
Network Working Group T. Pauly
Internet-Draft Apple Inc.
Intended status: Informational C. Perkins
Expires: April 25, 2019 University of Glasgow
 K. Rose
 Akamai Technologies, Inc.
 C. Wood
 Apple Inc.
 October 22, 2018

A Survey of Transport Security Protocols
draft-ietf-taps-transport-security-03

Abstract

 This document provides a survey of commonly used or notable network
 security protocols, with a focus on how they interact and integrate
 with applications and transport protocols. Its goal is to supplement
 efforts to define and catalog transport services [RFC8095] by
 describing the interfaces required to add security protocols. It
 examines Transport Layer Security (TLS), Datagram Transport Layer
 Security (DTLS), Quick UDP Internet Connections with TLS (QUIC +
 TLS), MinimalT, CurveCP, tcpcrypt, Internet Key Exchange with
 Encapsulating Security Protocol (IKEv2 + ESP), SRTP (with DTLS), and
 WireGuard. This survey is not limited to protocols developed within
 the scope or context of the IETF, and those included represent a
 superset of features a TAPS system may need to support.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Pauly, et al. Expires April 25, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc8095
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft transport security survey October 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Security Features . 5
4. Transport Security Protocol Descriptions 7
4.1. TLS . 7
4.1.1. Protocol Description 7
4.1.2. Security Features 8
4.1.3. Protocol Dependencies 9

4.2. DTLS . 9
4.2.1. Protocol Description 9
4.2.2. Security Features 10
4.2.3. Protocol Dependencies 10

4.3. (IETF) QUIC with TLS 11
4.3.1. Protocol Description 11
4.3.2. Security Features 11
4.3.3. Protocol Dependencies 12
4.3.4. Variant: Google QUIC 12

4.4. IKEv2 with ESP . 12
4.4.1. Protocol descriptions 12
4.4.2. Security Features 14
4.4.3. Protocol Dependencies 14

4.5. Secure RTP (with DTLS) 15
4.5.1. Protocol description 15
4.5.2. Security Features 16
4.5.3. Protocol Dependencies 16
4.5.4. Variant: ZRTP for Media Path Key Agreement 16

4.6. tcpcrypt . 17
4.6.1. Protocol Description 17
4.6.2. Security Features 18
4.6.3. Protocol Dependencies 18

4.7. WireGuard . 18

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Pauly, et al. Expires April 25, 2019 [Page 2]

Internet-Draft transport security survey October 2018

4.7.1. Protocol description 18
4.7.2. Security Features 19
4.7.3. Protocol Dependencies 19

4.8. MinimalT . 20
4.8.1. Protocol Description 20
4.8.2. Protocol Features 20
4.8.3. Protocol Dependencies 21

4.9. CurveCP . 21
4.9.1. Protocol Description 21
4.9.2. Protocol Features 22
4.9.3. Protocol Dependencies 22

5. Security Features and Transport Dependencies 23
5.1. Mandatory Features 23
5.2. Optional Features . 23
5.3. Optional Feature Availability 25

6. Transport Security Protocol Interfaces 26
6.1. Pre-Connection Interfaces 26
6.2. Connection Interfaces 27
6.3. Post-Connection Interfaces 27

7. IANA Considerations . 28
8. Security Considerations 28
9. Acknowledgments . 28
10. Normative References . 28

 Authors' Addresses . 33

1. Introduction

 This document provides a survey of commonly used or notable network
 security protocols, with a focus on how they interact and integrate
 with applications and transport protocols. Its goal is to supplement
 efforts to define and catalog transport services [RFC8095] by
 describing the interfaces required to add security protocols. It
 examines Transport Layer Security (TLS), Datagram Transport Layer
 Security (DTLS), Quick UDP Internet Connections with TLS (QUIC +
 TLS), MinimalT, CurveCP, tcpcrypt, Internet Key Exchange with
 Encapsulating Security Protocol (IKEv2 + ESP), SRTP (with DTLS), and
 WireGuard. For each protocol, this document provides a brief
 description, the security features it provides, and the dependencies
 it has on the underlying transport. This is followed by defining the
 set of transport security features shared by these protocols.
 Finally, we distill the application and transport interfaces provided
 by the transport security protocols.

