
MIF D. Liu
Internet-Draft July 5, 2015
Intended status: Informational
Expires: January 6, 2016

Socket API Extension for MIF PvD Architecture
draft-liu-mif-socket-api-00

Abstract

 IETF MIF working group defines the multiple provisioning domain
 architecture. This document proposes API extension for the PvD-aware
 node to support the MIF PvD architecture.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 6, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Liu Expires January 6, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Abbreviated-Title July 2015

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Current PvD-related API implementation 2
2.1. PvD-related API Implementation in Socket API 2

3. Extension for PvD advanced API 3
3.1. Get PvD Configuration API 4
3.2. Set PvD API . 5
3.3. DNS Resolution . 5

4. IANA Considerations . 5
5. Security Considerations 5
6. Acknowledgements . 6
7. Normative References . 6

 Author's Address . 6

1. Introduction

 IETF MIF working group defines the multiple provisioning domain
 architecture in draft-ietf-mif-mpvd-arch-10 [mpvd-architecture] . It
 defines three levels of PvD support in API: basic, intermediate and
 advanced. This document discusses the advanced PvD API for the PvD-
 aware node.

2. Current PvD-related API implementation

 This section summarize the PvD related API implementations. The
 purpose of this section is to help analyzing the extension of current
 API implementation to support PvD architecture.

2.1. PvD-related API Implementation in Socket API

 The basic socket API includes the following:

 Socket API for a typical server:

 o socket()

 o bind()

 o listen()

 o recvmsg()

https://datatracker.ietf.org/doc/html/draft-ietf-mif-mpvd-arch-10

Liu Expires January 6, 2016 [Page 2]

Internet-Draft Abbreviated-Title July 2015

 o sendmsg()

 o close()

 Socket API for a typical client:

 o socket()

 o connect()

 o sendmsg()

 o recvmsg()

 o close()

 [RFC3493] extends the basic socket API to support IPv6. It defines
 the IPv6 Address Family and Protocol Family and also the socket
 address structure, socket options etc.

 [RFC3542] defines the advanced sockets API for IPv6. It defines the
 socket API to access IPv6 specific parameters. For example, the IPv6
 raw socket, the API to access IPv6 and extension headers etc.

 [RFC5014] defines the IPv6 socket API extension for source address
 selection. It can be used to override the default source address
 selection method as defined in [RFC3484] . It defines an address
 preference flags that used for the source address selection.
 Developers can use this API to explicitly specify the source address
 to be used in the communication. Example of use cases of this source
 address selection API includes applications that supporting Mobile
 IPv6, IPv6 Privacy Extensions, Cryptographically Generated Addresses
 etc. It uses per-socket and per-packet flags to implement the source
 address selection. It adds a new socket option at the IPPROTO_IPV6
 level. The new option is called IPV6_ADDR_PREFERENCES. It can be
 used with setsockopt() and getsockopt() calls to set and get the
 address selection preferences affecting all packets sent via a given
 socket.

3. Extension for PvD advanced API

 This section defines the extension of socket API to support PvD
 architecture as defined in [mpvd-architecture]

 It belongs to the advanced PvD API discussed in section 6.3 of
 [mpvd-architecture]. The extension proposed in this document has the
 following types of API extension:

https://datatracker.ietf.org/doc/html/rfc3484

Liu Expires January 6, 2016 [Page 3]

Internet-Draft Abbreviated-Title July 2015

 o API to get current PvDs that been provided to the node

 o API to explicitly select a PvD

 o API for DNS resolution

 There are different design alternatives for the PvD API. Including:

 o Get PvDs and select PvD per-socket.

 o Get PvDs and select PvD per-application.

 o Get PvDs and select PvD per-node.

 This document propose the per-socket approach since it can provide
 the maximal flexibility for the application developers to meet all
 the kinds of use cases.

3.1. Get PvD Configuration API

 The following API is used to get the current PvD configuration of the
 node:

 o getpvdinfo()

 The definition of this API is:

 int getpvdinfo(const char *nodename, const char *servname, struct
 pvdinfo **res);

 The structure of struct pvdinfo is:

 struct pvdinfo {

 int sockaddr * ai_addr;

 int sockaddr * gateway_addr;

 int sockaddr * dns_addr;

 struct addrinfo * ai_next;

 }

 The definition of parameters is as follows:

 o nodename and servname: The nodename and servname parameter are
 pointers to null-terminated strings or NULL. One or both of these

Liu Expires January 6, 2016 [Page 4]

Internet-Draft Abbreviated-Title July 2015

 parameter must be a non-null pinter. A non-null nodename string
 can be a node name or a numeric host address string.

 o res: The pvdinfo structure. The result is pointed to res
 structure.

3.2. Set PvD API

 The following API is used to select the specific PvD.

 o setsockopt()

 setsockopt(int s, struct * pvdinfo pvd)

 The struct * pvdinfo pvd is a new parameter that used to specify the
 preferred PvD. The socket can be set to use the PvD that specified
 by pvdinfo parameter.

 All the socket related operation will be bind to this PvD. For
 example, The connect() API call should use the set of configuration
 parameters that contained in the pvdinfo (source address, gateway and
 DNS etc).

3.3. DNS Resolution

 getaddrinfo() is the socket API used to resolve the IPv4 and IPv6
 address. This document proposes to extend getaddrinfo() socket API
 to allow it use PvD information as a parameter for DNS resolution.

 int getaddrinfo(const char * hostname, const char * service, const
 struct addrinfo * hints,struct * pvdinfo pvd, struct addrinfo **
 result);

 The DNS resolution should use the DNS server that contained in the
 PvD parameter.

4. IANA Considerations

 This document makes no request of IANA.

5. Security Considerations

 TBD.

Liu Expires January 6, 2016 [Page 5]

Internet-Draft Abbreviated-Title July 2015

6. Acknowledgements

 The author would like to thank the PvD API design team.

7. Normative References

 [mpvd-architecture]
 Anipko, D., "Multiple Provisioning Domain Architecture",
 February 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3484] Draves, R., "Default Address Selection for Internet
 Protocol version 6 (IPv6)", February 2003.

 [RFC3493] Gilligan, R., "Basic Socket Interface Extensions for
 IPv6", February 2003.

 [RFC3542] Stevens, W., "Advanced Sockets Application Program
 Interface (API) for IPv6", May 2003.

 [RFC5014] Nordmark, E., "IPv6 Socket API for Source Address
 Selection", September 2007.

Author's Address

 Dapeng Liu

 Email: maxpassion@gmail.com

Liu Expires January 6, 2016 [Page 6]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

