
Using TLS in Applications D. Margolis
Internet-Draft M. Risher
Intended status: Standards Track Google, Inc
Expires: June 18, 2017 B. Ramakrishnan
 Yahoo!, Inc
 A. Brotman
 Comcast, Inc
 J. Jones
 Microsoft, Inc
 December 15, 2016

SMTP MTA Strict Transport Security (MTA-STS)
draft-ietf-uta-mta-sts-02

Abstract

 SMTP Mail Transfer Agent Strict Transport Security (SMTP STS) is a
 mechanism enabling mail service providers to declare their ability to
 receive TLS-secured connections and an expected validity of
 certificates presented by their MX hosts, and to specify whether
 sending SMTP servers should refuse to deliver to MX hosts that do not
 offer TLS with a trusted server certificate.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 18, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Margolis, et al. Expires June 18, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft MTA-STS December 2016

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Terminology . 3

2. Related Technologies . 3
3. Policy Discovery . 4
3.1. MTA-STS TXT Records 4
3.2. MTA-STS Policies . 5
3.3. HTTPS Policy Fetching 6
3.4. Policy Selection for Smart Hosts 6

4. Policy Validation . 6
4.1. MX Matching . 7
4.2. MX Certificate Validation 7

5. Policy Application . 7
5.1. MX Preference . 8
5.2. Policy Application Control Flow 8

6. Operational Considerations 8
6.1. Policy Updates . 8

7. IANA Considerations . 9
8. Security Considerations 9
9. Contributors . 10
10. Appendix 1: Domain Owner STS example record 11
10.1. Example 1 . 11

11. Appendix 2: Message delivery pseudocode 11
12. References . 13
12.1. Normative References 13
12.2. URIs . 14

 Authors' Addresses . 14

1. Introduction

 The STARTTLS extension to SMTP [RFC3207] allows SMTP clients and
 hosts to negotiate the use of a TLS channel for secure mail
 transmission.

 While such _opportunistic_ encryption protocols provide a high
 barrier against passive man-in-the-middle traffic interception, any
 attacker who can delete parts of the SMTP session (such as the "250
 STARTTLS" response) or who can redirect the entire SMTP session

http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc3207

Margolis, et al. Expires June 18, 2017 [Page 2]

Internet-Draft MTA-STS December 2016

 (perhaps by overwriting the resolved MX record of the delivery
 domain) can perform downgrade or interception attacks.

 This document defines a mechanism for recipient domains to publish
 policies specifying:

 o whether MTAs sending mail to this domain can expect TLS support

 o expected validity of server certificates presented by the domain's
 MX hosts

 o what a conforming client should do with messages when TLS cannot
 be successfully negotiated

1.1. Terminology

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [RFC2119].

 We also define the following terms for further use in this document:

 o STS Policy: A committment by the Policy Domain to support PKIX
 authenticated TLS for the specified MX hosts.

 o Policy Domain: The domain for which an STS Policy is defined.
 (For example, when sending mail to "alice@example.com", the policy
 domain is "example.com".)

 o Policy Authentication: Authentication of the STS policy retrieved
 for a recipient domain by the sender.

2. Related Technologies

 The DANE TLSA record [RFC7672] is similar, in that DANE is also
 designed to upgrade opportunistic, unauthenticated encryption into
 required, authenticated encryption. DANE requires DNSSEC [RFC4033]
 for authentication; the mechanism described here instead relies on
 certificate authorities (CAs) and does not require DNSSEC. For a
 thorough discussion of this trade-off, see the section _Security_
 Considerations.

 In addition, SMTP STS provides an optional report-only mode, enabling
 soft deployments to detect policy failures.

Margolis, et al. Expires June 18, 2017 [Page 3]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7672
https://datatracker.ietf.org/doc/html/rfc4033

Internet-Draft MTA-STS December 2016

3. Policy Discovery

 SMTP STS policies are distributed via HTTPS from a "well-known"
 [RFC5785] path served within the Policy Domain, and their presence
 and current version are indicated by a TXT record at the Policy
 Domain. These TXT records additionally contain a policy "id" field,
 allowing sending MTAs to check the currency of a cached policy
 without performing an HTTPS request.