 Selected protocols represent a superset of functionality and features
 a TAPS system may need to support, both internally and externally -
 via an API - for applications [I-D.ietf-taps-arch]. Ubiquitous IETF
 protocols such as (D)TLS, as well as non-standard protocols such as
 Google QUIC, are both included despite overlapping features. As

https://datatracker.ietf.org/doc/html/rfc8095

Pauly, et al. Expires April 25, 2019 [Page 3]

Internet-Draft transport security survey October 2018

 such, this survey is not limited to protocols developed within the
 scope or context of the IETF. Outside of this candidate set,
 protocols that do not offer new features are omitted. For example,
 newer protocols such as WireGuard make unique design choices that
 have important implications on applications, such as how to best
 configure peer public keys and to delegate algorithm selection to the
 system. In contrast, protocols such as ALTS [ALTS] are omitted since
 they do not represent features deemed unique.

 Also, authentication-only protocols such as TCP-AO [RFC5925] and
 IPsec AH [RFC4302] are excluded from this survey. TCP-AO adds
 authenticity protections to long-lived TCP connections, e.g., replay
 protection with per-packet Message Authentication Codes. (This
 protocol obsoletes TCP MD5 "signature" options specified in
 [RFC2385].) One prime use case of TCP-AO is for protecting BGP
 connections. Similarly, AH adds per-datagram authenticity and adds
 similar replay protection. Despite these improvements, neither
 protocol sees general use and both lack critical properties important
 for emergent transport security protocols: confidentiality, privacy
 protections, and agility. Thus, we omit these and related protocols
 from our survey.

2. Terminology

 The following terms are used throughout this document to describe the
 roles and interactions of transport security protocols:

 o Transport Feature: a specific end-to-end feature that the
 transport layer provides to an application. Examples include
 confidentiality, reliable delivery, ordered delivery, message-
 versus-stream orientation, etc.

 o Transport Service: a set of Transport Features, without an
 association to any given framing protocol, which provides
 functionality to an application.

 o Transport Protocol: an implementation that provides one or more
 different transport services using a specific framing and header
 format on the wire. A Transport Protocol services an application.

 o Application: an entity that uses a transport protocol for end-to-
 end delivery of data across the network. This may also be an
 upper layer protocol or tunnel encapsulation.

 o Security Feature: a feature that a network security layer provides
 to applications. Examples include authentication, encryption, key
 generation, session resumption, and privacy. Features may be
 Mandatory or Optional for an application's implementation.

https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc2385

Pauly, et al. Expires April 25, 2019 [Page 4]

Internet-Draft transport security survey October 2018

 o Security Protocol: a defined network protocol that implements one
 or more security features. Security protocols may be used
 alongside transport protocols, and in combination with other
 security protocols when appropriate.

 o Handshake Protocol: a protocol that enables peers to validate each
 other and to securely establish shared cryptographic context.

 o Record: Framed protocol messages.

 o Record Protocol: a security protocol that allows data to be
 divided into manageable blocks and protected using shared
 cryptographic context.

 o Session: an ephemeral security association between applications.

 o Cryptographic context: a set of cryptographic parameters,
 including but not necessarily limited to keys for encryption,
 authentication, and session resumption, enabling authorized
 parties to a session to communicate securely.

 o Connection: the shared state of two or more endpoints that
 persists across messages that are transmitted between these
 endpoints. A connection is a transient participant of a session,
 and a session generally lasts between connection instances.

 o Connection Mobility: a property of a connection that allows it to
 be multihomed or resilient across network interface or address
 changes, e.g., NAT rebindings that occur without an endpoint's
 knowledge. Mobility allows cryptographic key material and other
 state information to be reused in the event of a connection
 change.

 o Peer: an endpoint application party to a session.

 o Client: the peer responsible for initiating a session.

 o Server: the peer responsible for responding to a session
 initiation.

