
AAAARCH Research Group
INTERNET DRAFT
Category: Experimental S.M.C.M. van Oudenaarde
 L.H.M. Gommans
 C.T.A.M. de Laat
 F. Dijkstra
 A. Taal
 September 2004

Prototype of a Generic AAA Server
draft-irtf-aaaarch-prototype-02.txt

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 or will be disclosed, and any of which I become aware will be
 disclosed, in accordance with RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This memo describes work in progress within the AAAARCH Research
 Group. Comments are welcome and should be submitted to
 aaaarch@fokus.gmd.de.

 Distribution of this memo is unlimited.

https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Oudenaarde et al. Expires: March 2005 [Page 1]

Experimental RFC Prototype of a Generic AAA Server September 2004

Abstract

 In this document a prototype of an AAA (Authentication,
 Authorization, Accounting) server is presented. The prototype is
 build in accordance with the RFCs 2903, 2904 and 2905.
 As the AAA concept is a multi-tier concept we have chosen for JAVA
 Enterprise Beans (J2EE) to build the prototype. New techniques
 and protocols supported by the J2EE platform are discussed. Web
 service standards like SOAP are explored. A general architecture
 of an AAA server is outlined in Enterprise JavaBeans (EJB)
 component architecture.

Table of Contents

 Status of this Memo . 1
 Copyright Notice . 1
 Abstract . 2

1. Introduction . 3
2. Generic AAA Architecture 3
2.1 Agent, pull and push sequences 4
2.1.1 The agent sequence 4
2.1.2 The 'push' and 'pull' sequence 5
3. The demo setup . 5
4. Implementation details 6
4.1 AAA Requests in the Generic AAA Architecture 6
4.2 Interface(s) . 8
4.3 Driving Policy . 9
4.4 ASM Framework . 10
4.5 Session . 11
5. Conclusions and suggestions for further research 11
Appendix A . 12
Appendix B . 13

 References . 16
 Authors' Addresses . 16

Oudenaarde et al. Expires: March 2005 [Page 2]

Experimental RFC Prototype of a Generic AAA Server September 2004

1. Introduction

 The RFCs 2903, 2904 and 2905 describe the concept of AAA,
 Authentication, Authorization and Accounting. These RFCs were a
 product of the AAAARCH research group of the IRTF. As members of
 this research group we present a prototype of an AAA server in
 accordance with these RFCs. We have chosen for the J2EE platform
 that offers a multitiered distributed application model. The J2EE
 environment offers support for Extensible Markup Language (XML)-
 based data interchange, flexible transaction control, an unified
 security model, and Web services that are based on SOAP and
 HTTP. Several key parts of the AAA concept, not specified in the
 above mentioned RFCs, are introduced. One newly introduced key
 part is a so called AAA Driving Policy. For each request an AAA
 server understands there exists a corresponding Driving Policy
 that is evaluated. The main task of a Driving Policy is to
 describe which pre-conditions have to be checked before actions,
 needed to fulfill an incoming AAA request, are delegated to
 Application Specific Modules. AAA requests are expressed in XML
 whereas Driving Polices are expressed in a special policy language
 (see Appendix A). AAA servers will be specialized in delivering
 certain kind of services. Support for WSDL, an XML format for
 describing network or web services, and support for UDDI, a meta
 service for discovering network or web services, are integrated
 into the AAA concept. These techniques give clients the
 possibility to discover to which AAA server they should address
 what kind of request in order to get the service of their desire
 delivered. Part of the J2EE platform is the Enterprise JavaBeans
 (EJB) standard. This is a component architecture for deployable
 server-side components in Java. The generic AAA server is build
 of EJB components, Session Beans and Entity Beans.

