
Delay Tolerant Networking Research Group M.J. Demmer
Internet-Draft UC Berkeley
Intended status: Experimental J. Ott
Expires: November 18, 2013 Helsinki University of Technology
 S. Perreault
 Viagenie
 May 17, 2013

Delay Tolerant Networking TCP Convergence Layer Protocol
draft-irtf-dtnrg-tcp-clayer-06.txt

Abstract

 This document describes the protocol for the TCP-based Convergence
 Layer for Delay Tolerant Networking (DTN).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 18, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Demmer, et al. Expires November 18, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft DTN TCP Convergence Layer May 2013

Table of Contents

1. Introduction . 2
2. Definitions . 4
2.1. Definitions Relating to the Bundle Protocol 4
2.2. Definitions specific to the TCPCL Protocol 4

3. General Protocol Description 5
3.1. Bidirectional Use of TCP Connection 7
3.2. Example message exchange 7

4. Connection Establishment 8
4.1. Contact Header . 9
4.2. Validation and parameter negotiation 11

5. Established Connection Operation 12
5.1. Message Type Codes 12
5.2. Bundle Data Transmission 13
5.3. Bundle Acknowledgments 14
5.4. Bundle Refusal . 15
5.5. Bundle Length . 16
5.6. Keepalive Messages 17

6. Connection Termination 17
6.1. Shutdown Message . 18
6.2. Idle Connection Shutdown 19

7. Security Considerations 19
8. IANA Considerations . 20
8.1. Port Number . 20
8.2. Protocol Versions . 20
8.3. Message Types . 21
8.4. REFUSE Reason Codes 21
8.5. SHUTDOWN Reason Codes 21

9. Acknowledgements . 21
10. References . 21
10.1. Normative References 21
10.2. Informative References 22

 Authors' Addresses . 22

1. Introduction

 This document describes the TCP-based convergence layer protocol for
 Delay Tolerant Networking (TCPCL). Delay Tolerant Networking is an
 end-to-end architecture providing communications in and/or through
 highly stressed environments, including those with intermittent
 connectivity, long and/or variable delays, and high bit error rates.
 More detailed descriptions of the rationale and capabilities of these
 networks can be found in the Delay-Tolerant Network Architecture
 [refs.dtnarch] RFC.

Demmer, et al. Expires November 18, 2013 [Page 2]

Internet-Draft DTN TCP Convergence Layer May 2013

 An important goal of the DTN architecture is to accommodate a wide
 range of networking technologies and environments. The protocol used
 for DTN communications is the Bundling Protocol (BP)
 [refs.bundleproto], an application-layer protocol that is used to
 construct a store-and-forward overlay network. As described in the
 bundle protocol specification, it requires the services of a
 "convergence layer adapter" (CLA) to send and receive bundles using
 the service of some "native" link, network, or internet protocol.
 This document describes one such convergence layer adapter that uses
 the well-known Transmission Control Protocol (TCP). This convergence
 layer is referred to as TCPCL.

 The locations of the TCPCL and the BP in the Internet model protocol
 stack are shown in Figure 1. In particular, when BP is using TCP as
 its bearer with TCPCL as its convergence layer, both BP and TCPCL
 reside at the application layer of the Internet model.

 +-------------------------+
 | DTN Application | -\
 +-------------------------| |
 | Bundle Protocol (BP) | -> Application Layer
 +-------------------------+ |
 | TCP Conv. Layer (TCPCL) | -/
 +-------------------------+
 | TCP | ---> Transport Layer
 +-------------------------+
 | IP | ---> Network Layer
 +-------------------------+
 | Link-Layer Protocol | ---> Link Layer
 +-------------------------+
 | Physical Medium | ---> Physical Layer
 +-------------------------+

 Figure 1: The locations of the bundle protocol and the TCP
 convergence layer protocol in the Internet protocol stack

 This document describes the format of the protocol data units passed
 between entities participating in TCPCL communications. This
 document does not address:

 The format of protocol data units of the bundling protocol, as
 those are defined elsewhere [refs.bundleproto].

 Mechanisms for locating or identifying other bundle nodes within
 an internet.

 Note that this document describes version 3 of the protocol.
 Versions 0, 1, and 2 were never specified in any Internet Draft, RFC,

Demmer, et al. Expires November 18, 2013 [Page 3]

Internet-Draft DTN TCP Convergence Layer May 2013

 or any other public document. These prior versions of the protocol
 were, however, implemented in the DTN reference implementation
 [refs.dtnimpl], in prior releases, hence the current version number
 reflects the existence of those prior versions.

2. Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2.1. Definitions Relating to the Bundle Protocol

 The following set of definitions are abbreviated versions of those
 which appear in the Bundle Protocol Specification [refs.bundleproto].
 To the extent in which terms appear in both documents, they are
 intended to have the same meaning.

 Bundle -- A bundle is a protocol data unit of the DTN bundle
 protocol.