3. Security Features

 In this section, we enumerate Security Features exposed by protocols
 discussed in the remainder of this document. Security Features
 extend the set of Transport Features described in [RFC8095] and
 provided by Transport Services implementations. Protocol security
 properties that are unrelated to the API surface exposed by such

https://datatracker.ietf.org/doc/html/rfc8095

Pauly, et al. Expires April 25, 2019 [Page 5]

Internet-Draft transport security survey October 2018

 protocols, such as client or server identity hiding, are not listed
 here as features.

 o Forward-secure key establishment: Cryptographic key establishment
 with forward secure properties.

 o Cryptographic algorithm negotiation: Negotiate support of protocol
 algorithms, including: encryption, hash, MAC (PRF), and digital
 signature algorithms.

 o Stateful and stateless cross-connection session resumption:
 Connection establishment without needing to complete an entirely
 new handshake.

 o Session caching and management: Manage session state cache used
 for subsequent connections aimed towards amortizing connection
 establishment costs.

 o Peer authentication (certificate, raw public key, pre-shared key,
 or EAP-based): Peer authentication using select or protocol-
 specific mechanisms.

 o Mutual authentication: Connection establishment wherein both
 endpoints are authenticated.

 o Application-layer authentication delegation: Out-of-band peer
 authentication performed by applications outside of the connection
 establishment.

 o Record (channel or datagram) confidentiality and integrity:
 Encryption and authentication of application plaintext bytes sent
 between peers over a channel or in individual datagrams.

 o Partial record confidentiality: Encryption of some portion of
 records.

 o Optional record integrity: Optional authentication of certain
 records.

 o Record replay prevention: Protocol detection and defense against
 record replays, e.g., due to in-network retransmissions.

 o Early data support (starting with TLS 1.3): Transmission of
 application data prior to connection (handshake) establishment.

 o Connection mobility: Connection continuation in the presence of
 5-tuple changes beneath the secure transport protocol, e.g., due
 to NAT rebindings.

Pauly, et al. Expires April 25, 2019 [Page 6]

Internet-Draft transport security survey October 2018

 o Application-layer feature negotiation: Securely negotiate
 application-specific functionality, including those necessary for
 connection handling and management, e.g., the TLS parent
 connection protocol type via ALPN [RFC7301] or desired application
 identity via SNI [RFC6066].

 o Configuration extensions: Add protocol features via extensions or
 configuration options. TLS extensions are a primary example of
 this feature.

 o Out-of-order record receipt: Processing of records received out-
 of-order.

 o Source validation (cookie or puzzle based): Peer source validation
 and DoS mitigation via explicit proof of origin (cookie) or work
 mechanisms (puzzles).

 o Connection re-keying: In-band cryptographic handshake re-keying.

 o Length-hiding padding: Protocol-drive record padding aimed at
 hiding plaintext message length and mitigating amplification
 attack vectors.

4. Transport Security Protocol Descriptions

 This section contains descriptions of security protocols currently
 used to protect data being sent over a network.

 For each protocol, we describe its provided features and dependencies
 on other protocols.

4.1. TLS

 TLS (Transport Layer Security) [RFC5246] is a common protocol used to
 establish a secure session between two endpoints. Communication over
 this session "prevents eavesdropping, tampering, and message
 forgery." TLS consists of a tightly coupled handshake and record
 protocol. The handshake protocol is used to authenticate peers,
 negotiate protocol options, such as cryptographic algorithms, and
 derive session-specific keying material. The record protocol is used
 to marshal (possibly encrypted) data from one peer to the other.
 This data may contain handshake messages or raw application data.

