
Workgroup: jhoyla
Internet-Draft:
draft-jhoyla-tls-extended-key-schedule-02
Published: September 9, 2020
Intended Status: Standards Track
Expires: March 13, 2021
Authors: J. Hoyland

Cloudflare Ltd.
C.A. Wood
Cloudflare

TLS 1.3 Extended Key Schedule

Abstract

TLS 1.3 is sometimes used in situations where it is necessary to
inject extra key material into the handshake. This draft aims to
describe methods for doing so securely. This key material must be
injected in such a way that both parties agree on what is being
injected and why, and further, in what order.

Note to Readers

Discussion of this document takes place on the TLS Working Group
mailing list (tls@ietf.org), which is archived at https://
mailarchive.ietf.org/arch/browse/tls/.

Source for this draft and an issue tracker can be found at https://
github.com/jhoyla/draft-jhoyla-tls-key-injection.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is
at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on March 13, 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/tls/
https://mailarchive.ietf.org/arch/browse/tls/
https://github.com/jhoyla/draft-jhoyla-tls-key-injection
https://github.com/jhoyla/draft-jhoyla-tls-key-injection
https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction
2. Conventions and Definitions
3. Key Schedule Extension

3.1. Handshake Secret Injection
3.2. Main Secret Injection

4. Key Schedule Injection Negotiation
5. Key Schedule Extension Structure
6. Security Considerations
7. IANA Considerations
8. References

8.1. Normative References
8.2. Informative References

Acknowledgments
Authors' Addresses

1. Introduction

Introducing additional key material into the TLS handshake is a non-
trivial process because both parties need to agree on the injection
content and context. If the two parties do not agree then an attacker
may exploit the mismatch in so-called channel synchronization
attacks, such as those described by [SLOTH].

Injecting key material into the TLS handshake allows other protocols
to be bound to the handshake. For example, it may provide additional
protections to the ClientHello message, which in the standard TLS
handshake only receives protections after the server's Finished
message has been received. It may also permit the use of combined
shared secrets, possibly from multiple key exchange algorithms, to be
included in the key schedule. This pattern is common for Post Quantum
key exchange algorithms, as discussed in [I-D.ietf-tls-hybrid-
design].

The goal of this document is to provide a standardised way for
binding extra context into TLS 1.3 handshakes in a way that is easy
to analyse from a security perspective, reducing the need for
security analysis of extensions that affect the key schedule. It
separates the concerns of whether an extension achieves its goals
from the concerns of whether an extension reduces the security of a
TLS handshake, either directly or through some unforseen interaction
with another extension.

¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶

¶

¶

https://trustee.ietf.org/license-info

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

3. Key Schedule Extension

This section describes two places in which additional secrets can be
injected into the TLS 1.3 key schedule.

3.1. Handshake Secret Injection

To inject extra key material into the Handshake Secret it is
recommended to prefix it, inside an appropriate frame, to the (EC)DHE
input, where || represents concatenation.

3.2. Main Secret Injection

To inject key material into the Main Secret it is recommended to
prefix it, inside an appropriate frame, to the 0 input.

This structure mirrors the Handshake Injection point.

4. Key Schedule Injection Negotiation

Applications which make use of additional key schedule inputs MUST
define a mechanism for negotiating the content and type of that
input. This input MUST be framed in a KeyScheduleSecret struct, as
defined in Section 5. Applications must take care that any
negotiation that takes place unambiguously agrees a secret. It must
be impossible, even under adversarial conditions, that a client and

¶

¶

¶

 |
 v
 Derive-Secret(., "derived", "")
 |
 v
 KeyScheduleInput || (EC)DHE -> HKDF-Extract = Handshake Secret
 |
 v

¶

¶

 |
 v
 Derive-Secret(., "derived", "")
 |
 v
 KeyScheduleInput || 0 -> HKDF-Extract = Main Secret
 |
 v

¶

¶

server agree on the transcript of the negotiation, but disagree on
the secret that was negotiated.

5. Key Schedule Extension Structure

In some cases, protocols may require more than one secret to be
injected at a particular stage in the key schedule. Thus, we require
a generic and extensible way of doing so. To accomplish this, we use
a structure - KeyScheduleInput - that encodes well-ordered sequences
of secret material to inject into the key schedule. KeyScheduleInput
is defined as follows:

Each secret included in a KeyScheduleInput structure has a type and
corresponding secret data. Each secret MUST have a unique
KeyScheduleSecretType. When encoding KeyScheduleInput as the key
schedule Input value, the KeyScheduleSecret values MUST be in
ascending sorted order. This ensures that endpoints always encode the
same KeyScheduleInput value when using the same secret keying
material.

6. Security Considerations

[BINDEL] provides a proof that the concatenation approach in Section
3 is secure as long as either the concatenated secret is secure or
the existing KDF input is secure.

[[OPEN ISSUE: Is this guarantee sufficient? Do we also need to
guarantee that a malicious prefix can't weaken the resulting PRF
output?]]

7. IANA Considerations

This document requests the creation of a new IANA registry: TLS
KeyScheduleInput Types. This registry should be under the existing
Transport Layer Security (TLS) Parameters heading. It should be
administered under a Specification Required policy [RFC8126].

[[OPEN ISSUE: specify initial registry values]]

¶

¶

struct {
 KeyScheduleSecretType type;
 opaque secret_data<0..2^16-1>;
} KeyScheduleSecret;

enum {
 (65535)
} KeyScheduleSecretType;

struct {
 KeyScheduleSecret secrets<0..2^16-1>;
} KeyScheduleInput;

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC8126]

[RFC8174]

[BINDEL]

[I-D.ietf-tls-hybrid-design]

[SLOTH]

Value Description DTLS-OK Reference
TBD TBD TBD TBD

Table 1

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://
www.rfc-editor.org/info/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., and
D. Stebila, "Hybrid Key Encapsulation Mechanisms and
Authenticated Key Exchange", DOI
10.1007/978-3-030-25510-7_12, Post-Quantum Cryptography
pp. 206-226, 2019, <https://doi.org/
10.1007/978-3-030-25510-7_12>.

Steblia, D., Fluhrer, S., and S. Gueron, "Hybrid key
exchange in TLS 1.3", Work in Progress, Internet-Draft,
draft-ietf-tls-hybrid-design-00, April 15, 2020, <http://
www.ietf.org/internet-drafts/draft-ietf-tls-hybrid-
design-00.txt>.

Bhargavan, K. and G. Leurent, "Transcript Collision
Attacks: Breaking Authentication in TLS, IKE, and SSH",
DOI 10.14722/ndss.2016.23418, Proceedings 2016 Network and
Distributed System Security Symposium, 2016, <https://
doi.org/10.14722/ndss.2016.23418>.

Acknowledgments

We thank Karthik Bhargavan for his comments.

Authors' Addresses

Jonathan Hoyland
Cloudflare Ltd.

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1007/978-3-030-25510-7_12
http://www.ietf.org/internet-drafts/draft-ietf-tls-hybrid-design-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-hybrid-design-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-hybrid-design-00.txt
https://doi.org/10.14722/ndss.2016.23418
https://doi.org/10.14722/ndss.2016.23418

Email: jonathan.hoyland@gmail.com

Christopher A. Wood
Cloudflare

Email: caw@heapingbits.net

mailto:jonathan.hoyland@gmail.com
mailto:caw@heapingbits.net

	TLS 1.3 Extended Key Schedule
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Key Schedule Extension
	3.1. Handshake Secret Injection
	3.2. Main Secret Injection

	4. Key Schedule Injection Negotiation
	5. Key Schedule Extension Structure
	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgments
	Authors' Addresses