 Bundle payload -- A bundle payload (or simply "payload") is the
 application data whose conveyance to the bundle's destination is
 the purpose for the transmission of a given bundle.

 Fragment -- A fragment is a bundle whose payload contains a
 contiguous subset of bytes from another bundle's payload.

 Bundle node -- A bundle node (or simply a "node") is any entity that
 can send and/or receive bundles. The particular instantiation
 of this entity is deliberately unconstrained, allowing for
 implementations in software libraries, long-running processes,
 or even hardware. One component of the bundle node is the
 implementation of a convergence layer adapter.

 Convergence layer adapter -- A convergence layer adapter (CLA) sends
 and receives bundles utilizing the services of some 'native'
 link, network, or internet protocol. This document describes
 the manner in which a CLA sends and receives bundles when using
 the TCP protocol for inter-node communication.

 Self Describing Numeric Value -- A self describing numeric value
 (SDNV) is a variable length encoding for integer values, defined
 in [refs.bundleproto] and further explained in [RFC6256].

2.2. Definitions specific to the TCPCL Protocol

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6256

Demmer, et al. Expires November 18, 2013 [Page 4]

Internet-Draft DTN TCP Convergence Layer May 2013

 This section contains definitions that are interpreted to be specific
 to the operation of the TCPCL protocol, as described below.

 TCP Connection -- A TCP connection refers to a transport connection
 using TCP as the transport protocol.

 TCPCL Connection -- A TCPCL connection (as opposed to a TCP
 connection) is a TCPCL communication relationship between two
 bundle nodes. The lifetime of a TCPCL connection is one-to-one
 with the lifetime of an underlying TCP connection. Therefore a
 TCPCL connection is initiated when a bundle node initiates a TCP
 connection to be established for the purposes of bundle
 communication. A TCPCL connection is terminated when the TCP
 connection ends, due either to one or both nodes actively
 terminating the TCP connection or due to network errors causing
 a failure of the TCP connection. For the remainder of this
 document, the term "connection" without the prefix "TCPCL" shall
 refer to a TCPCL connection.

 Connection parameters -- The connection parameters are a set of
 values used to affect the operation of the TCPCL for a given
 connection. The manner in which these parameters are conveyed
 to the bundle node and thereby to the TCPCL is implementation-
 dependent. However, the mechanism by which two bundle nodes
 exchange and negotiate the values to be used for a given session
 is described in Section Section 4.2.

 Transmission -- Transmission refers to the procedures and mechanisms
 (described below) for conveyance of a bundle from one node to
 another.

3. General Protocol Description

 This protocol provides bundle conveyance over a TCP connection and
 specifies the encapsulation of bundles as well as procedures for TCP
 connection setup and teardown. The general operation of the protocol
 is as follows:

 First one node establishes a TCPCL connection to the other by
 initiating a TCP connection. After setup of the TCP connection is
 complete, an initial contact header is exchanged in both directions
 to set parameters of the TCPCL connection and exchange a singleton
 endpoint identifier for each node (not the singleton EID of any
 application running on the node), to denote the bundle-layer identity
 of each DTN node. This is used to assist in routing and forwarding
 messages, e.g., to prevent loops.

Demmer, et al. Expires November 18, 2013 [Page 5]

Internet-Draft DTN TCP Convergence Layer May 2013

 Once the TCPCL connection is established and configured in this way,
 bundles can be transmitted in either direction. Each bundle is
 transmitted in one or more logical segments of formatted bundle data.
 Each logical data segment consists of a DATA_SEGMENT message header,
 an SDNV containing the length of the segment, and finally the byte
 range of the bundle data. The choice of the length to use for
 segments is an implementation matter. The first segment for a bundle
 must set the 'start' flag and the last one must set the 'end' flag in
 the DATA_SEGMENT message header.

 An optional feature of the protocol is for the receiving node to send
 acknowledgments as bundle data segments arrive (ACK_SEGMENT). The
 rationale behind these acknowledgments is to enable the sender node
 to determine how much of the bundle has been received, so that in
 case the connection is interrupted, it can perform reactive
 fragmentation to avoid re-sending the already transmitted part of the
 bundle.

 When acknowledgments are enabled, then for each data segment that is
 received, the receiving node sends an ACK_SEGMENT code followed by an
 SDNV containing the cumulative length of the bundle that has been
 received.

 Another optional feature is that a receiver may interrupt the
 transmission of a bundle at any point in time by replying with a
 REFUSE_BUNDLE message which causes the sender to stop transmission of
 the current bundle, after completing transmission of a partially sent
 data segment. Note: This enables a cross-layer optimization in that
 it allows a receiver that detects that it already has received a
 certain bundle to interrupt transmission as early as possible and
 thus save transmission capacity for other bundles.

 For connections that are idle, a KEEPALIVE message may optionally be
 sent at a negotiated interval. This is used to convey liveness
 information.