4.1.1. Protocol Description

 TLS is the composition of a handshake and record protocol
 [I-D.ietf-tls-tls13]. The record protocol is designed to marshal an
 arbitrary, in-order stream of bytes from one endpoint to the other.

https://datatracker.ietf.org/doc/html/rfc7301
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc5246

Pauly, et al. Expires April 25, 2019 [Page 7]

Internet-Draft transport security survey October 2018

 It handles segmenting, compressing (when enabled), and encrypting
 data into discrete records. When configured to use an authenticated
 encryption with associated data (AEAD) algorithm, it also handles
 nonce generation and encoding for each record. The record protocol
 is hidden from the client behind a bytestream-oriented API.

 The handshake protocol serves several purposes, including: peer
 authentication, protocol option (key exchange algorithm and
 ciphersuite) negotiation, and key derivation. Peer authentication
 may be mutual; however, commonly, only the server is authenticated.
 X.509 certificates are commonly used in this authentication step,
 though other mechanisms, such as raw public keys [RFC7250], exist.
 The client is not authenticated unless explicitly requested by the
 server.

 The handshake protocol is also extensible. It allows for a variety
 of extensions to be included by either the client or server. These
 extensions are used to specify client preferences, e.g., the
 application-layer protocol to be driven with the TLS connection
 [RFC7301], or signals to the server to aid operation, e.g., Server
 Name Indication (SNI) [RFC6066]. Various extensions also exist to
 tune the parameters of the record protocol, e.g., the maximum
 fragment length [RFC6066] and record size limit
 [I-D.ietf-tls-record-limit].

 Alerts are used to convey errors and other atypical events to the
 endpoints. There are two classes of alerts: closure and error
 alerts. A closure alert is used to signal to the other peer that the
 sender wishes to terminate the connection. The sender typically
 follows a close alert with a TCP FIN segment to close the connection.
 Error alerts are used to indicate problems with the handshake or
 individual records. Most errors are fatal and are followed by
 connection termination. However, warning alerts may be handled at
 the discretion of the implementation.

 Once a session is disconnected all session keying material must be
 destroyed, with the exception of secrets previously established
 expressly for purposes of session resumption. TLS supports stateful
 and stateless resumption. (Here, "state" refers to bookkeeping on a
 per-session basis by the server. It is assumed that the client must
 always store some state information in order to resume a session.)

4.1.2. Security Features

 o Forward-secure key establishment.

 o Cryptographic algorithm negotiation.

https://datatracker.ietf.org/doc/html/rfc7250
https://datatracker.ietf.org/doc/html/rfc7301
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6066

Pauly, et al. Expires April 25, 2019 [Page 8]

Internet-Draft transport security survey October 2018

 o Stateful and stateless cross-connection session resumption.

 o Session caching and management.

 o Peer authentication (Certificate, raw public key, and pre-shared
 key).

 o Mandatory server authentication, optional client authentication.

 o Application authentication delegation.

 o Record (channel) confidentiality and integrity.

 o Record replay prevention.

 o Application-layer feature negotiation.

 o Configuration extensions.

 o Early data support (starting with TLS 1.3).

 o Optional record-layer padding (starting with TLS 1.3).

4.1.3. Protocol Dependencies

 o TCP for in-order, reliable transport.

 o (Optionally) A PKI trust store for certificate validation.

4.2. DTLS

 DTLS (Datagram Transport Layer Security) [RFC6347] is based on TLS,
 but differs in that it is designed to run over UDP instead of TCP.
 Since UDP does not guarantee datagram ordering or reliability, DTLS
 modifies the protocol to make sure it can still provide the same
 security guarantees as TLS. DTLS was designed to be as close to TLS
 as possible, so this document will assume that all properties from
 TLS are carried over except where specified.

4.2.1. Protocol Description

 DTLS is modified from TLS to operate with the possibility of packet
 loss, reordering, and duplication that may occur when operating over
 UDP. To enable out-of-order delivery of application data, the DTLS
 record protocol itself has no inter-record dependencies. However, as
 the handshake requires reliability, each handshake message is
 assigned an explicit sequence number to enable retransmissions of
 lost packets and in-order processing by the receiver. Handshake

Pauly, et al. Expires April 25, 2019 [Page 9]

https://datatracker.ietf.org/doc/html/rfc6347

Internet-Draft transport security survey October 2018

 message loss is remedied by sender retransmission after a
 configurable period in which the expected response has not yet been
 received.