2. Generic AAA Architecture

 Before discussing implementation details we will outline an
 abstract view of the Generic AAA Architecture. The Generic AAA
 Architecture comprises of four major components, fig. 1. An AAA
 Request is any kind of message that asks for a service.
 When a Generic AAA Server receives an AAA Request it will initiate
 the evaluation of a policy, a so-called Driving Policy. This
 Driving Policy instructs the Generic AAA Server what conditions
 need to be checked before certain Service Equipment is told to do
 something. Service Equipment can be anything, like switches,
 routers, bandwidth brokers, network access equipment, remote
 instrumentation, etc. The ASM, Application Specific Module, forms
 an API to communicate with the Service Equipment. So an

 Application Specific Module is a component of an AAA Server that
 allows Driving Policies to influence Service Equipment.
 There exists a tight relationship between AAA Requests, Driving
 Policies, and Application Specific Modules. Firstly, AAA Requests
 and Driving Policies have a one-to-one and onto relationship.

Oudenaarde et al. Expires: March 2005 [Page 3]

Experimental RFC Prototype of a Generic AAA Server September 2004

 +-------------+
 |+-------------+
 +| AAA Request |
 +-------------+
 /\
 / \
 / \
 / \
 / \
 / Generic \
 / AAA \
 /--------------\
 +----------------+ +-------+
 |+----------------+ |+-------+
 +| Driving Policy | +| ASM |
 +----------------+ +-------+

 Fig. 1 Components of the Generic AAA Architecture

 Based on the request type, the AAA server to retrieve the Driving
 Policy that needs evaluation. All actions in a Driving Policy
 refer either to a generic function the Generic AAA is equipped
 with or to an Application Specific Module.

2.1 Agent, pull and push sequences

 In RFC 2904 "AAA Authorization Framework" three authorization
 sequences are described, the 'agent', the 'pull', and the 'push'
 sequence. In the following we focus on the æagentÆ model.

2.1.1 The agent sequence

 In the agent sequence (fig. 2), the AAA Server functions as an
 agent between the User and the Service Equipment (SE). The User
 sends a Request to the AAA Server (1). The Interface unpacks the
 Request and sends it to a Rule Based Engine (RBE) (2). Before the
 RBE will retrieve the corresponding Driving Policy and Reply from
 the Policy Repository (PR) (4), it asks for a new Session to be
 created (3). Instructed by the Driving Policy the RBE calls one
 or more ASMs (5) and passes the arguments needed. While an AAA
 server has exactly one RBE defined, and one Session Manager, it
 may have multiple ASMs at its disposal. Arguments passed to an

https://datatracker.ietf.org/doc/html/rfc2904

 ASM may originate from the incoming request or from values
 returned by previous calls. These arguments might be needed by
 the Service Equipment the ASM interfaces to (6). Values returned
 by an ASM (7) may also be inserted into the Reply to the User.
 Once the Driving Policy has been decided the Reply is returned to
 the User (8,9). When there is no need for the Session Manager to
 keep the information of this Session into persistent storage after

Oudenaarde et al. Expires: March 2005 [Page 4]

Experimental RFC Prototype of a Generic AAA Server September 2004

 the User received an answer, the Session Manager might write that
 information into a log file.

 ..
 : :
 +------+ : +-----------+ AAA :
 | |---1---->| | :
 | User | : | Interface | :
 | |<--9-----| | :
 +------+ : +-----------+ +-------- + :
 : ^ | | Session | :
 : | | ->| Manager | :
 : 8 2 / +---------+ :
 : | v 3 :
 : +------+ / :
 : | |<--/ +------+ :
 : | RBE |----5---->| ASM |+ :
 : | |<---7-----| || :
 : +------+ +------+| :
 : ^ +^----+ :
 : 4 | 6 | :
 :.........|................|.................:
 v v
 +-----+ +-----+
 | PR | | SE |
 +-----+ +-----+

 Fig. 2 Schematic view of an agent sequence.

