
TCP Maintenance and Minor Extensions M. Kuehlewind, Ed.
(tcpm) University of Stuttgart
Internet-Draft R. Scheffenegger
Intended status: Experimental NetApp, Inc.
Expires: January 17, 2013 July 16, 2012

More Accurate ECN Feedback in TCP
draft-kuehlewind-tcpm-accurate-ecn-01

Abstract

 Explicit Congestion Notification (ECN) is an IP/TCP mechanism where
 network nodes can mark IP packets instead of dropping them to
 indicate congestion to the end-points. An ECN-capable receiver will
 feedback this information to the sender. ECN is specified for TCP in
 such a way that only one feedback signal can be transmitted per
 Round-Trip Time (RTT). Recently, new TCP mechanisms like ConEx or
 DCTCP need more accurate ECN feedback information in the case where
 more than one marking is received in one RTT. This documents
 specifies a different scheme for the ECN feedback in the TCP header
 to provide more than one feedback signal per RTT.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 17, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft More Accurate ECN Feedback in TCP July 2012

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Use Cases . 3
1.2. Overview ECN and ECN Nonce in IP/TCP 4
1.3. Requirements . 5
1.4. Design choices . 6
1.5. Requirements Language 7

2. Negotiation during the TCP handshake 7
3. More Accurate ECN Feedback 9
3.1. Codepoint Coding . 9
3.2. More Accurate ECN TCP Sender 10
3.3. More Accurate ECN TCP Receiver 11
3.3.1. Implementation . 11

3.4. Advanced Compatibility Mode 12
4. Acknowledgements . 13
5. IANA Considerations . 14
6. Security Considerations 14
7. References . 14
7.1. Normative References 14
7.2. Informative References 15

Appendix A. Estimating CE-marked bytes 15
Appendix B. Use with ECN Nonce 15
B.1. Pseudo Code for the Codepoint Coding 17

 Authors' Addresses . 19

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 2]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

1. Introduction

 Explicit Congestion Notification (ECN) [RFC3168] is an IP/TCP
 mechanism where network nodes can mark IP packets instead of dropping
 them to indicate congestion to the end-points. An ECN-capable
 receiver will feedback this information to the sender. ECN is
 specified for TCP in such a way that only one feedback signal can be
 transmitted per Round-Trip Time (RTT). Recently, proposed mechanisms
 like Congestion Exposure (ConEx) or DCTCP [Ali10] need more accurate
 ECN feedback information in case when more than one marking is
 received in one RTT.

 This documents specifies a different scheme for the ECN feedback in
 the TCP header to provide more than one feedback signal per RTT.
 This modification does not obsolete [RFC3168]. To avoid confusion we
 call the ECN specification of [RFC3168] 'classic ECN' in this
 document. This document provides an extension that requires
 additional negotiation in the TCP handshake by using the TCP nonce
 sum (NS) bit, as specified in [RFC3540], which is currently not used
 when SYN is set. If the more accurate ECN extension has been
 negotiated successfully, the meaning of ECN TCP bits and the ECN NS
 bit is different from the specification in [RFC3168] and [RFC3540].
 This document specifies the additional negotiation as well as the new
 coding of the TCP ECN/NS bits.

 The proposed coding scheme maintains the given bit space as the ECN
 feedback information is needed in a timely manner and as such should
 be reported in every ACK. The reuse will avoid additional network
 load as the ACK size will not increase. Moreover, the more accurate
 ECN information will replace the classic ECN feedback if negotiated.
 Thus those bits are not needed otherwise. But the proposed schemes
 requires also the use of the NS bit in the TCP handshake as well as
 for the more accurate ECN feedback itself. The proposed more
 accurate ECN feedback extension can include the ECN-Nonce integrity
 mechanism as some coding space is left open. The use of ECN-Nonce is
 not part of the specification in this document but is discussed in
 the appendix.

1.1. Use Cases

 The following scenarios should briefly show where the accurate
 feedback is needed or provides additional value:

 A Standard (RFC5681) TCP sender that supports ConEx:
 In this case the congestion control algorithm still ignores
 multiple marks per RTT, while the ConEx mechanism uses the
 extra information per RTT to re-echo more precise congestion
 information.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc5681

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 3]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

 A sender using DCTCP congestion control without ConEx:
 The congestion control algorithm uses the extra info per RTT
 to perform its decrease depending on the number of congestion
 marks.

 A sender using DCTCP congestion control and supports ConEx:
 Both the congestion control algorithm and ConEx use the
 accurate ECN feedback mechanism.