 Finally, before connections close, a SHUTDOWN message is sent on the
 channel. After sending a SHUTDOWN message, the sender of this
 message may send further acknowledgments (ACK_SEGMENT or
 REFUSE_BUNDLE) but no further data messages (DATA_SEGMENT). A
 SHUTDOWN message may also be used to refuse a connection setup by a
 peer.

Demmer, et al. Expires November 18, 2013 [Page 6]

Internet-Draft DTN TCP Convergence Layer May 2013

3.1. Bidirectional Use of TCP Connection

 Since each message type used in the TCPCL protocol in association
 with sending a bundle is only sent in a specific direction
 (DATA_SEGMENT and LENGTH from bundle sender to receiver, ACK_SEGMENT
 and REFUSE_BUNDLE from receiver to sender) with the remaining
 messages (KEEPALIVE and SHUTDOWN) being associated with the
 connection rather than a particular bundle, a single TCP connection
 can be used bidirectionally to send bundles concurrently from either
 end to the other.

 Note that in the case of concurrent bidirectional transmission, ack
 segments may be interleaved with data segments.

3.2. Example message exchange

 The following figure visually depicts the protocol exchange for a
 simple session, showing the connection establishment, and the
 transmission of a single bundle split into three data segments (of
 lengths L1, L2, and L3) from Node A to Node B.

 Note that the sending node may transmit multiple DATA_SEGMENT
 messages without necessarily waiting for the corresponding
 ACK_SEGMENT responses. This enables pipelining of messages on a
 channel. Although this example only demonstrates a single bundle
 transmission, it is also possible to pipeline multiple DATA_SEGMENT
 messages for different bundles without necessarily waiting for
 ACK_SEGMENT messages to be returned for each one. However,
 interleaving data segments from different bundles is not allowed.

 No errors or rejections are shown in this example.

 Node A Node B
 ====== ======

 +-------------------------+ +-------------------------+
 | Contact Header | -> <- | Contact Header |
 +-------------------------+ +-------------------------+

 +-------------------------+
 | DATA_SEGMENT (start) | ->
 | SDNV length [L1] | ->
 | Bundle Data 0..L1 | ->
 +-------------------------+
 +-------------------------+ +-------------------------+
 | DATA_SEGMENT | -> <- | ACK_SEGMENT |
 | SDNV length [L2] | -> <- | SDNV length [L1] |
 | Bundle Data L1..L2 | -> +-------------------------+

Demmer, et al. Expires November 18, 2013 [Page 7]

Internet-Draft DTN TCP Convergence Layer May 2013

 +-------------------------+
 +-------------------------+ +-------------------------+
 | DATA_SEGMENT (end) | -> <- | ACK_SEGMENT |
 | SDNV length [L3] | -> <- | SDNV length [L1+L2] |
 | Bundle Data L2..L3 | -> +-------------------------+
 +-------------------------+
 +-------------------------+
 <- | ACK_SEGMENT |
 <- | SDNV length [L1+L2+L3] |
 +-------------------------+

 +-------------------------+ +-------------------------+
 | SHUTDOWN | -> <- | SHUTDOWN |
 +-------------------------+ +-------------------------+

 Figure 2: A simple visual example of the flow of protocol messages on
 a single TCP session between two nodes (A and B)

4. Connection Establishment

 For bundle transmissions to occur using the TCPCL, a TCPCL connection
 must first be established between communicating nodes. The manner in
 which a bundle node makes the decision to establish such a connection
 is implementation-dependent. For example, some connections may be
 opened proactively and maintained for as long as is possible given
 the network conditions, while other connections may be opened only
 when there is a bundle that is queued for transmission and the
 routing algorithm selects a certain next hop node.

 To establish a TCPCL connection, a node must first establish a TCP
 connection with the intended peer node, typically by using the
 services provided by the operating system. Port number 4556 has been
 assigned by IANA as the well-known port number for the TCP
 convergence layer. Other port numbers MAY be used per local
 configuration. Determining a peer's port number (if different from
 the well-known TCPCL port) is up to the implementation.

Demmer, et al. Expires November 18, 2013 [Page 8]

Internet-Draft DTN TCP Convergence Layer May 2013

 If the node is unable to establish a TCP connection for any reason,
 then it is an implementation matter to determine how to handle the
 connection failure. A node MAY decide to re-attempt to establish the
 connection, perhaps. If it does so, it MUST NOT overwhelm its target
 with repeated connection attempts. Therefore, the node MUST retry
 the connection setup only after some delay and it SHOULD use a
 (binary) exponential backoff mechanism to increase this delay in case
 of repeated failures. In case a SHUTDOWN message specifying a
 reconnection delay is received, that delay is used as the initial
 delay. The default initial delay SHOULD be at least 1 second but
 SHOULD be configurable since it will be application and network type
 dependent.