 To discover if a recipient domain implements MTA-STS, a sender need
 only resolve a single TXT record. To see if an updated policy is
 available for a domain for which the sender has a previously cached
 policy, the sender need only check the TXT record's version "id"
 against the cached value.

3.1. MTA-STS TXT Records

 The MTA-STS TXT record is a TXT record with the name "_mta-sts" at
 the Policy Domain. For the domain "example.com", this record would
 be "_mta-sts.example.com". MTA-STS TXT records MUST be US-ASCII,
 semicolon-separated key/value pairs containing the following fields:

 o "v": (plain-text, required). Currently only "STSv1" is supported.

 o "id": (plain-text, required). A short string used to track policy
 updates. This string MUST uniquely identify a given instance of a
 policy, such that senders can determine when the policy has been
 updated by comparing to the "id" of a previously seen policy.
 There is no implied ordering of "id" fields between revisions.

 An example TXT record is as below:

 "_mta-sts.example.com. IN TXT "v=STSv1; id=20160831085700Z;""

 The formal definition of the "_mta-sts" TXT record, defined using
 [RFC5234], is as follows:

 sts-text-record = sts-version *WSP %x3B *WSP sts-id [%x3B]

 sts-version = "v" *WSP "=" *WSP %x53 %x54 ; "STSv1"
 %x53 %x76 %x31

 sts-id = "id" *WSP "=" *WSP 1*32(ALPHA / DIGIT)

 If multiple TXT records for "_mta-sts" are returned by the resolver,
 records which do not begin with "v=STSv1;" are discarded. If the
 number of resulting records is not one, senders MUST assume the

https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc5234

Margolis, et al. Expires June 18, 2017 [Page 4]

Internet-Draft MTA-STS December 2016

 recipient domain does not implement MTA STS and skip the remaining
 steps of policy discovery.

3.2. MTA-STS Policies

 The policy itself is a JSON [RFC4627] object served via the HTTPS GET
 method from the fixed [RFC5785] "well-known" path of ".well-known/
 mta-sts.json" served by the "mta-sts" host at the Policy Domain.
 Thus for "example.com" the path is "https://mta-sts.example.com
 /.well-known/mta-sts.json".

 This JSON object contains the following key/value pairs:

 o "version": (plain-text, required). Currently only "STSv1" is
 supported.

 o "mode": (plain-text, required). Either "enforce" or "report",
 indicating the expected behavior of a sending MTA in the case of a
 policy validation failure.

 o "max_age": Max lifetime of the policy (plain-text non-negative
 integer seconds, required). Well-behaved clients SHOULD cache a
 policy for up to this value from last policy fetch time. To
 mitigate the risks of attacks at policy refresh time, it is
 expected that this value typically be in the range of weeks or
 greater.

 o "mx": MX patterns (list of plain-text MX match strings, required).
 One or more patterns matching the expected MX for this domain.
 For example, "["*.example.com", "*.example.net"]" indicates that
 mail for this domain might be handled by any MX with a hostname at
 "example.com" or "example.net". Valid patterns can be either
 hostname literals (e.g. "mx1.example.com") or wildcard matches, so
 long as the wildcard occupies the full left-most label in the
 pattern. (Thus "*.example.com" is valid but "mx*.example.com" is
 not.)

 An example JSON policy is as below:

 {
 "version": "STSv1",
 "mode": "enforce",
 "mx": ["*.mail.example.com"],
 "max_age": 123456
 }

 A lenient parser SHOULD accept TXT records and policy files which are
 syntactically valid (i.e. valid key-value pairs separated by semi-

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5785

Margolis, et al. Expires June 18, 2017 [Page 5]

Internet-Draft MTA-STS December 2016

 colons for TXT records and valid JSON for policy files) and
 implementing a superset of this specification, in which case unknown
 fields SHALL be ignored.

3.3. HTTPS Policy Fetching

 When fetching a new policy or updating a policy, the HTTPS endpoint
 MUST present a TLS certificate which is valid for the "mta-sts" host
 (as described in [RFC6125]), chain to a root CA that is trusted by
 the sending MTA, and be non-expired. It is expected that sending
 MTAs use a set of trusted CAs similar to those in widely deployed Web
 browsers and operating systems.