 A standard TCP sender (using RFC5681 congestion control algorithm)
 without ConEx:
 No accurate feedback is necessary here. The congestion
 control algorithm still react only on one signal per RTT.
 But it is best to have one generic feedback mechanism,
 whether it is used or not.

1.2. Overview ECN and ECN Nonce in IP/TCP

 ECN requires two bits in the IP header. The ECN capability of a
 packet is indicated when either one of the two bits is set. An ECN
 sender can set one or the other bit to indicate an ECN-capable
 transport (ECT) which results in two signals, ECT(0) and ECT(1). A
 network node can set both bits simultaneously when it experiences
 congestion. When both bits are set the packet is regarded as
 "Congestion Experienced" (CE).

 In the TCP header the first two bits in byte 14 are defined for the
 use of ECN. The TCP mechanism for signaling the reception of a
 congestion mark uses the ECN-Echo (ECE) flag in the TCP header. To
 enable the TCP receiver to determine when to stop setting the ECN-
 Echo flag, the CWR flag is set by the sender upon reception of the
 feedback signal. This leads always to a full RTT of ACKs with ECE
 set. Thus any additional CE markings arriving within this RTT can
 not signaled back anymore.

 ECN-Nonce [RFC3540] is an optional addition to ECN that is used to
 protect the TCP sender against accidental or malicious concealment of
 marked or dropped packets. This addition defines the last bit of
 byte 13 in the TCP header as the Nonce Sum (NS) bit. With ECN-Nonce
 a nonce sum is maintain that counts the occurrence of ECT(1) packets.

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3540

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 4]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | | | N | C | E | U | A | P | R | S | F |
 | Header Length | Reserved | S | W | C | R | C | S | S | Y | I |
 | | | | R | E | G | K | H | T | N | N |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 1: The (post-ECN Nonce) definition of the TCP header flags

1.3. Requirements

 The requirements of the accurate ECN feedback protocol for the use of
 e.g. Conex or DCTCP are to have a fairly accurate (not necessarily
 perfect), timely and protected signaling. This leads to the
 following requirements:

 Resilience
 The ECN feedback signal is carried within the TCP
 acknowledgment. TCP ACKs can get lost. Moreover, delayed
 ACK are mostly used with TCP. That means in most cases only
 every second data packets triggers an ACK. In a high
 congestion situation where most of the packet are marked with
 CE, an accurate feedback mechanism must still be able to
 signal sufficient congestion information. Thus the accurate
 ECN feedback extension has to take delayed ACK and ACK loss
 into account.

 Timely
 The CE marking is induced by a network node on the
 transmission path and echoed by the receiver in the TCP
 acknowledgment. Thus when this information arrives at the
 sender, its naturally already about one RTT old. With a
 sufficient ACK rate a further delay of a small number of ACK
 can be tolerated but with large delays this information will
 be out dated due to high dynamic in the network. TCP
 congestion control which introduces parts of these dynamics
 operates on a time scale of one RTT. Thus the congestion
 feedback information should be delivered timely (within one
 RTT).

 Integrity
 With ECN Nonce, a misbehaving receiver or network node can be
 detected with a certain probability. As this accurate ECN
 feedback is reusing the NS bit, it is encouraged to ensure
 integrity as least as good as ECN Nonce. If this is not
 possible, alternative approaches should be provided how a
 mechanism using the accurate ECN feedback extension can re-
 ensure integrity or give strong incentives for the receiver

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 5]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

 and network node to cooperate honestly.

 Accuracy
 Classic ECN feeds back one congestion notification per RTT,
 as this is supposed to be used for TCP congestion control
 which reduces the sending rate at most once per RTT. The
 accurate ECN feedback scheme has to ensure that if a
 congestion events occurs at least one congestion notification
 is echoed and received per RTT as classic ECN would do. Of
 course, the goal of this extension is to reconstruct the
 number of CE marking more accurately. However, a sender
 should not assume to get the exact number of congestion
 marking in all situations.

 Complexity
 Of course, the more accurate ECN feedback can also be used,
 even if only one ECN feedback signal per RTT is need. The
 implementation should be as simple as possible and only a
 minimum of addition state information should be needed. A
 proposal fulfilling this for a more accurate ECN feedback can
 then also be the standard ECN feedback mechanism.

1.4. Design choices

 The idea of this document is to use the ECE, CWR and NS bits for
 additional capability negotiation during the <SYN> / <SYN,ACK>
 exchange, and then for the more accurate ECN feedback itself on
 subsequent packets in the flow (where SYN is not set).