 As the DTLS handshake protocol runs atop the record protocol, to
 account for long handshake messages that cannot fit within a single
 record, DTLS supports fragmentation and subsequent reconstruction of
 handshake messages across records. The receiver must reassemble
 records before processing.

 DTLS relies on unique UDP 4-tuples to identify connections. Since
 all application-layer data is encrypted, demultiplexing over the same
 4-tuple requires the use of a connection identifier extension
 [I-D.ietf-tls-dtls-connection-id] to permit identification of the
 correct connection-specific cryptographic context without the use of
 trial decryption. (Note that this extension is only supported in
 DTLS 1.2 and 1.3 {{I-D.ietf-tls-dtls13}.)

 Since datagrams can be replayed, DTLS provides optional anti-replay
 detection based on a window of acceptable sequence numbers [RFC6347].

4.2.2. Security Features

 o Record replay protection.

 o Record (datagram) confidentiality and integrity.

 o Out-of-order record receipt.

 o DoS mitigation (cookie-based).

 See also the features from TLS.

4.2.3. Protocol Dependencies

 o The DTLS record protocol explicitly encodes record lengths, so
 although it runs over a datagram transport, it does not rely on
 the transport protocol's framing beyond requiring transport-level
 reconstruction of datagrams fragmented over packets. (Note: DTLS
 1.3 short header records omit the explicit length field.)

 o UDP 4-tuple uniqueness, or the connection identifier extension,
 for demultiplexing.

 o Path MTU discovery.

Pauly, et al. Expires April 25, 2019 [Page 10]

https://datatracker.ietf.org/doc/html/rfc6347

Internet-Draft transport security survey October 2018

4.3. (IETF) QUIC with TLS

 QUIC (Quick UDP Internet Connections) is a new standards-track
 transport protocol that runs over UDP, loosely based on Google's
 original proprietary gQUIC protocol [I-D.ietf-quic-transport]. (See

Section 4.3.4 for more details.) The QUIC transport layer itself
 provides support for data confidentiality and integrity. This
 requires keys to be derived with a separate handshake protocol. A
 mapping for QUIC over TLS 1.3 [I-D.ietf-quic-tls] has been specified
 to provide this handshake.

4.3.1. Protocol Description

 As QUIC relies on TLS to secure its transport functions, it creates
 specific integration points between its security and transport
 functions:

 o Starting the handshake to generate keys and provide authentication
 (and providing the transport for the handshake).

 o Client address validation.

 o Key ready events from TLS to notify the QUIC transport.

 o Exporting secrets from TLS to the QUIC transport.

 The QUIC transport layer support multiple streams over a single
 connection. QUIC implements a record protocol for TLS handshake
 messages to establish a connection. These messages are sent in
 special INITIAL and CRYPTO frames [I-D.ietf-quic-transport], types of
 which are encrypted using different keys. INITIAL frames are
 encrypted using "fixed" keys derived from the QUIC version and public
 packet information (Connection ID). CRYPTO frames are encrypted
 using TLS handshake secrets. Once TLS completes, QUIC uses the
 resultant traffic secrets to for the QUIC connection to protect the
 rest of the streams. QUIC supports 0-RTT (early) data using
 previously negotiated connection secrets. Early data is sent in
 0-RTT packets, which may be included in the same datagram as the
 Initial and Handshake packets.

4.3.2. Security Features

 o DoS mitigation (cookie-based).

 See also the properties of TLS.

Pauly, et al. Expires April 25, 2019 [Page 11]

Internet-Draft transport security survey October 2018

4.3.3. Protocol Dependencies

 o QUIC transport relies on UDP.

 o QUIC transport relies on TLS 1.3 for key exchange, peer
 authentication, and shared secret derivation.