 The node MAY declare failure after one or more connection attempts
 and MAY attempt to find an alternate route for bundle data. Such
 decisions are up to the higher layer (i.e., the BP).

 Once a TCP connection is established, each node MUST immediately
 transmit a contact header over the TCP connection. The format of the
 contact header is described in Section 4.1).

 Upon receipt of the contact header, both nodes perform the validation
 and negotiation procedures defined in Section 4.2

 After receiving the contact header from the other node, either node
 MAY also refuse the connection by sending a SHUTDOWN message. If
 connection setup is refused a reason MUST be included in the SHUTDOWN
 message.

4.1. Contact Header

 Once a TCP connection is established, both parties exchange a contact
 header. This section describes the format of the contact header and
 the meaning of its fields.

 The format for the Contact Header is as follows:

Demmer, et al. Expires November 18, 2013 [Page 9]

Internet-Draft DTN TCP Convergence Layer May 2013

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+---------------+---------------+
 | magic='dtn!' |
 +---------------+---------------+---------------+---------------+
 | version | flags | keepalive_interval |
 +---------------+---------------+---------------+---------------+
 | local EID length (SDNV) |
 +---------------+---------------+---------------+---------------+
 | |
 + local EID (variable) +
 | |
 +---------------+---------------+---------------+---------------+

 Figure 3: Contact Header Format

 The fields of the contact header are:

 magic: A four byte field that always contains the byte sequence 0x64
 0x74 0x6e 0x21, i.e., the text string "dtn!".

 version: A one byte field value containing the current version of
 the protocol.

 flags: A one byte field containing optional connection flags. The
 first four bits are unused and MUST be set to zero upon
 transmission and MUST be ignored upon reception. The last four
 bits are interpreted as shown in table Table 1 below.

 keepalive_interval: A two byte integer field containing the number
 of seconds between exchanges of keepalive messages on the
 connection (see Section 5.6). This value is in network byte
 order, as are all other multi-byte fields described in this
 protocol.

 local eid length: A variable length SDNV field containing the length
 of the endpoint identifier (EID) for some singleton endpoint in
 which the sending node is a member. A four byte SDNV is
 depicted for clarity of the figure.

 local EID: An octet string containing the EID of some singleton
 endpoint in which the sending node is a member, in the canonical
 format of <scheme name>:<scheme-specific part>. A eight byte
 EID is shown the clarity of the figure.

 +-------------+---+
 | Value | Meaning |
 +-------------+---+

Demmer, et al. Expires November 18, 2013 [Page 10]

Internet-Draft DTN TCP Convergence Layer May 2013

00000001	Request acknowledgment of bundle segments.
00000010	Request enabling of reactive fragmentation.
00000100	Indicate support for bundle refusal. This flag MUST
	NOT be set to '1' unless support for
	acknowledgments is also indicated.
00001000	Request sending of LENGTH messages.
 +-------------+---+

 Table 1: Contact Header Flags

 The manner in which values are configured and chosen for the various
 flags and parameters in the contact header is implementation
 dependent.

4.2. Validation and parameter negotiation

 Upon reception of the contact header, each node follows the following
 procedures for ensuring the validity of the TCPCL connection and to
 negotiate values for the connection parameters.

 If the magic string is not present or is not valid, the connection
 MUST be terminated. The intent of the magic string is to provide
 some protection against an inadvertent TCP connection by a different
 protocol than the one described in this document. To prevent a flood
 of repeated connections from a misconfigured application, a node MAY
 elect to hold an invalid connection open and idle for some time
 before closing it.

 If a node receives a contact header containing a version that is
 greater than the current version of the protocol that the node
 implements, then the node SHOULD interpret all fields and messages as
 it would normally. If a node receives a contact header with a
 version that is lower than the version of the protocol that the node
 implements, the node may either terminate the connection due to the
 version mismatch, or may adapt its operation to conform to the older
 version of the protocol. This decision is an implementation matter.

 A node calculates the parameters for a TCPCL connection by
 negotiating the values from its own preferences (conveyed by the
 contact header it sent) with the preferences of the peer node
 (expressed in the contact header that it received). This negotiation
 MUST proceed in the following manner:

 The segment acknowledgments enabled parameter is set to true iff
 the corresponding flag is set in both contact headers.

 The reactive fragmentation enabled parameter is set to true iff
 the corresponding flag is set in both contact headers.

Demmer, et al. Expires November 18, 2013 [Page 11]

Internet-Draft DTN TCP Convergence Layer May 2013

 The bundle refusal capability may only be used iff both peers
 indicate support for it in their contact header and segment
 acknowledgement has been enabled.

 The keepalive_interval parameter is set to the minimum value
 from both contact headers. If one or both contact headers
 contains the value zero, then the keepalive feature (described
 in Section 5.6) is disabled.