 Alternatively, a new TCP option could be introduced, to help maintain
 the accuracy, and integrity of the ECN feedback between receiver and
 sender. Such an option could provide more information. E.g. ECN
 for RTP/UDP provides explicit the number of ECT(0), ECT(1), CE, non-
 ECT marked and lost packets. However, deploying new TCP options has
 its own challenges. A separate document proposes a new TCP Option
 for accurate ECN feedback
 [draft-kuehlewind-tcpm-accurate-ecn-option]. This option could be
 used in addition to a more accurate ECN feedback scheme described
 here or in addition to classic ECN, when available and needed.

 As seen in Figure 1, there are currently three unused flag bits in
 the TCP header. The proposed scheme could be extended by one or more
 bits, to add higher resiliency against ACK loss. The relative gain
 would be proportionally higher resiliency against ACK loss, while the
 respective drawbacks would remain identical. Thus the approach in
 this document is to maintain the scope of the given number of header
 bits as they seem to be already sufficient. This accurate ECN
 feedback scheme will only be used instead of the classic ECN and

https://datatracker.ietf.org/doc/html/draft-kuehlewind-tcpm-accurate-ecn-option

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 6]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

 never in parallel.

1.5. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 We use the following terminology from [RFC3168] and [RFC3540]:

 The ECN field in the IP header:

 CE: the Congestion Experienced codepoint, and

 ECT(0): the first ECN-Capable Transport codepoint, and

 ECT(1): the second ECN-Capable Transport codepoint.

 The ECN flags in the TCP header:

 CWR: the Congestion Window Reduced flag,

 ECE: the ECN-Echo flag, and

 NS: ECN Nonce Sum.

 In this document, we will call the ECN feedback scheme as specified
 in [RFC3168] the 'classic ECN' and our new proposal the 'more
 accurate ECN feedback' scheme. A 'congestion mark' is defined as an
 IP packet where the CE codepoint is set. A 'congestion event' refers
 to one or more congestion marks belong to the same overload situation
 in the network (usually during one RTT).

2. Negotiation during the TCP handshake

 During the TCP hand-shake at the start of a connection, an originator
 of the connection (host A) MUST indicate a request to get more
 accurate ECN feedback by setting the TCP flags NS=1, CWR=1 and ECE=1
 in the initial <SYN>.

 A responding host (host B) MUST return a <SYN,ACK> with flags CWR=1
 and ECE=0. The responding host MUST NOT set this combination of
 flags unless the preceding <SYN> has already requested support for

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 7]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3168

Internet-Draft More Accurate ECN Feedback in TCP July 2012

 more accurate ECN feedback as above. Normally a server (B) will
 reply to a client with NS=0, but if the initial <SYN> from client A
 is marked CE, the sever B SHOULD set the NS flag to 1 to indicate the
 congestion immediately instead of delaying the signal to the first
 acknowledgment when the actually data transmission already started.
 So, server B MAY set the alternative TCP header flags in its
 <SYN,ACK>: NS=1, CWR=1 and ECE=0.

 The addition of ECN to TCP <SYN,ACK> packets is discussed and
 specified as experimental in [RFC5562]. The addition of ECN to the
 <SYN> packet is optional. The security implication when using this
 option are not further discussed here.

 This handshake is summarized in Table 1 below, with X indicating NS
 can be either 0 or 1 depending on whether congestion had been
 experienced. The handshakes used for the other flavors of ECN are
 also shown for comparison. To compress the width of the table, the
 headings of the first four columns have been severely abbreviated, as
 follows:

 Ac: *Ac*curate ECN Feedback

 N: ECN-*N*once (RFC3540)

 E: *E*CN (RFC3168)

 I: Not-ECN (*I*mplicit congestion notification).

 +----+---+---+---+------------+----------------+------------------+
 | Ac | N | E | I | <SYN> A->B | <SYN,ACK> B->A | Mode |
 +----+---+---+---+------------+----------------+------------------+
 | | | | | NS CWR ECE | NS CWR ECE | |
 | AB | | | | 1 1 1 | X 1 0 | accurate ECN |
 | A | B | | | 1 1 1 | 1 0 1 | ECN Nonce |
 | A | | B | | 1 1 1 | 0 0 1 | classic ECN |
 | A | | | B | 1 1 1 | 0 0 0 | Not ECN |
 | A | | | B | 1 1 1 | X 1 1 | Not ECN (broken) |
 +----+---+---+---+------------+----------------+------------------+

 Table 1: ECN capability negotiation between Sender (A) and
 Receiver (B)

 Recall that, if the <SYN,ACK> reflects the same flag settings as the
 preceding <SYN> (because there is a broken TCP implementation that
 behaves this way), RFC3168 specifies that the whole connection MUST
 revert to Not-ECT.

https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 8]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

3. More Accurate ECN Feedback

 In this section we refer the sender to be the one sending data and
 the receiver as the one that will acknowledge this data. Of course
 such a scenario is describing only one half connection of a TCP
 connection. The proposed scheme, if negotiated, will be used for
 both half connection as both, sender and receiver, need to be capable
 to echo and understand the accurate ECN feedback scheme.