4.3.4. Variant: Google QUIC

 Google QUIC (gQUIC) is a UDP-based multiplexed streaming protocol
 designed and deployed by Google following experience from deploying
 SPDY, the proprietary predecessor to HTTP/2. gQUIC was originally
 known as "QUIC": this document uses gQUIC to unambiguously
 distinguish it from the standards-track IETF QUIC. The proprietary
 technical forebear of IETF QUIC, gQUIC was originally designed with
 tightly-integrated security and application data transport protocols.

4.4. IKEv2 with ESP

 IKEv2 [RFC7296] and ESP [RFC4303] together form the modern IPsec
 protocol suite that encrypts and authenticates IP packets, either for
 creating tunnels (tunnel-mode) or for direct transport connections
 (transport-mode). This suite of protocols separates out the key
 generation protocol (IKEv2) from the transport encryption protocol
 (ESP). Each protocol can be used independently, but this document
 considers them together, since that is the most common pattern.

4.4.1. Protocol descriptions

4.4.1.1. IKEv2

 IKEv2 is a control protocol that runs on UDP port 500. Its primary
 goal is to generate keys for Security Associations (SAs). An SA
 contains shared (cryptographic) information used for establishing
 other SAs or keying ESP; See Section 4.4.1.2. IKEv2 first uses a
 Diffie-Hellman key exchange to generate keys for the "IKE SA", which
 is a set of keys used to encrypt further IKEv2 messages. It then
 goes through a phase of authentication in which both peers present
 blobs signed by a shared secret or private key, after which another
 set of keys is derived, referred to as the "Child SA". These Child
 SA keys are used by ESP.

 IKEv2 negotiates which protocols are acceptable to each peer for both
 the IKE and Child SAs using "Proposals". Each proposal may contain
 an encryption algorithm, an authentication algorithm, a Diffie-
 Hellman group, and (for IKE SAs only) a pseudorandom function
 algorithm. Each peer may support multiple proposals, and the most
 preferred mutually supported proposal is chosen during the handshake.

https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc4303

Pauly, et al. Expires April 25, 2019 [Page 12]

Internet-Draft transport security survey October 2018

 The authentication phase of IKEv2 may use Shared Secrets,
 Certificates, Digital Signatures, or an EAP (Extensible
 Authentication Protocol) method. At a minimum, IKEv2 takes two round
 trips to set up both an IKE SA and a Child SA. If EAP is used, this
 exchange may be expanded.

 Any SA used by IKEv2 can be rekeyed upon expiration, which is usually
 based either on time or number of bytes encrypted.

 There is an extension to IKEv2 that allows session resumption
 [RFC5723].

 MOBIKE is a Mobility and Multihoming extension to IKEv2 that allows a
 set of Security Associations to migrate over different addresses and
 interfaces [RFC4555].

 When UDP is not available or well-supported on a network, IKEv2 may
 be encapsulated in TCP [RFC8229].

4.4.1.2. ESP

 ESP is a protocol that encrypts and authenticates IPv4 and IPv6
 packets. The keys used for both encryption and authentication can be
 derived from an IKEv2 exchange. ESP Security Associations come as
 pairs, one for each direction between two peers. Each SA is
 identified by a Security Parameter Index (SPI), which is marked on
 each encrypted ESP packet.

 ESP packets include the SPI, a sequence number, an optional
 Initialization Vector (IV), payload data, padding, a length and next
 header field, and an Integrity Check Value.

 From [RFC4303], "ESP is used to provide confidentiality, data origin
 authentication, connectionless integrity, an anti-replay service (a
 form of partial sequence integrity), and limited traffic flow
 confidentiality."

 Since ESP operates on IP packets, it is not directly tied to the
 transport protocols it encrypts. This means it requires little or no
 change from transports in order to provide security.