2.1.2 The 'push' and 'pull' sequence

 In the 'pull' sequence, as defined in [RFC 2904], the User sends a
 service request to the Service Equipment, which forwards it to an
 AAA Server. The AAA Server evaluates the request and returns an
 appropriate response to the Service Equipment, which sets up the
 service and tells the User it is ready. Here the Service
 Equipment sends an AAA Request to the AAA Server. In general the
 the User and Service Equipment apply a different protocol, and the
 Service Equipment has to translate the request from the User and
 the Reply from the AAA Server. In the 'push' sequence it is the
 User that in general applies two different protocols. There the
 User gets from an AAA Server a ticket or certificate verifying
 that it is o.k. for the User to have access to a Service
 Equipment.

https://datatracker.ietf.org/doc/html/rfc2904

3. The demo setup

 The AAA server build of EJB components and discussed below is
 applied in the following setup (fig. 3). We setup a QoS (Quality
 of Service) path provision demo between two administrative
 domains.

Oudenaarde et al. Expires: March 2005 [Page 5]

Experimental RFC Prototype of a Generic AAA Server September 2004

 In each administrative domain an AAA server (2 and 3) takes care
 of the admission control of the network elements needed for the
 QoS path. The network elements, Calient Optical Cross Connects
 (OXC), were interconnected by two optical links (lambda 1 and 2).
 One domain, called NetherLight, was situated at the Dutch optical
 research facility. The other domain, called StarLight, was at the
 USA Chicago-based counterpart. In fig. 3 the AAA server 1 acts as
 a broker that tries to find the resources, i.e. the AAA servers 2
 and 3 needed to setup the QoS path. The authorization decision is
 a multi-domain decision. Both 'admission-AAAs' (2 and 3) will
 make local decisions that are used in an overall authorization
 decision by the 'broker-AAA' (1). All three AAA servers have in
 their own Driving Policy. The Driving Policies applied by the
 'admission-AAAs' refer for complex tasks, like configuration
 checks on the state of the OXCs, to their own ASMs.
 These ASMs are hiding the complexity of the tasked to be performed
 for the setup of the QoS path. If a User's request is satisfied,
 a dedicated optical path is provisioned, which could be used for
 large traffic between the two domains.

 +-----+ +-----+
 | OXC |------------lambda 1 -------------| OXC |
 | | | |
 | |----------- lambda 2 ------------ | |
 +-----+ +-----+
 | |
 | |
 +-----+ +-----+
 | AAA | | AAA |
 | 2 | | 3 |
 +-----+ +-----+
 | |
 \ /
 \ +-----+ /
 \----------------| AAA |-------------/
 | 1 |
 +-----+
 |
 () |
 -()- ------/
 /\
 User

 Fig. 3 Demo setup for QoS path provision.

4. Implementation details

4.1 AAA Requests in the Generic AAA Architecture

 An AAA Request defines what can be asked of or provided to a
 Generic AAA Server. For each kind of AAA Request data objects

Oudenaarde et al. Expires: March 2005 [Page 6]

Experimental RFC Prototype of a Generic AAA Server September 2004

 should be defined with the information that can be incorporated
 into a specific AAA Request. To accommodate all possible future
 services by a limited number of predefined AAA Requests is
 undoable. There is only a need to predefine AAA Requests for the
 inter communication among AAA Servers, e.g. a request for remote
 authorization or policy evaluation. Web services standards such
 as SOAP, WSDL and UDDI will enable the creation of AAA Server
 specific Requests and data objects contained, e.g. how construct
 an AAA Request to order a pizza at a pizza AAA Server.
 The WSDL (Web Services Description Language) is an XML-based
 document that defines the inputs and outputs of a Web Service,
 including the XML Schemas that should be used to create the input
 and output documents. Using WSDL, AAA Request/Reply pairs might
 be described for special Web Services. Fig 4 shows a logical view
 of the Web services architecture. The Service Registry provides a
 centralized location for storing service descriptions. An UDDI
 registry is an example of this type of service registry.