 This section proposes the new coding of the two ECN TCP bits (ECE/
 CWR) as well as the TCP NS bit to provide a more accurate ECN
 feedback. This coding MUST only be used if the more accurate ECN
 feedback has been negotiated successfully in the TCP handshake.

 Section Section 3.4 provides basically another alternative to allow a
 compatibility mode when a sender needs more accurate ECN feedback but
 has to operate with a legacy [RFC3168] classic ECN receiver.

3.1. Codepoint Coding

 The more accurate ECN feedback coding uses the ECE, CWR and NS bits
 as one field to encode 8 distinct codepoints. This overloaded use of
 these 3 header flags as one 3-bit more Accurate ECN (AcE) field is
 shown in Figure 2. The actual definition of the TCP header,
 including the addition of support for the ECN Nonce, is shown for
 comparison in Figure 1. This specification does not redefine the
 names of these three TCP flags, it merely overloads them with another
 definition once a flow with more accurate ECN feedback is
 established.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 | | | | U | A | P | R | S | F |
 | Header Length | Reserved | AcE | R | C | S | S | Y | I |
 | | | | G | K | H | T | N | N |
 +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

 Figure 2: Definition of the AcE field within bytes 13 and 14 of the
 TCP Header (when SYN=0).

 The 8 possible codepoints are shown below. Five of them are used to
 encode a "congestion indication" (CI) counter. The other three
 codepoints are undefined but can be used for some kind of integrity
 check (see appendix Appendix B). The CI counter maintains the number
 of CE marks observed at the receiver (see Section 3.3.1).

 Also note that, whenever the SYN flag of a TCP segment is set
 (including when the ACK flag is also set), the NS, CWR and ECE flags

https://datatracker.ietf.org/doc/html/rfc3168

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 9]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

 (i.e. the AcE field of the <SYN,ACK>) MUST NOT be interpreted as the
 3-bit codepoint, which is only used in non-SYN packets.

 +-----+----+-----+-----+------------+
 | AcE | NS | CWR | ECE | CI (base5) |
 +-----+----+-----+-----+------------+
 | 0 | 0 | 0 | 0 | 0 |
 | 1 | 0 | 0 | 1 | 1 |
 | 2 | 0 | 1 | 0 | 2 |
 | 3 | 0 | 1 | 1 | 3 |
 | 4 | 1 | 0 | 0 | 4 |
 | 5 | 1 | 0 | 1 | - |
 | 6 | 1 | 1 | 0 | - |
 | 7 | 1 | 1 | 1 | - |
 +-----+----+-----+-----+------------+

 Table 2: Codepoint assignment for accurate ECN feedback

 By default an accurate ECN receiver MUST echo one of the codepoints
 encoding the CI counter value. Whenever a CE is received and thus
 the value of the CI has changed, the receiver MUST echo the CI in the
 next ACK. Moreover, the receiver MUST repeat the codepoint, that
 provides the CI counter, directly on the subsequent ACK. Thus every
 value of CI will be transmitted at least twice. Otherwise the
 receiver MAY send one of the other, currently undefined, codepoints.

 This requirement may conflict with delayed ACK ratios larger than
 two, using the available number of codepoints. A receiver MUST
 change the ACK'ing rate such that a sufficient rate of feedback
 signals can be sent. Details on how the change in the ACK'ing rate
 can be implemented are given in the section Section 3.3.

3.2. More Accurate ECN TCP Sender

 This section specifies the sender-side action describing how to
 exclude the number of congestion markings from the given receiver
 feedback signal.

 When the more accurate ECN feedback scheme is supported by the
 sender, the sender will maintain a congestion indication received
 (CI.r) counter. This CI.r counter will hold the number of CE marks
 as signaled by the receiver, and reconstructed by the sender.

 On the arrival of every ACK, the sender calculates the difference D
 between the local CI.r value modulo 5, and the signaled CI value of
 the codepoint in the ACK. The value of CI.r is increased by D, and D
 is assumed to be the number of CE marked packets that arrived at the
 receiver since it sent the previously received ACK.