 Once this process of parameter negotiation is completed, the protocol
 defines no additional mechanism to change the parameters of an
 established connection; to effect such a change, the connection MUST
 be terminated and a new connection established.

5. Established Connection Operation

 This section describes the protocol operation for the duration of an
 established connection, including the mechanisms for transmitting
 bundles over the connection.

5.1. Message Type Codes

 After the initial exchange of a contact header, all messages
 transmitted over the connection are identified by a one octet header
 with the following structure:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | type | flags |
 +-+-+-+-+-+-+-+-+

 type: Indicates the type of the message as per Table 2 below

 flags: Optional flags defined on a per message type basis.

 The types and values for the message type code are as follows.

 +-----------------+-----------+-------------------------------------+
 | Type | Code | Comment |
 +-----------------+-----------+-------------------------------------+
	0x0	Reserved.
DATA_SEGMENT	0x1	Indicates the transmission of a
		segment of bundle data, described
		in Section 5.2.
ACK_SEGMENT	0x2	Acknowledges reception of a data

Demmer, et al. Expires November 18, 2013 [Page 12]

Internet-Draft DTN TCP Convergence Layer May 2013

		segment, described in Section 5.3
REFUSE_BUNDLE	0x3	Indicates that the transmission of
		the current bundle shall be
		stopped, described in Section 5.4.
KEEPALIVE	0x4	Keepalive message for the
		connection, described in Section
		5.6.
SHUTDOWN	0x5	Indicates that one of the nodes
		participating in the connection
		wishes to cleanly terminate the
		connection, described in Section 6.
LENGTH	0x6	Contains the length (in bytes) of
		the next bundle, described in
		Section 5.5.
	0x7-0xf	Unassigned.
 +-----------------+-----------+-------------------------------------+

 Table 2: TCPCL Header Types

5.2. Bundle Data Transmission

 Each bundle is transmitted in one or more data segments. The format
 of a data segment message follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0x1 |0|0|S|E| length ... | contents.... |
 +-+

 Figure 4: Format of bundle data segment messages

 The type portion of the message header contains the value 0x1.

 The flags portion of the message header octet contains two optional
 values in the two low-order bits, denoted 'S' and 'E' above. The 'S'
 bit MUST be set to one iff it precedes the transmission of the first
 segment of a new bundle. The 'E' bit MUST be set to one when
 transmitting the last segment of a bundle.

 Determining the size of the segment is an implementation matter. In
 particular, a node may, based on local policy or configuration, only

Demmer, et al. Expires November 18, 2013 [Page 13]

Internet-Draft DTN TCP Convergence Layer May 2013

 ever transmit bundle data in a single segment, in which case both the
 'S' and 'E' bits MUST be set to one. However, a node MUST be able to
 receive a bundle that has been transmitted in any segment size.

 In the bundle protocol specification, a single bundle comprises a
 primary bundle block, a payload block, and zero or more additional
 bundle blocks. The relationship between the protocol blocks and the
 convergence layer segments is an implementation-specific decision.
 In particular, a segment MAY contain more than one protocol block;
 alternatively, a single protocol block (such as the payload) MAY be
 split into multiple segments.

 However, a single segment MUST NOT contain data of more than a single
 bundle.

 Once a transmission of a bundle has commenced, the node MUST only
 send segments containing sequential portions of that bundle until it
 sends a segment with the 'E' bit set.

 Following the message header, the length field is an SDNV containing
 the number of bytes of bundle data that are transmitted in this
 segment. Following this length is the actual data contents.

5.3. Bundle Acknowledgments

 Although the TCP transport provides reliable transfer of data between
 transport peers, the typical BSD sockets interface provides no means
 to inform a sending application of when the receiving application has
 processed some amount of transmitted data. Thus after transmitting
 some data, a bundle protocol agent needs an additional mechanism to
 determine whether the receiving agent has successfully received the
 segment.

 To this end, the TCPCL protocol offers an optional feature whereby a
 receiving node transmits acknowledgments of reception of data
 segments. This feature is enabled if and only if during the exchange
 of contact headers, both parties set the flag to indicate that
 segment acknowledgments are enabled (see Section 4.1). If so, then
 the receiver MUST transmit a bundle acknowledgment header when it
 successfully receives each data segment.

 The format of a bundle acknowledgment is as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0x2 |0|0|0|0| acknowledged length ... |
 +-+

Demmer, et al. Expires November 18, 2013 [Page 14]

Internet-Draft DTN TCP Convergence Layer May 2013

 Figure 5: Format of bundle acknowledgement messages

 To transmit an acknowledgment, a node first transmits a message
 header with the ACK_SEGMENT type code and all flags set to zero, then
 transmits an SDNV containing the cumulative length of the received
 segment(s) of the current bundle. The length MUST fall on a segment
 boundary. That is, only full segments can be acknowledged.