 HTTP 3xx redirects MUST NOT be followed.

 Senders may wish to rate-limit the frequency of attempts to fetch the
 HTTPS endpoint even if a valid TXT record for the recipient domain
 exists. In the case that the HTTPS GET fails, we suggest
 implementions may limit further attempts to a period of five minutes
 or longer per version ID, to avoid overwhelming resource-constrained
 recipients with cascading failures.

 Senders MAY impose a timeout on the HTTPS GET to avoid long delays
 imposed by attempted policy updates. A suggested timeout is one
 minute; policy hosts SHOULD respond to requests with a complete
 policy body within that timeout.

3.4. Policy Selection for Smart Hosts

 When sending mail via a "smart host"--an intermediate SMTP relay
 rather than the message recipient's server--compliant senders MUST
 treat the smart host domain as the policy domain for the purposes of
 policy discovery and application.

4. Policy Validation

 When sending to an MX at a domain for which the sender has a valid
 and non-expired SMTP MTA-STS policy, a sending MTA honoring SMTP STS
 MUST validate:

 1. That the recipient MX matches the "mx" pattern from the recipient
 domain's policy.

 2. That the recipient MX supports STARTTLS and offers a valid PKIX
 based TLS certificate.

 This section does not dictate the behavior of sending MTAs when
 policies fail to validate; in particular, validation failures of

https://datatracker.ietf.org/doc/html/rfc6125

Margolis, et al. Expires June 18, 2017 [Page 6]

Internet-Draft MTA-STS December 2016

 policies which specify "report" mode MUST NOT be interpreted as
 delivery failures, as described in the section _Policy_
 Application.

4.1. MX Matching

 When delivering mail for the Policy Domain to a recipient MX host,
 the sender validates the MX match against the "mx" pattern from the
 applied policy. The semantics for these patterns are those found in

section 6.4 of [RFC6125].

 Patterns may contain a wildcard character "*" which matches any
 single domain name component or component fragment, though only as
 the leftmost component in a pattern. For example, "*.example.com" is
 a valid pattern, but "foo.*.example.com" is not. Given the pattern
 "*.example.com", "mx1.example.com" is a valid MX host, but
 "1234.dhcp.example.com" is not.

4.2. MX Certificate Validation

 The certificate presented by the receiving MX MUST be valid for the
 MX hostname and chain to a root CA that is trusted by the sending
 MTA. The certificate MUST have a CN or SAN matching the MX hostname
 (as described in [RFC6125]) and be non-expired.

 In the case of an "implicit" MX record (as specified in [RFC2821])
 where no MX RR exists for the recipient domain but there is an A RR,
 the MX hostname is assumed to be that of the A RR and should be
 validated as such.

5. Policy Application

 When sending to an MX at a domain for which the sender has a valid,
 non-expired STS policy, a sending MTA honoring SMTP STS applies the
 result of a policy validation one of two ways, depending on the value
 of the policy "mode" field:

 1. "report": In this mode, sending MTAs merely send a report (as
 described in the TLSRPT specification (TODO: add ref)) indicating
 policy application failures.

 2. "enforce": In this mode, sending MTAs treat STS policy failures
 as a mail delivery error, and MUST NOT deliver the message to
 this host.

 When a message fails to deliver due to an "enforce" policy, a
 compliant MTA MUST check for the presence of an updated policy at the
 Policy Domain before permanently failing to deliver the message.

https://datatracker.ietf.org/doc/html/rfc6125#section-6.4
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc2821

Margolis, et al. Expires June 18, 2017 [Page 7]

Internet-Draft MTA-STS December 2016

 This allows implementing domains to update long-lived policies on the
 fly.

 Finally, in both "enforce" and "report" modes, failures to deliver in
 compliance with the applied policy result in failure reports to the
 policy domain, as described in the TLSRPT specification (TODO: add
 ref).

5.1. MX Preference

 When applying a policy, sending MTAs SHOULD select recipient MXs by
 first eliminating any MXs at lower priority than the current host (if
 in the MX candidate set), then eliminating any non-matching (as
 specified by the STS Policy) MX hosts from the candidate MX set, and
 then attempting delivery to matching hosts as indicated by their MX
 priority, until delivery succeeds or the MX candidate set is empty.