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 10]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

3.3. More Accurate ECN TCP Receiver

 This section describes the receiver-side action to signal the
 accurate ECN feedback back to the sender. The receiver will need to
 maintain a congestion indication (CI) counter of how many CE marking
 have been seen during a connection. Thus for each incoming segment
 with a CE marking, the receiver will increase CI by 1. With each ACK
 the receiver will calculate CI modulo 5 and set the respective
 codepoint in the AcE field (see table Table 2). To avoid counter
 wrap-arounds in a high congestion situation, the receiver SHOULD
 switch from a delayed ACK behavior to send ACKs immediately after the
 data packet reception if needed.

3.3.1. Implementation

 The receiver counts how many packets carry a congestion notification.
 This could, in principle, be achieved by directly increasing the CI
 for every incoming CE marked segment. Since the space for
 communicating the information back to the sender in ACKs is limited,
 instead of directly increasing this counter, a "gauge" (CI.g) is
 increased instead.

 When sending an ACK, the CI is increased by either CI.g or at maximum
 by 4 as a larger increase could cause an overflow in the codepoint
 counter signaling. Thereafter, CI.g is reduced by the same amount.
 Then the current CI value (modulo 5) is encoded in the current ACK.
 To avoid losing information, it must be ensured that an ACK is sent
 at least after 5 incoming, outstanding congestion marks (i.e. when
 CI.g exceeds 5). Architecturally the counters never decrease during
 a TCP session. However, any overflow MUST be modulo a multiple of 5
 for CI.

 For resilience against lost ACKs, an indicator flag (CI.i) SHOULD be
 used to ensure that, whether another congestion indication arrives or
 not, a second ACK transmits the previous counter value again. Thus
 when a codepoint is transmitted the first time, CI.i will be set to
 one. Then with the next ACK the same codepoint is transmitted again
 and the CI.i is reset to zero. Only when CI.i is zero, the counter
 CI can be increased. In case of heavy congestion (basically all
 segments are CE marked) the CI.g might grow continuously. In this
 case the ACK rate should be increased by sending an immediate ACK for
 an incoming data segment.

 The following table provides an example showing an half-connection
 with a TCP sender A and a TCP receiver B. The sender maintains a
 counter CI.r to reconstruct the number of CE mark seen at the
 receiver-side.

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 11]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

 +----+------+---------------+------------+---------------+------+
 | | Data | TCP A | IP | TCP B | Data |
 +----+------+---------------+------------+---------------+------+
 | | | SEQ ACK CTL | | SEQ ACK CTL | |
 | -- | | ------------- | ---------- | ------------- | |
 | 1 | | 0100 SYN | ----> | | |
 | | | CWR,ECE,NS | | | |
 | 2 | | | <---- | 0300 0101 SYN | |
 | | | | | ACK,CWR | |
 | 3 | | 0101 0301 ACK | ECT0 -CE-> | | |
 | | | | | CI.c=0 CI.g=1 | |
 | 4 | 100 | 0101 0301 ACK | ECT0 ----> | | |
 | | | | | CI.c=1 CI.g=0 | |
 | 5 | | | <---- | 0301 0201 ACK | |
 | | | | | ECI=CI.1 | |
 | | | CI.r=1 | | | |
 | 6 | 100 | 0201 0301 ACK | ECT0 -CE-> | | |
 | | | | | CI.c=1 CI.g=1 | |
 | 7 | 100 | 0301 0301 ACK | ECT0 -CE-> | | |
 | | | | | CI.c=1 CI.g=2 | |
 | 8 | | | XX-- | 0301 0401 ACK | |
 | | | | | ECI=CI.1 | |
 | | | CI.r=1 | | | |
 | 9 | 100 | 0401 0301 ACK | ECT0 -CE-> | | |
 | | | | | CI.c=1 CI.g=3 | |
 | 10 | 100 | 0501 0301 ACK | ECT0 -CE-> | | |
 | | | | | CI.c=5 CI.g=0 | |
 | 11 | | | <---- | 0301 0601 ACK | |
 | | | | | ECI=CI.0 | |
 | | | CI.r=5 | | | |
 | 12 | 100 | 0601 0301 ACK | ECT0 -CE-> | | |
 | | | | | CI.c=5 CI.g=1 | |
 | 13 | 100 | 0701 0301 ACK | ECT0 -CE-> | | |
 | | | | | CI.c=5 CI.g=2 | |
 | 14 | | | <---- | 0301 0801 ACK | |
 | | | | | ECI=CI.0 | |
 | | | CI.r=5 | | | |
 +----+------+---------------+------------+---------------+------+

 Table 3: Codepoint signal example

3.4. Advanced Compatibility Mode

 TBD (more detailed description see
draft-ietf-conex-tcp-modifications)

 This section describes a possible mechanism to achieve more accurate
 ECN feedback even when the receiver is not capable of the new more

https://datatracker.ietf.org/doc/html/draft-ietf-conex-tcp-modifications

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 12]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

 accurate ECN feedback scheme with the drawback of less reliability.