 For example, suppose the sending node transmits four segments of
 bundle data with lengths 100, 200, 500, and 1000 respectively. After
 receiving the first segment, the node sends an acknowledgment of
 length 100. After the second segment is received, the node sends an
 acknowledgment of length 300. The third and fourth acknowledgments
 are of length 800 and 1800 respectively.

5.4. Bundle Refusal

 As bundles may be large, the TCPCL supports an optional mechanisms by
 which a receiving node may indicate to the sender that it does not
 want to receive the corresponding bundle.

 To do so, upon receiving a DATA_SEGMENT message, the node MAY
 transmit a REFUSE_BUNDLE message. As data segments and
 acknowledgments may cross on the wire, the bundle that is being
 refused is implicitly identified by the sequence in which
 acknowledgements and refusals are received.

 The format of the REFUSE_BUNDLE message is as follows:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | 0x3 | RCode |
 +-+-+-+-+-+-+-+-+

 Figure 6: Format of REFUSE_BUNDLE message

 The RCode field, which stands for "reason code", contains a value
 indicating why the bundle was refused. The following table contains
 semantics for some values. Other values may be registered with IANA,
 as defined in Section 8.

 +-----------+---+
 | RCode | Semantics |
 +-----------+---+
0x0	Reason for refusal is unknown or not specified.
0x1	The receiver now has the complete bundle. The sender
	may now consider the bundle as completely received.
0x2	The receiver's resources are exhausted. The sender

Demmer, et al. Expires November 18, 2013 [Page 15]

Internet-Draft DTN TCP Convergence Layer May 2013

	SHOULD apply reactive bundle fragmentation before
	retrying.
0x3	The receiver has encountered a problem that requires
	the bundle to be retransmitted in its entirety.
0x4-0x7	Unassigned.
0x8-0xf	Reserved for future usage.
 +-----------+---+

 Table 3: REFUSE_BUNDLE Reason Codes

 The receiver MUST, for each bundle preceding the one to be refused,
 have either acknowledged all DATA_SEGMENTs or refused the bundle.
 This allows the sender to identify the bundles accepted and refused
 by means of a simple FIFO list of segments and acknowledgments.

 The bundle refusal MAY be sent before the entire data segment is
 received. If a sender receives a REFUSE_BUNDLE message, the sender
 MUST complete the transmission of any partially-sent DATA_SEGMENT
 message (so that the receiver stays in sync). The sender MUST NOT
 commence transmission of any further segments of the rejected bundle
 subsequently. Note, however, that this requirement does not ensure
 that a node will not receive another DATA_SEGMENT for the same bundle
 after transmitting a REFUSE_BUNDLE message since messages may cross
 on the wire; if this happens, subsequent segments of the bundle
 SHOULD be refused with a REFUSE_BUNDLE message, too.

 Note: If a bundle transmission if aborted in this way, the receiver
 may not receive a segment with the 'E' flag set to '1' for the
 aborted bundle. The beginning of the next bundle is identified by
 the 'S' bit set to '1', indicating the start of a new bundle.

5.5. Bundle Length

 The format of the LENGTH message is as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0x6 |0|0|0|0| total bundle length ... |
 +-+

 Figure 7: Format of LENGTH messages

 The LENGTH message contains the total length, in bytes, of the next
 bundle, formatted as an SDNV. Its purpose is to allow nodes to
 preemptively refuse bundles that would exceed their resources. It is
 an optimization.

Demmer, et al. Expires November 18, 2013 [Page 16]

Internet-Draft DTN TCP Convergence Layer May 2013

 LENGTH messages MUST NOT be sent unless the corresponding flag bit is
 set in the contact header. If the flag bit is set, LENGTH messages
 MAY be sent, at the sender's discretion. LENGTH messages MUST NOT be
 sent unless the next DATA_SEGMENT message has the S bit set to 1
 (i.e., just before the start of a new bundle).

 A receiver MAY send a BUNDLE_REFUSE message as soon as it receives a
 LENGTH message, without waiting for the next DATA_SEGMENT message.
 The receiver MUST be prepared for this and MUST associate the refusal
 with the right bundle.

5.6. Keepalive Messages

 The protocol includes a provision for transmission of keepalive
 messages over the TCP connection to help determine if the connection
 has been disrupted.

 As described in Section 4.1, one of the parameters in the contact
 header is the keepalive_interval. Both sides populate this field
 with their requested intervals (in seconds) between keepalive
 messages.

 The format of a keepalive message is a one byte message type code of
 KEEPALIVE (as described in Table 2, with no additional data. Both
 sides SHOULD send a keepalive message whenever the negotiated
 interval has elapsed with no transmission of any message (keepalive
 or other).

 If no message (keepalive or other) has been received for at least
 twice the keepalive interval, then either party may terminate the
 session by transmitting a one byte message type code of SHUTDOWN (as
 described in Table 2) and closing the TCP connection.