 +------------------+
 =======>| Service Registry |<=======
 || +------------------+ ||
 Find || || Publish
 || ||
 \/ \/
 +-------------------+ Bind +------------------+
 | Service Requestor |<==========>| Service Provider |
 +-------------------+ +------------------+

 Fig. 4

 In our setup the User sends its (XML) Request in the body of a
 SOAP message over HTTP. A simple Bandwidth on Demand (BoD)
 Request the 'broker-AAA' accepts, might look like:

 <AAA:AAARequest
 xmlns:AAA="http://www.aaaarch.org/ns/AAA_BoD"
 xmlns:xsi ="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.aaaarch.org/ns/AAA_BoD

http://169.254.0.1/LambdaBoDRequest.xsd"
 version="0.1" type="LambdaBoDCross" >
 <Authentication>
 <Signature>17520</Signature>
 <User>Joe</User>
 </Authentication>
 <Authorization>
 <CredentialID>7531</CredentialID>

http://169.254.0.1/LambdaBoDRequest

 </Authorization>
 <BoDData>
 <Source>
 <Hostname>hp2</Hostname>
 <OXCName>BeautyCees</OXCName>

Oudenaarde et al. Expires: March 2005 [Page 7]

Experimental RFC Prototype of a Generic AAA Server September 2004

 <OXCDomain>NetherLight</OXCDomain>
 <OXCPort>2</OXCPort>
 </Source>
 <Destination>
 <Hostname>scyalla5</Hostname>
 <OXCName>CHI</OXCName>
 <OXCDomain>StarLight</OXCDomain>
 <OXCPort>2</OXCPort>
 </Destination>
 <Bandwidth>1000</Bandwidth>
 <StartTime>now</StartTime>
 <Duration>20</Duration>
 </BoDData>
 </AAA:AAARequest>

 The 'type' attribute of the first XML-tag, 'LambdaBoDCross'
 indicates the kind of Request and is used by the Rule Base Engine
 to retrieve the corresponding Driving Policy from the repository.
 Also, this version of the policy is limited to two domains. A
 typical policy would incorporate usage of a route discovery ASM.

4.2. Interface(s)

 We use a servlet, a web-tier component, as a facade for making the
 AAA functionality available to the outside world. There are a
 couple of advantages for this approach. As the AAA functionality
 is based on EJB-technology, both the Client tier and the EJB tier
 implementation are independent. Clients may access EJB components
 through a RMI-IIOP connection, but that excludes clients behind a
 firewall. This fact also favors the choice for a servlet as a
 single point of access, as firewalls are transparent for HTTP.
 Additionally an EJB component has to expose its remote interface
 in order to communicate with the outside world. This means that
 every single call of the client on an EJB component initiates a
 remote (RPC) call over the network. For each invocation the EJB
 Server checks security, transactionality, etc. This might lay a
 heavy load on the EJB Server in case several methods on several
 EJB components need to be called by the client in order to get a
 service done. All these problems are circumvent by a servlet as a
 single point of entry using the local interface of a session bean
 (EJB2.0). The session bean the servlet interfaces to is the RBE
 that will contact those EJB components needed for the service
 requested. Which EJB components are needed are described by a
 Driving Policy.
 Only some simple actions are performed by the servlet. It
 extracts the Request from the body of the SOAP message and checks

 the schema attributes. It are these attributes the parser of the
 RBE will apply and they should be correct.

Oudenaarde et al. Expires: March 2005 [Page 8]

Experimental RFC Prototype of a Generic AAA Server September 2004

4.3 Driving Policy

 In the policy language designed and applied, a Driving Policy is
 of the form 'if(Condition) then (ActionList) else
 (ActionList)'. For the grammar see Appendix A. An
 'if-then-else' structure has a Boolean truth-value, it is 'true'
 if its Condition is 'true', and it is 'false' if its Condition is
 'false'.