 During initial deployment, a large number of receivers will only
 support [RFC3168] classic ECN feedback. Such a receiver will set the
 ECE bit whenever it receives a segment with the CE codepoint set, and
 clear the ECE bit only when it receives a segment with the CWR bit
 set. As the CE codepoint has priority over the CWR bit (Note: the
 wording in this regard is ambiguous in [RFC3168], but the reference
 implementation of ECN in ns2 is clear), a [RFC3168] compliant
 receiver will not clear the ECE bit on the reception of a segment,
 where both CE and CWR are set simultaneously. This property allows
 the use of a compatibility mode, to extract more accurate feedback
 from legacy [RFC3168] receivers by setting the CWR permanently.

 Assuming a delayed ACK ratio of one (no delayed ACKs), a sender can
 permanently set the CWR bit in the TCP header, to receive a more
 accurate feedback of the CE codepoints as seen at the receiver. This
 feedback signal is however very brittle and any ACK loss may cause
 congestion information to become lost. Delayed ACKs and ACK loss can
 both not be accounted for in a reliable way, however. Therefore, a
 sender would need to use heuristics to determine the current delay
 ACK ratio M used by the receiver (e.g. most receivers will use M=2),
 and also the recent ACK loss ratio. Acknowledge Congestion Control
 (AckCC) as defined in [RFC5690] can not be used, as deployment of
 this feature is only experimental.

 Using a phase locked loop algorithm, the CWR bit can then be set only
 on those data segments, that will trigger a (delayed) ACK. Thereby,
 no congestion information is lost, as long as the ACK carrying the
 ECE bit is seen by the sender.

 Whenever the sender sees an ACK with ECE set, this indicates that at
 least one, and at most M data segments with the CE codepoint set
 where seen by the receiver. The sender SHOULD react, as if M CE
 indications where reflected back to the sender by the receiver,
 unless additional heuristics (e.g. dead time correction) can
 determine a more accurate value of the "true" number of received CE
 marks.

4. Acknowledgements

 We want to thank Bob Briscoe and Michael Welzl for their input and
 discussion. Special thanks to Bob Briscoe, who first proposed the
 use of the ECN bits as one field and the handshake negotiation for
 more accurate ECN.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5690

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 13]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

5. IANA Considerations

 This memo includes no request to IANA.

6. Security Considerations

 TBD

 ACK loss

 This scheme sends each codepoint (of the two subsets) at least two
 times. In the worst case at least one, and often two or more
 consecutive ACKs can be dropped without losing congestion
 information. Further refinements, such as interleaving ACKs when
 sending codepoints belonging to the two subsets (e.g. CI, E1), can
 allow the loss of any two consecutive ACKs, without the sender losing
 congestion information, at the cost of also reducing the ACK ratio.

 At low congestion rates, the sending of the current value of the CI
 counter by default allows higher numbers of consecutive ACKs to be
 lost, without impacting the accuracy of the ECN signal.

 ECN Nonce

 In the proposed scheme there are three more codepoints available that
 could be used for an integrity check like ECN Nonce. If ECN nonce
 would be implemented as proposed in Appendix B, even more information
 would be provided for ECN Nonce than in the original specification.

 A delayed ACK ratio of two can be sustained indefinitely even during
 heavy congestion, but not during excessive ECT(1) marking, which is
 under the control of the sender. A higher ACK ratio can be sustained
 when congestion is low, but a low ACK ratio my be needed for the E1
 feedback.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, September 2001.

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 14]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168

Internet-Draft More Accurate ECN Feedback in TCP July 2012

 [RFC3540] Spring, N., Wetherall, D., and D. Ely, "Robust Explicit
 Congestion Notification (ECN) Signaling with Nonces",

RFC 3540, June 2003.

7.2. Informative References

 [Ali10] Alizadeh, M., Greenberg, A., Maltz, D., Padhye, J., Patel,
 P., Prabhakar, B., Sengupta, S., and M. Sridharan, "DCTCP:
 Efficient Packet Transport for the Commoditized Data
 Center", Jan 2010.