 Note: The keepalive interval should not be chosen too short as TCP
 retransmissions may occur in case of packet loss. Those will have to
 be triggered by a timeout (TCP RTO) which is dependent on the
 measured RTT for the TCP connection so that keepalive message may
 experience noticeable latency.

6. Connection Termination

 This section describes the procedures for ending a TCPCL connection.

Demmer, et al. Expires November 18, 2013 [Page 17]

Internet-Draft DTN TCP Convergence Layer May 2013

6.1. Shutdown Message

 To cleanly shut down a connection, a SHUTDOWN message MUST be
 transmitted by either node at any point following complete
 transmission of any other message. In case acknowledgments have been
 negotiated, it is advisable to acknowledge all received data segments
 first and then shut down the connection.

 The format of the shutdown message is as follows:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0x5 |0|0|R|D| reason (opt) | reconnection delay (opt) |
 +-+

 Figure 8: Format of bundle shutdown messages

 It is possible for a node to convey additional information regarding
 the reason for connection termination. To do so, the node MUST set
 the 'R' bit in the message header flags, and transmit a one-byte
 reason code immediately following the message header. The specified
 values of the reason code are:

 +---------------+---------------+-----------------------------------+
 | Code | Meaning | Comment |
 +---------------+---------------+-----------------------------------+
0x00	Idle timeout	The connection is being closed
		due to idleness.
0x01	Version	The node cannot conform to the
	mismatch	specified TCPCL protocol version.
0x02	Busy	The node is too busy to handle
		the current connection.
0x03-0xff		Unassigned.
 +---------------+---------------+-----------------------------------+

 Table 4: Shutdown Reason Codes

 It is also possible to convey a requested reconnection delay to
 indicate how long the other node must wait before attempting
 connection re-establishment. To do so, the node sets the 'D' bit in
 the message header flags, then transmits an SDNV specifying the
 requested delay, in seconds, following the message header (and
 optionally the shutdown reason code). The value 0 SHALL be
 interpreted as an infinite delay, i.e., that the connecting node MUST
 NOT re-establish the connection. In contrast, if the node does not

Demmer, et al. Expires November 18, 2013 [Page 18]

Internet-Draft DTN TCP Convergence Layer May 2013

 wish to request a delay, it SHOULD omit the delay field (and set the
 'D' bit to zero). Note that in the figure above, a two octet SDNV is
 shown for convenience of the presentation.

 A connection shutdown MAY occur immediately after TCP connection
 establishment or reception of a contact header (and prior to any
 further data exchange). This may, for example, be used to notify
 that the node is currently not capable of or willing to communicate.
 However, a node MUST always send the contact header to its peer
 before sending a SHUTDOWN message.

 If either node terminates a connection prematurely in this manner, it
 SHOULD send a SHUTDOWN message and MUST indicate a reason code unless
 the incoming connection did not include the magic string. If a node
 does not want its peer to re-open the connection immediately, it
 SHOULD set the 'D' bit in the flags and include a reconnection delay
 to indicate when the peer is allowed to attempt another connection
 setup.

 If a connection is to be terminated before another protocol message
 has completed, then the node MUST NOT transmit the SHUTDOWN message
 but still SHOULD close the TCP connection. In particular, if the
 connection is to be closed (for whatever reason) while a node is in
 the process of transmitting a bundle data segment, receiving node is
 still expecting segment data and might erroneously interpret the
 SHUTDOWN message to be part of the data segment.

6.2. Idle Connection Shutdown

 The protocol includes a provision for clean shutdown of idle TCP
 connections. Determining the length of time to wait before closing
 idle connections, if they are to be closed at all, is an
 implementation and configuration matter.

 If there is a configured time to close idle links, then if no bundle
 data (other than keepalive messages) has been received for at least
 that amount of time, then either node MAY terminate the connection by
 transmitting a SHUTDOWN message indicating the reason code of 'idle
 timeout' (as described above). After receiving a SHUTDOWN message in
 response, both sides may close the TCP connection.

7. Security Considerations

 One security consideration for this protocol relates to the fact that
 nodes present their endpoint identifier as part of the connection
 header exchange. It would be possible for a node to fake this value
 and present the identity of a singleton endpoint in which the node is
 not a member, essentially masquerading as another DTN node. If this

Demmer, et al. Expires November 18, 2013 [Page 19]

Internet-Draft DTN TCP Convergence Layer May 2013

 identifier is used without further verification as a means to
 determine which bundles are transmitted over the connection, then the
 node that has falsified its identity may be able to obtain bundles
 that it should not have.

 These concerns may be mitigated through the use of the Bundle
 Security Protocols [refs.dtnsecurity]. In particular, the Bundle
 Authentication Header defines mechanism for secure exchange of
 bundles between DTN nodes. Thus an implementation could delay
 trusting the presented endpoint identifier until the node can
 securely validate that its peer is in fact the only member of the
 given singleton endpoint.