 To facilitate the discussion we present a simple Driving Policy in
 chunks (this is not supported by the grammar). A simple Driving
 Policy for an AAA server that accepts the above Service request
 looks like:

 if(ASM::Authenticator.CheckSignature(
 Request::Authentication.Signature,
 Request::Authentication.User)
)
 then(ACTION_LIST_1)
 else(Reply::Error.Message = "Authorization failed")

 The authentication is delegated to an ASM called Authenticator.
 Two arguments from the incoming Request are passed to a member
 function 'CheckSignature' of the authenticator. When the
 authentication succeeds the action list ' ACTION_LIST_1' in the
 then-part is executed, otherwise an error message is returned.
 Action list 'ACTION_LIST_1' consists of two actions, a call to an
 ASM and an if-then-else structure:

 credential = ASM::Authorizor.CheckCredentials(
 Request::Authorization.credentialID)
 ;
 if(ASM::RM.CheckMultiDomain(
 Request::BoDData.Source.OXCDomain,
 Request::BoDData.Destination.OXCDomain)
)
 then(ACTION_LIST_2_1)
 else(ACTION_LIST_2_2)

 The return state of the 'CheckCredentials' call is assigned to a
 policy variable 'credential' for later use. Next an resource
 manager (RM) is asked whether the connection requested is a
 muti-domain connection or just a single domain set-up. In case
 a multi-domain set-up is required action list 'ACTION_LIST_2_1'

 is executed. We confined the discussion to the multi-domain
 set-up. Action list ACTION_LIST_2_1 has the form:

 lambda = ASM::RM.Connection(
 Request::BoDData.Source.OXCDomain,
 Request::BoDData.Destination.OXCDomain)
 ;

Oudenaarde et al. Expires: March 2005 [Page 9]

Experimental RFC Prototype of a Generic AAA Server September 2004

 if((lambda <= 0))
 then(Reply::Error.Message = "No connection available between
 domains")
 else(ACTION_LIST_3)

 The connection between the two domains is a virtual lambda and
 further actions are needed to resolve this virtual connection
 [FGCS]. In action list 'ACTION_LIST_3' the requested connection
 is provisioned:

 r1 = ASM::AAABean.Cross(credential,
 Request::BoDData.Source.OXCDomain,
 lambda,
 Request::BoDData.Source.OXCPort,
 Request::BoDData.Bandwidth,
 Request::BoDData.StartTime,
 Request::BoDData.Duration)
 ;
 if((r1 <= 0))
 then(Reply::Error.Message = "failed to make cross-connect to
 port in SRC domain")
 else(ACTION_LIST_4)

 Here the call 'Cross' results in an AAA Request to the AAA Server
 of the source domain, in fig. 3 this is AAA Server 2.
 Action list 'ACTION_LIST_4' is similar to 'ACTION_LIST_3':

 r2 = ASM::AAABean.Cross(credential,
 Request::BoDData.Destination.OXCDomain,
 lambda,
 Request::BoDData.Destination.OXCPort,
 Request::BoDData.Bandwidth,
 Request::BoDData.StartTime,
 Request::BoDData.Duration)
 ;
 etc.

 We short cut the discussion with the remark that in case the call
 to the destination AAA Server fails (AAA Server 3 in fig. 3) an
 additional call to the source AAA Server has to be made to cancel
 the provisioning.
 For details about the implementation of Driving Policies as Java
 objects see Appendix B.

4.4 ASM Framework

 Application Specific Modules extend the J2EE environment to the
 outside world. For example in our Bandwidth on Demand (BoD)
 service an ASM monitors and controls the state of switches. This
 is realized with the Java Connector Architecture (JCA). The JCA
 is the bridge between J2EE and the Enterprise Information Systems.

Oudenaarde et al. Expires: March 2005 [Page 10]

Experimental RFC Prototype of a Generic AAA Server September 2004

 JCA standard provides a mechanism to store and retrieve enterprise
 data in J2EE. To make a decision in the RBE about a BoD service
 the state of a switch needs to be checked. This is realized by a
 connection oriented control adapter (JCA), which translates the
 current state of the switch to an EJB entity bean in the J2EE
 container. All information of the switch(es) are translated into
 the entity bean, including the methods to control the switch.