5.2. Policy Application Control Flow

 An example control flow for a compliant sender consists of the
 following steps:

 1. Check for a cached policy whose time-since-fetch has not exceeded
 its "max_age". If none exists, attempt to fetch a new policy.
 (Optionally, sending MTAs may unconditionally check for a new
 policy at this step.)

 2. Filter candidate MXs against the current policy.

 3. If no candidate MXs are valid and the policy mode is "enforce",
 temporarily fail the message. (Otherwise, generate a failure
 report but deliver as though MTA STS were not implemented.)

 4. For each candidate MX, in order of MX priority, attempt to
 deliver the message, enforcing STARTTLS and the MX host's PKIX
 certificate validation.

 5. Upon message retries, a message MAY be permanently failed
 following first checking for the presence of a new policy (as
 indicated by the "id" field in the "_mta-sts" TXT record).

6. Operational Considerations

6.1. Policy Updates

 Updating the policy requires that the owner make changes in two
 places: the "_mta-sts" TXT record in the Policy Domain's DNS zone and
 at the corresponding HTTPS endpoint. In the case where the HTTPS

Margolis, et al. Expires June 18, 2017 [Page 8]

Internet-Draft MTA-STS December 2016

 endpoint has been updated but the TXT record has not yet been,
 senders will not know there is a new policy released and may thus
 continue to use old, previously cached versions. Recipients should
 thus expect a policy will continue to be used by senders until both
 the HTTPS and TXT endpoints are updated and the TXT record's TTL has
 passed.

7. IANA Considerations

 A new .well-known URI will be registered in the Well-Known URIs
 registry as described below:

 URI Suffix: mta-sts.json Change Controller: IETF

8. Security Considerations

 SMTP Strict Transport Security attempts to protect against an active
 attacker who wishes to intercept or tamper with mail between hosts
 who support STARTTLS. There are two classes of attacks considered:

 1. Foiling TLS negotiation, for example by deleting the "250
 STARTTLS" response from a server or altering TLS session
 negotiation. This would result in the SMTP session occurring
 over plaintext, despite both parties supporting TLS.

 2. Impersonating the destination mail server, whereby the sender
 might deliver the message to an impostor, who could then monitor
 and/or modify messages despite opportunistic TLS. This
 impersonation could be accomplished by spoofing the DNS MX record
 for the recipient domain, or by redirecting client connections
 intended for the legitimate recipient server (for example, by
 altering BGP routing tables).

 SMTP Strict Transport Security relies on certificate validation via
 PKIX based TLS identity checking [RFC6125]. Attackers who are able
 to obtain a valid certificate for the targeted recipient mail service
 (e.g. by compromising a certificate authority) are thus able to
 circumvent STS authentication.

 Since we use DNS TXT records for policy discovery, an attacker who is
 able to block DNS responses can suppress the discovery of an STS
 Policy, making the Policy Domain appear not to have an STS Policy.
 The sender policy cache is designed to resist this attack.

 We additionally consider the Denial of Service risk posed by an
 attacker who can modify the DNS records for a victim domain. Absent
 SMTP STS, such an attacker can cause a sending MTA to cache invalid
 MX records for a long TTL. With SMTP STS, the attacker can

https://datatracker.ietf.org/doc/html/rfc6125

Margolis, et al. Expires June 18, 2017 [Page 9]

Internet-Draft MTA-STS December 2016

 additionally advertise a new, long-"max_age" SMTP STS policy with
 "mx" constraints that validate the malicious MX record, causing
 senders to cache the policy and refuse to deliver messages once the
 victim has resecured the MX records.

 This attack is mitigated in part by the ability of a victim domain to
 (at any time) publish a new policy updating the cached, malicious
 policy, though this does require the victim domain to both obtain a
 valid CA-signed certificate and to understand and properly configure
 SMTP STS.