 Another consideration for this protocol relates to denial of service
 attacks. A node may send a large amount of data over a TCP
 connection, requiring the receiving node to either handle the data,
 attempt to stop the flood of data by sending a REFUSE_BUNDLE message,
 or forcibly terminate the connection. This burden could cause denial
 of service on other, well-behaving connections. There is also
 nothing to prevent a malicious node from continually establishing
 connections and repeatedly trying to send copious amounts of bundle
 data. A listening node MAY take counter-measures such as ignoring
 TCP SYN messages, closing TCP connections as soon as they are
 established, waiting before sending the contact header, sending a
 SHUTDOWN message quickly or with a delay, etc.

8. IANA Considerations

 In this section, registration procedures are as defined in [RFC5226].

8.1. Port Number

 Port number 4556 has been assigned as the default port for the TCP
 convergence layer.

8.2. Protocol Versions

 IANA is asked to create a registry titled "Bundle Protocol TCP
 Convergence Layer Version Numbers" and initialize it with the
 following:

 +-------+-----------+
 | Value | Reference |
 +-------+-----------+
 | 0 | [RFCXXXX] |
 | 1 | [RFCXXXX] |
 | 2 | [RFCXXXX] |
 | 3 | [RFCXXXX] |

https://datatracker.ietf.org/doc/html/rfc5226

Demmer, et al. Expires November 18, 2013 [Page 20]

Internet-Draft DTN TCP Convergence Layer May 2013

 +-------+-----------+

 (NOTE TO THE EDITOR: in the above, replace XXXX with this RFC number)

 The registration procedure shall be RFC Required.

8.3. Message Types

 IANA is asked to create a registry titled "Bundle Protocol TCP
 Convergence Layer Message Types" and initialize it with the contents
 of Table 2. The registration procedure shall be RFC Required.

8.4. REFUSE Reason Codes

 IANA is asked to create a registry titled "Bundle Protocol TCP
 Convergence Layer REFUSE Reason Codes" and initialize it with the
 contents of Table 3. The registration procedure shall be RFC
 Required.

8.5. SHUTDOWN Reason Codes

 IANA is asked to create a registry titled "Bundle Protocol TCP
 Convergence Layer SHUTDOWN Reason Codes" and initialize it with the
 contents of Table 4. The registration procedure shall be RFC
 Required.

9. Acknowledgements

 The authors would like to thank the following individuals who have
 participated in the drafting, review, and discussion of this memo:
 Alex McMahon, Brenton Walker, Darren Long, Elwyn Davies, Jean-
 Philippe Dionne, Joseph Ishac, Keith Scott, Kevin Fall, Lloyd Wood,
 Marc Blanchet, Peter Lovell, Scott Burleigh, Stephen Farrell, Vint
 Cerf, and William Ivancic.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [refs.bundleproto]

Demmer, et al. Expires November 18, 2013 [Page 21]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226

Internet-Draft DTN TCP Convergence Layer May 2013

 Scott, K. and S. Burleigh, "Bundle Protocol
 Specification", RFC 5050, November 2007.

10.2. Informative References

 [RFC6256] Eddy, W. and E. Davies, "Using Self-Delimiting Numeric
 Values in Protocols", RFC 6256, May 2011.

 [refs.dtnarch]
 Cerf et al, V., "Delay-Tolerant Network Architecture", RFC

4838, April 2007.

 [refs.dtnimpl]
 DTNRG, , "Delay Tolerant Networking Reference
 Implementation", , <http://www.dtnrg.org/Code>.

 [refs.dtnsecurity]
 Symington, S., Farrell, S., and H. Weiss, "Bundle Security
 Protocol Specification", Internet Draft, work in progress

draft-irtf-dtnrg-bundle-security-03.txt, April 2007.

Authors' Addresses

 Michael J. Demmer
 University of California, Berkeley
 Computer Science Division
 445 Soda Hall
 Berkeley, CA 94720-1776
 US

 Email: demmer@cs.berkeley.edu

 Joerg Ott
 Helsinki University of Technology
 Department of Communications and Networking
 PO Box 3000
 TKK 02015
 Finland

 Email: jo@netlab.tkk.fi

Demmer, et al. Expires November 18, 2013 [Page 22]

https://datatracker.ietf.org/doc/html/rfc5050
https://datatracker.ietf.org/doc/html/rfc6256
https://datatracker.ietf.org/doc/html/rfc4838
https://datatracker.ietf.org/doc/html/rfc4838
http://www.dtnrg.org/Code
https://datatracker.ietf.org/doc/html/draft-irtf-dtnrg-bundle-security-03.txt

Internet-Draft DTN TCP Convergence Layer May 2013

 Simon Perreault
 Viagenie
 246 Aberdeen
 Quebec, QC G1R 2E1
 Canada

 Phone: +1 418 656 9254
 Email: simon.perreault@viagenie.ca

Demmer, et al. Expires November 18, 2013 [Page 23]