4.5 Session

 If an incoming Request is forwarded to the RBE, a Session Manager
 (entity bean) is contacted by the RBE. The Session Manager starts
 a session that will keep information about the Use Case of the AAA
 Request. Each session is characterized by a sessionID, in our
 case a primary key. The session information itself is persistent,
 as the information must be recoverable after failure of the AAA
 server. There are Use Cases for which the session information
 should be kept in persistent storage for a certain time span after
 the User received a Reply. In order to inform the RBE whether or
 not it should ask for a Session persistent after the Reply is
 returned, a special attribute in the Request tag might be defined.
 In case the Session information should be kept for a longer time,
 the Driving Policy has at least one Action to add the sessionID to
 the Reply returned. This sessionID is needed to retrieve
 information about or add information to the Session. For auditing
 or accounting purposes full information of all equipment involved
 should be available at the AAA server that received the Request.
 This description of an AAA Session is far from complete and
 further research is needed to complete it (see next section).

5. Conclusions and suggestions for further research

 The Generic AAA architecture is best suited for policy based
 decision taking at the business level involving high level service
 abstractions and user definitions. The business level involves
 decision taking based on simple policy rules and simple messages
 exchanged. Due to the diversity in service operation methods, a
 flexible way is needed to interface with various service entities
 in different domains. The role assigned to Driving Policies in
 the AAA concept and the relatively simple policy language suffice
 to make the decision taking at the business level. Fine-grained
 policy decisions should not be made at the level of Driving
 Policies, but should be made by ASMs applying proprietary
 admission control software. The policy language forces the

 developer to off-load all semantic handling of attributes not
 important at the business level to ASMs. This entails that multi-
 domain decision taking is purely made on business logic. Further
 research is needed to prove the correctness and usefulness of this
 approach. Another issue to be settled by further research is
 performance. To set-up a QoS path involves decision taking at

Oudenaarde et al. Expires: March 2005 [Page 11]

Experimental RFC Prototype of a Generic AAA Server September 2004

 different levels and in different domains and might be a time
 consuming process. One way to cope with long set-up times is
 parallelization. The policy language should allow the use of
 concurrency operators. A consequence of concurrent actions is the
 need to cancel actions in process in case the failure of one
 action makes the outcome of other ongoing, unfinished actions
 irrelevant. Other questions we are interested in is how a dynamic
 trust-relation with other parties can be established and how to
 combine authorizations from different administrative domains
 applying pre-established trust relationships. Authorizations
 based on monetary units seem a promising approach.
 Inter AAA communication might be based on a TLS based transport
 mechanism or on an RFC3281 attribute certificate in a the Request.
 Integration of Security Assertion Markup Language (SAML) in the
 above AAA concept is worthwhile to look at.
 Finally, some standardization of messages is required, especially
 for those messages exchanged among AAA Servers, e.g. to retrieve a
 policy from another AAA Server or error message including error
 codes.

Appendix A

 A grammar for Driving Policies. The notation of the grammar below
 is in EBNF (Extended Backus Naur Formalism), terminal symbols are
 placed between double quotes:

 DrivingPolicy ::= "if" "(" Condition ")"
 "then" "(" ActionList ")"
 "else" "(" ActionList ")"

 Condition ::= Bool
 | Var
 | {Var "="}? Procedure
 | ComputedBoolean
 | UnaryBooleanOperator Condition
 | "(" Condition BinaryBooleanOperator
 Condition ")"

 UnaryBooleanOperator ::= "!"
 BinaryBooleanOperator ::= "&&" | "||"

 Procedure ::= ProcedureName "(" ARGList ")"

https://datatracker.ietf.org/doc/html/rfc3281

 ARGList ::= {ARG {"," ARG}*}?