 Similarly, we consider the possibilty of domains that deliberately
 allow untrusted users to serve untrusted content on user-specified
 subdomains. In some cases (e.g. the service Tumblr.com) this takes
 the form of providing HTTPS hosting of user-registered subdomains; in
 other cases (e.g. dynamic DNS providers) this takes the form of
 allowing untrusted users to register custom DNS records at the
 provider's domain.

 In these cases, there is a risk that untrusted users would be able to
 serve custom content at the "mta-sts" host, including serving an
 illegitimate SMTP STS policy. We believe this attack is rendered
 more difficult by the need for the attacker to both inject malicious
 (but temporarily working) MX records and also serve the "_mta-sts"
 TXT record on the same domain--something not, to our knowledge,
 widely provided to untrusted users. This attack is additionally
 mitigated by the aforementioned ability for a victim domain to update
 an invalid policy at any future date.

 Even if an attacker cannot modify a served policy, the potential
 exists for configurations that allow attackers on the same domain to
 receive mail for that domain. For example, an easy configuration
 option when authoring an STS Policy for "example.com" is to set the
 "mx" equal to "*.example.com"; recipient domains must consider in
 this case the risk that any user possessing a valid hostname and CA-
 signed certificate (for example, "dhcp-123.example.com") will, from
 the perspective of STS Policy validation, be a valid MX host for that
 domain.

9. Contributors

 Nicolas Lidzborski Google, Inc nlidz (at) google (dot com)

 Wei Chuang Google, Inc weihaw (at) google (dot com)

 Brandon Long Google, Inc blong (at) google (dot com)

 Franck Martin LinkedIn, Inc fmartin (at) linkedin (dot com)

Margolis, et al. Expires June 18, 2017 [Page 10]

Internet-Draft MTA-STS December 2016

 Klaus Umbach 1&1 Mail & Media Development & Technology GmbH
 klaus.umbach (at) 1und1 (dot de)

 Markus Laber 1&1 Mail & Media Development & Technology GmbH
 markus.laber (at) 1und1 (dot de)

10. Appendix 1: Domain Owner STS example record

10.1. Example 1

 The owner of "example.com" wishes to begin using STS with a policy
 that will solicit reports from receivers without affecting how the
 messages are processed, in order to verify the identity of MXs that
 handle mail for "example.com", confirm that TLS is correctly used,
 and ensure that certificates presented by the recipient MX validate.

 STS policy indicator TXT RR:

 _mta-sts.example.com. IN TXT "v=STSv1; id=20160831085700Z;"

 STS Policy JSON served as the response body at [1]

 {
 "version": "STSv1",
 "mode": "report",
 "mx": ["mx1.example.com", "mx2.example.com"],
 "max_age": 123456
 }

11. Appendix 2: Message delivery pseudocode

 Below is pseudocode demonstrating the logic of a complaint sending
 MTA. This implements the "two-pass" approach, first attempting
 delivery with a newly fetched policy (if present) before falling back
 to a cached policy (if present).

func isEnforce(policy) {
 // Return true if the policy mode is "enforce".
}

func isNonExpired(policy) {
 // Return true if the policy is not expired.
}

func tryStartTls(mx) {
 // Attempt to open an SMTP connection with STARTTLS with the MX.

Margolis, et al. Expires June 18, 2017 [Page 11]

Internet-Draft MTA-STS December 2016

}

func certMatches(connection, mx) {
 // Return if the server certificate from "connection" matches the "mx" host.
}

func tryDeliverMail(connection, message) {
 // Attempt to deliver "message" via "connection".
}

func getMxsForPolicy(domain, policy) {
 // Sort the MXs by priority, filtering out those which are invalid according
 // to "policy".
}

func tryGetNewPolicy(domain) {
 // Check for an MTA STS TXT record for "domain" in DNS, and return the
 // indicated policy (or a local cache of the unvalidated policy).
}

func cachePolicy(domain, policy) {
 // Store "policy" as the cached policy for "domain".
}

func tryGetCachedPolicy(domain, policy) {
 // Return a cached policy for "domain".
}

func reportError(error) {
 // Report an error via TLSRPT.
}

func tryMxAccordingTo(message, mx, policy) {
 connection := connect(mx)
 if !connection {
 return false // Can't connect to the MX so it's not an STS error.
 }
 status := !(tryStartTls(mx, &connection) && certMatches(connection, mx))
 status = true
 if !tryStartTls(mx, &connection) {
 status = false
 reportError(E_NO_VALID_TLS)
 } else if certMatches(connection, mx) {
 status = false
 reportError(E_CERT_MISMATCH)
 }
 if status || !isEnforce(policy) {
 return tryDeliverMail(connection, message)