 [I-D.briscoe-tsvwg-re-ecn-tcp]
 Briscoe, B., Jacquet, A., Moncaster, T., and A. Smith,
 "Re-ECN: Adding Accountability for Causing Congestion to
 TCP/IP", draft-briscoe-tsvwg-re-ecn-tcp-09 (work in
 progress), October 2010.

 [RFC5562] Kuzmanovic, A., Mondal, A., Floyd, S., and K.
 Ramakrishnan, "Adding Explicit Congestion Notification
 (ECN) Capability to TCP's SYN/ACK Packets", RFC 5562,
 June 2009.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC5690] Floyd, S., Arcia, A., Ros, D., and J. Iyengar, "Adding
 Acknowledgement Congestion Control to TCP", RFC 5690,
 February 2010.

 [draft-kuehlewind-tcpm-accurate-ecn-option]
 Kuehlewind, M. and R. Scheffenegger, "Accurate ECN
 Feedback Option in TCP",

draft-kuehlewind-tcpm-accurate-ecn-option-01 (work in
 progress), Jul 2012.

Appendix A. Estimating CE-marked bytes

 TBD (see draft-ietf-conex-tcp-modifications-02 and 'late ACK' scheme
 of 1 Bit scheme in draft-kuehlewind-tcpm-accurate-ecn-00)

Appendix B. Use with ECN Nonce

 In ECN Nonce, by comparing the number of incoming ECT(1)
 notifications with the actual number of packets that were transmitted
 with an ECT(1) mark as well as the sum of the sender's two internal
 counters, the sender can probabilistically detect a receiver that

https://datatracker.ietf.org/doc/html/rfc3540
https://datatracker.ietf.org/doc/html/draft-briscoe-tsvwg-re-ecn-tcp-09
https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5690
https://datatracker.ietf.org/doc/html/draft-kuehlewind-tcpm-accurate-ecn-option
https://datatracker.ietf.org/doc/html/draft-kuehlewind-tcpm-accurate-ecn-option-01
https://datatracker.ietf.org/doc/html/draft-ietf-conex-tcp-modifications-02
https://datatracker.ietf.org/doc/html/draft-kuehlewind-tcpm-accurate-ecn-00

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 15]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

 sends false marks or supresses accurate ECN feedback, or a path that
 does not properly support ECN.

 +-----+----+-----+-----+------------+------------+
 | ECI | NS | CWR | ECE | CI (base5) | E1 (base3) |
 +-----+----+-----+-----+------------+------------+
 | 0 | 0 | 0 | 0 | 0 | - |
 | 1 | 0 | 0 | 1 | 1 | - |
 | 2 | 0 | 1 | 0 | 2 | - |
 | 3 | 0 | 1 | 1 | 3 | - |
 | 4 | 1 | 0 | 0 | 4 | - |
 | 5 | 1 | 0 | 1 | - | 0 |
 | 6 | 1 | 1 | 0 | - | 1 |
 | 7 | 1 | 1 | 1 | - | 2 |
 +-----+----+-----+-----+------------+------------+

 Table 4: Codepoint assignment for accurate ECN feedback and ECN Nonce

 If an ECT(1) mark is received, an ETC(1) counter (E1) is incremented.
 The receiver has to convey that updated information to the sender
 with the next possible ACK using the three remaining codepoints as
 show in table Table 4. Thus on the reception of a ECT(1) marked
 packet, the receiver should signal the current value of the E1
 counter (modulo 3) in the next ACK. If a CE mark was received before
 sending the next ACK (e.g. delayed ACKs) sending that update MUST
 take precedence. The receiver should also repeat sending every E1
 value. But this repetition does not need to be in the consecutive
 ACK as the E1 value will only be transmitted when no changes in the
 CI have occurred. Each E1 value will therefore be sent exactly
 twice. The repetition of every signal will provide further
 resilience against lost ACKs.

 As only a limited number of E1 codepoints exist and the receiver
 might not acknowledge every single data packet immediately (delayed
 ACKs), a sender SHOULD NOT mark more than 1/m of the packets with
 ECT(1), where m is the ACK ratio (e.g. 50% when every second data
 packet triggers an ACK). This constraint will avoid a permanent
 feedback of E1 only, and must be maintained also on short timescales.
 A sender SHOULD send no more than 3 consecutive packets marked with
 ECT(1).