 ARG ::= Bool | String | ComputedBoolean
 | NonBooleanExpr

 ComputedBoolean ::= "(" NonBooleanExp ComparisonOperator
 NonBooleanExpr ")"

Oudenaarde et al. Expires: March 2005 [Page 12]

Experimental RFC Prototype of a Generic AAA Server September 2004

 ComparisonOperator ::= "=="
 | ">" | ">=" | "<" | "<=" | "!="

 NonBooleanExpr ::= Int | Float | Var | Procedure
 | UnaryArithmeticOperator NonBooleanExpr
 | "(" NonBooleanExpr BinaryArithmeticOperator
 NonBooleanExpr ")"

 UnaryArithmeticOperator ::= "-"
 BinaryArithmeticOperator ::= "+" | "-" | "/" | "*"
 | "%" | "&" | "|"

 ActionList ::= {Action {";" Action}*}?

 Action ::= Var "=" Bool | Var "=" String
 | Var "=" ComputedBoolean
 | Var "=" NonBooleanExpr
 | Procedure
 | DrivingPolicy

 Var ::= Source "::" Source {"." Source}*
 Source ::= Identifier
 ProcedureName ::= Identifier "::" Identifier "." Identifier

 Identifier ::= "[a-zA-Z_].[a-zA-Z0-9_]*"
 String ::= "\"[^"\n]*\""
 Int ::= "-?[0-9]+"
 Float ::= "-?[0-9]+\.[0-9]*(E-?[0-9]+)?"
 Bool ::= "(true|false)"

 Evaluation of a Boolean expression is performed according to the
 C-language convention. This makes an if-statement deterministic,
 and as such there is no need to allow nesting of Driving Policies
 in a Condition. Take for instance the following nested Driving
 Policy:

 if(A || Pol)
 then(a0) else (a1)

 with Pol: if(B) then(b0) else (b1).

 Adopting the C convention this Driving Policy is equivalent to

 if(A) then(a0)
 else (if(B) then(b0 ; a0) else(b1 ; a1))

Appendix B

 A parser for the grammar in Appendix A is discussed by applying
 Java Compiler Compiler (JavaCC). The semantic actions of the
 parser yield a Driving Policy as a serialized object.

Oudenaarde et al. Expires: March 2005 [Page 13]

Experimental RFC Prototype of a Generic AAA Server September 2004

 Implementing Driving Policies as a serialized objects, as
 discussed below, simplifies the RBE to a 'RPN calculator-like'
 device. This is accomplished by defining some simple classes that
 cover the non-terminals of the grammar:

 public class DrivingPolicy {
 public Stack conditionStack;
 public Stack thenStack;
 public Stack elseStack;
 }

 public class Procedure extends Stack {
 public String name = "";
 }

 public class Expression extends Stack {
 public static final int COMP_BOOLEAN =0;
 public static final int NON_BOOLEAN =1;
 public int type = -1;
 }

 public class Literal {
 public static final int BOOL =0;
 public static final int INT =1;
 public static final int FLOAT =2;
 public static final int STRING =3;
 public static final int VAR =4;
 public int type = -1;
 public String stringValue = "";
 }

 public class Operator {
 public static final int NOT =0; // '!'
 public static final int AND =1;
 (...)
 public static final int GET =6; // '>='
 (...)
 public static final int PLUS =9; // '+'
 public static final int MINUS =10;
 public static final int MUL =11; // '*'
 (...)
 public int type = -1;
 }

 public class Assignment {
 public Object lval;
 public Object rval;
 }

 The following example will illustrate how the parser produces a
 Driving Policy object. Take for example the following Driving
 Policy that checks whether some arithmetic manipulation of a

Oudenaarde et al. Expires: March 2005 [Page 14]

Experimental RFC Prototype of a Generic AAA Server September 2004

 number 'Data' from a request is larger than the number 169:

 if(
 (ASM::Calculator.power(((2*3)+Request::Data),2) >= 169)
)
 then(Reply::Answer = "Yes")
 else(Reply::Answer = "No")