Margolis, et al. Expires June 18, 2017 [Page 12]

Internet-Draft MTA-STS December 2016

 }
 return false
}

func tryWithPolicy(message, domain, policy) {
 mxes := getMxesForPolicy(domain, policy)
 if mxs is empty {
 reportError(E_NO_VALID_MXES)
 }
 for mx in mxes {
 if tryMxAccordingTo(message, mx, policy) {
 return true
 }
 }
 return false
}

func handleMessage(message) {
 domain := ... // domain part after '@' from recipient
 oldPolicy := tryGetCachedPolicy(domain)
 newPolicy := tryGetNewPolicy(domain)
 if newPolicy {
 cachePolicy(domain, newPolicy)
 oldPolicy = newPolicy
 }
 if oldPolicy {
 return tryWithPolicy(message, oldPolicy)
 }
 // There is no policy or there's a new policy that did not work.
 // Try to deliver the message normally (i.e. without STS).
}

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2821] Klensin, J., Ed., "Simple Mail Transfer Protocol", RFC
2821, DOI 10.17487/RFC2821, April 2001,

 <http://www.rfc-editor.org/info/rfc2821>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2821
https://datatracker.ietf.org/doc/html/rfc2821
http://www.rfc-editor.org/info/rfc2821

Margolis, et al. Expires June 18, 2017 [Page 13]

Internet-Draft MTA-STS December 2016

 [RFC3207] Hoffman, P., "SMTP Service Extension for Secure SMTP over
 Transport Layer Security", RFC 3207, DOI 10.17487/RFC3207,
 February 2002, <http://www.rfc-editor.org/info/rfc3207>.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements", RFC

4033, DOI 10.17487/RFC4033, March 2005,
 <http://www.rfc-editor.org/info/rfc4033>.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, DOI 10
 .17487/RFC4627, July 2006,
 <http://www.rfc-editor.org/info/rfc4627>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/

RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785, DOI 10
 .17487/RFC5785, April 2010,
 <http://www.rfc-editor.org/info/rfc5785>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <http://www.rfc-editor.org/info/rfc6125>.

 [RFC7672] Dukhovni, V. and W. Hardaker, "SMTP Security via
 Opportunistic DNS-Based Authentication of Named Entities
 (DANE) Transport Layer Security (TLS)", RFC 7672, DOI 10
 .17487/RFC7672, October 2015,
 <http://www.rfc-editor.org/info/rfc7672>.

12.2. URIs

 [1] https://mta-sts.example.com/.well-known/mta-sts.json:

Authors' Addresses

 Daniel Margolis
 Google, Inc

 Email: dmargolis (at) google.com

https://datatracker.ietf.org/doc/html/rfc3207
http://www.rfc-editor.org/info/rfc3207
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4033
http://www.rfc-editor.org/info/rfc4033
https://datatracker.ietf.org/doc/html/rfc4627
http://www.rfc-editor.org/info/rfc4627
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc5785
http://www.rfc-editor.org/info/rfc5785
https://datatracker.ietf.org/doc/html/rfc6125
http://www.rfc-editor.org/info/rfc6125
https://datatracker.ietf.org/doc/html/rfc7672
http://www.rfc-editor.org/info/rfc7672

Margolis, et al. Expires June 18, 2017 [Page 14]

Internet-Draft MTA-STS December 2016

 Mark Risher
 Google, Inc

 Email: risher (at) google (dot com)

 Binu Ramakrishnan
 Yahoo!, Inc

 Email: rbinu (at) yahoo-inc (dot com)

 Alexander Brotman
 Comcast, Inc

 Email: alexander_brotman (at) cable.comcast (dot com)

 Janet Jones
 Microsoft, Inc

 Email: janet.jones (at) microsoft (dot com)

Margolis, et al. Expires June 18, 2017 [Page 15]