 The same counter / gauge method as described in Section 3.3.1 can be
 used to count and return (using a different mapping) the number of
 incoming packets marked ECT(1) (called E1 in the algorithm). As few
 codepoints are available for conveying the E1 counter value, an
 immediate ACK MUST be triggered whenever the gauge E1.g exceeds a
 threshold of 3. The sender receives the receiver's counter values
 and compares them with the locally maintained counter.

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 16]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

B.1. Pseudo Code for the Codepoint Coding

 IP signals: CE
 TCP Fields: AcE

 Counters:

 CI Congestion Indication - counter [0..(n*5-1)]
 CI.g Congestion Indication - Gauge [0.."inf"])
 CI.i Congestion Indication - indicator flag [0,1]

 At session initialization, all these counters are initialized to zero.

 When a segment (Data, ACK) is received, perform the following steps:

 If (CE) # When a CE codepoint is received,
 CI.g++ # Increase CI.g by 1
 If (ECT(1)) # When a ECT(1) codepoint is received,
 E1.g++ # Increase E1.g by 1
 If (CI.g > 5) or # When ACK rate is not sufficient to keep
 (E1.g > 3) # gauges close to zero,
 Send ACK immediately # increase ACK rate

 When preparing an ACK to be sent:

 If (CI.g > 0) or # When there is a unsent change in CI
 ((E1.i != 0) and # this check is to in effect alternate
 (CI.i != 0)) # sending CI and E1 codepoints
 If (CI.i == 0) and # updates to CI allowed
 (CI.g > 0) # update is meaningful
 CI.i = 1 # set flag to repeat CI value
 CI += min(4,CI.g) # 4 for 5 codepoints
 CI %= 5 # using modulo the available codepoints
 CI.g -= min(4,CI.g) # reduce the holding gauge accordingly
 Else
 CI.i-- # just in case CI.f was set to
 # more than 1 for resiliency
 Send ACK with AcE set to CI
 Else
 If (E1.g > 0) or
 (E1.i != 0)
 If (E1.i == 0) and
 (E1.g > 0)
 E1.i = 1
 E1 += min(2, E1.g)

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 17]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

 E1 %= 3
 E1.g -= min(2, E1.g)
 Else
 E1.i--
 Send ACK with AcE set to E1
 Else
 Send ACK with AcE set to CI # default action

 Sender:

 Counters:

 CI.r - current value of CEs seen by receiver
 E1.s - sum of all sent ECT(1) marked packets (up to snd.nxt)
 E1.s(t) - value of E1.s at time (in sequence space) t
 E1.r - value signaled by receiver about received ECT(1) segments
 E1.r(t) - value of E1.r at time (in sequence space) t
 CI.r(t) - ditto

 # Note: With a codepoint implementation,
 # a reverse table ECI[n] -> CI.r / E1.r is needed.
 # The wire protocol transports the absolute value
 # of the receiver-side counter.
 # Thus the (positive only) delta needs to be calculated,
 # and added to the sender-side counter.

 If ACK AcE in the set of CI values
 D = (AcE.CI + 5 - (CI.r mod 5)) mod 5
 CI.r += D
 If ACK AcE in the set of E1 values
 D = (Ace.E1 + 3 - (E1.r mod 3)) mod 3
 E1.r += D

 # Before CI.r or E1.r reach a (binary) rollover,
 # they need to roll over some multiple of 5
 # and 3 respectively.

 CI.r = CI.r modulo 255 # 5 * 51
 E1.r = E1.r modulo 255 # 3 * 85

 # (an implementation may choose to use another constant,
 # ie 3^4*5^4 (50625) for 16-bit integers,
 # or 3^8*5^8 (2562890625) for 32-bit integers)

 # The following test can (probabilistically) reveal,
 # if the receiver or path is not properly
 # handling ECN (CE, E1) marks

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 18]

Internet-Draft More Accurate ECN Feedback in TCP July 2012

 If not E1.r(t) <= E1.s(t) <= E1.r(t) + CI.r(t)

 # -> receiver or path do not properly reflect ECN
 # (or too many ACKs got lost, which can be checked
 # also by the sender).

Authors' Addresses

 Mirja Kuehlewind (editor)
 University of Stuttgart
 Pfaffenwaldring 47
 Stuttgart 70569
 Germany

 Email: mirja.kuehlewind@ikr.uni-stuttgart.de

 Richard Scheffenegger
 NetApp, Inc.
 Am Euro Platz 2
 Vienna, 1120
 Austria

 Phone: +43 1 3676811 3146
 Email: rs@netapp.com

Kuehlewind & Scheffenegger Expires January 17, 2013 [Page 19]