 The serialized JAVA object produced has three stacks that are
 populated as follows:

 conditionStack:
 | - Procedure(ASM::Calculator.power):
 | | - Expression(NON_BOOLEAN):
 | | | - Literal(INT): "2"
 | | | - Literal(INT): "3"
 | | | - Operator(MUL)
 | | | - Literal(VAR): "Request::Data"
 | | | - Operator(PLUS)
 | |
 | | - Expression(NON_BOOLEAN):
 | | - Literal(INT): "2"
 |
 | - Literal(INT): "169"
 | - Operator(GET)

 thenStack:
 | - Assignment:
 | - lval:
 | | -Literal(VAR): Reply::Answer
 |
 | - rval:
 | - Literal(STRING): "Yes"

 elseStack:
 | - Assignment:
 | - lval:
 | | -Literal(VAR): Reply::Answer
 |
 | - rval:
 | - Literal(STRING): "No"

 The 'conditionStack' contains three objects, a Procedure object, a
 Literal object, and an Operator object. All objects are placed on
 the 'conditionStack' adhering to Reverse Polish Notation (RPN).
 This also holds for the stack of an Expression object. This
 simplifies the RBE to a 'RPN calculator' like device in
 determining the truth- value of the Condition. It just pops,
 resolves and pushes objects from and onto the 'conditionStack'
 until the stack contains a single Literal object of the type BOOL.

Oudenaarde et al. Expires: March 2005 [Page 15]

Experimental RFC Prototype of a Generic AAA Server September 2004

 Depending on the 'stringValue', whether it is 'true' or 'false',
 the RBE continues with the 'thenStack' or the 'elseStack' of the
 DrivingPolicy object.

References

 [FGCS] Leon Gommans, Cees de Laat, Bas van Oudenaarde, Arie Taal
 "Authorization of a QoS path based on generic AAA" in
 Future Generation Computer Systems, pp. 1009-1016.

Authors' Addresses

 Bas van Oudenaarde
 Faculty of Science, Informatics Institute,
 University of Amsterdam
 Kruislaan 403
 1098 SJ Amsterdam
 The Netherlands

 Phone: +31 20 5257586
 Fax: +31 20 5257490
 Email: oudenaar@science.uva.nl

 Leon Gommans
 Faculty of Science, Informatics Institute,
 University of Amsterdam
 Kruislaan 403
 1098 SJ Amsterdam
 The Netherlands

 Phone: +31 20 5257435
 Fax: +31 20 5257490
 Email: lgommans@science.uva.nl

 Cees de Laat
 Faculty of Science, Informatics Institute,
 University of Amsterdam
 Kruislaan 403
 1098 SJ Amsterdam
 The Netherlands

 Phone: +31 20 5257590
 Fax: +31 20 5257490
 Email: delaat@science.uva.nl

Oudenaarde et al. Expires: March 2005 [Page 16]

Experimental RFC Prototype of a Generic AAA Server September 2004

 Freek Dijkstra
 Faculty of Science, Informatics Institute,
 University of Amsterdam
 Kruislaan 403
 1098 SJ Amsterdam
 The Netherlands

 Phone: +31 20 5257531
 Fax: +31 20 5257490
 Email: fdijkstr@science.uva.nl

 Arie Taal
 Faculty of Science, Informatics Institute,
 University of Amsterdam
 Kruislaan 403
 1098 SJ Amsterdam
 The Netherlands

 Phone: +31 20 5257586
 Fax: +31 20 5257490
 Email: taal@science.uva.nl

Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is
 subject to the rights, licenses and restrictions contained in BCP

78, and except as set forth therein, the authors retain all their
 rights.

 This document and the information contained herein are provided on
 an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
 ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
 PARTICULAR PURPOSE.

Intellectual Property

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed
 to pertain to the implementation or use of the technology described
 in this document or the extent to which any license under such
 rights might or might not be available; nor does it represent that
 it has made any independent effort to identify any such rights.
 Information on the procedures with respect to rights in RFC
 documents can be found in BCP 78 and BCP 79.

Oudenaarde et al. Expires: March 2005 [Page 17]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Experimental RFC Prototype of a Generic AAA Server September 2004

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use
 of such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository
 at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

http://www.ietf.org/ipr

Oudenaarde et al. Expires: March 2005 [Page 18]

