different sources) on each others compression. That does not
 eliminate all known attacks on compression before encryption, and for
 that reason an implentation MUST NOT enable compression by default.

 After compression is negotiated each side may choose to compress the
 payload and use the 'COMPRESSED DATA' header from Table 3, or may
 send uncompressed data with the 'DATA' payload. Each side MUST be
 able to process both payloads.

 +---------------------+---+
 | Algorithm | Description |
 +---------------------+---+
oc-lz4	The stateless LZ4 compression algorithm.
lzs	The stateless LZS (stacker) compression
	algorithm.
 +---------------------+---+

 Table 4

Appendix C. DTD declarations

C.1. config-auth.dtd

Mavrogiannopoulos Expires March 27, 2017 [Page 21]

Internet-Draft The OpenConnect Version 1.0 September 2016

<!ELEMENT config-auth (version*,auth*)>
 <!ATTLIST config-auth client CDATA #FIXED "vpn">
 <!ATTLIST config-auth type (init|auth-reply|auth-request|complete) "init">
<!ELEMENT version (#PCDATA)>
 <!ATTLIST version who (sg|vpn) "sg">
<!ELEMENT auth (title*,username*,password*,message*,form*)>
 <!ATTLIST auth id (success|main|failure) "failure">
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT username (#PCDATA)>
 <!ELEMENT password (#PCDATA)>
 <!ELEMENT message (#PCDATA)>
 <!ELEMENT form (input)>
 <!ATTLIST form action CDATA #FIXED "/auth">
 <!ATTLIST form method CDATA #FIXED "post">
 <!ELEMENT input (EMPTY)>
 <!ATTLIST input label CDATA "">
 <!ATTLIST input name (username|password) "username">
 <!ATTLIST input type (text|password) "text">
 <!ELEMENT select (option)>
 <!ATTLIST select label CDATA "">
 <!ATTLIST select name (group_list) "group_list">
 <!ELEMENT option (#PCDATA)>

Author's Address

 Nikos Mavrogiannopoulos
 Red Hat

 EMail: nmav@redhat.com

Mavrogiannopoulos Expires March 27, 2017 [Page 22]