 ESP packets may be sent directly over IP, but where network
 conditions warrant (e.g., when a NAT is present or when a firewall
 blocks such packets) they may be encapsulated in UDP [RFC3948] or TCP
 [RFC8229].

https://datatracker.ietf.org/doc/html/rfc5723
https://datatracker.ietf.org/doc/html/rfc4555
https://datatracker.ietf.org/doc/html/rfc8229
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc3948
https://datatracker.ietf.org/doc/html/rfc8229

Pauly, et al. Expires April 25, 2019 [Page 13]

Internet-Draft transport security survey October 2018

4.4.2. Security Features

4.4.2.1. IKEv2

 o Forward-secure key establishment.

 o Cryptographic algorithm negotiation.

 o Peer authentication (Certificate, raw public key, pre-shared key,
 and EAP).

 o Mutual authentication.

 o Record (datagram) confidentiality and integrity.

 o Session resumption.

 o Connection mobility.

 o DoS mitigation (cookie-based).

4.4.2.2. ESP

 o Record confidentiality and integrity.

 o Record replay protection.

4.4.3. Protocol Dependencies

4.4.3.1. IKEv2

 o Availability of UDP to negotiate, or implementation support for
 TCP-encapsulation.

 o Some EAP authentication types require accessing a hardware device,
 such as a SIM card; or interacting with a user, such as password
 prompting.

4.4.3.2. ESP

 o Since ESP is below transport protocols, it does not have any
 dependencies on the transports themselves, other than on UDP or
 TCP where encapsulation is employed.

Pauly, et al. Expires April 25, 2019 [Page 14]

Internet-Draft transport security survey October 2018

4.5. Secure RTP (with DTLS)

 Secure RTP (SRTP) is a profile for RTP that provides confidentiality,
 message authentication, and replay protection for RTP data packets
 and RTP control protocol (RTCP) packets [RFC3711].

4.5.1. Protocol description

 SRTP adds confidentiality and optional integrity protection to RTP
 data packets, and adds confidentially and mandatory integrity
 protection to RTCP packets. For RTP data packets, this is done by
 encrypting the payload section of the packet and optionally appending
 an authentication tag (MAC) as a packet trailer, with the RTP header
 authenticated but not encrypted (the RTP header was left unencrypted
 to enable RTP header compression [RFC2508] [RFC3545]). For RTCP
 packets, the first packet in the compound RTCP packet is partially
 encrypted, leaving the first eight octets of the header as clear-text
 to allow identification of the packet as RTCP, while the remainder of
 the compound packet is fully encrypted. The entire RTCP packet is
 then authenticated by appending a MAC as packet trailer.

 Packets are encrypted using session keys, which are ultimately
 derived from a master key and an additional master salt and session
 salt. SRTP packets carry a 2-byte sequence number to partially
 identify the unique packet index. SRTP peers maintain a separate
 roll-over counter (ROC) for RTP data packets that is incremented
 whenever the sequence number wraps. The sequence number and ROC
 together determine the packet index. RTCP packets have a similar,
 yet differently named, field called the RTCP index which serves the
 same purpose.

 Numerous encryption modes are supported. For popular modes of
 operation, e.g., AES-CTR, the (unique) initialization vector (IV)
 used for each encryption mode is a function of the RTP SSRC
 (synchronization source), packet index, and session "salting key".

 SRTP offers replay detection by keeping a replay list of already seen
 and processed packet indices. If a packet arrives with an index that
 matches one in the replay list, it is silently discarded.

 DTLS [RFC5764] is commonly used to perform mutual authentication and
 key agreement for SRTP [RFC5763]. Peers use DTLS to perform mutual
 certificate-based authentication on the media path, and to generate
 the SRTP master key. Peer certificates can be issued and signed by a
 certificate authority. Alternatively, certificates used in the DTLS
 exchange can be self-signed. If they are self-signed, certificate
 fingerprints are included in the signalling exchange (e.g., in SIP or
 WebRTC), and used to bind the DTLS key exchange in the media plane to

https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc2508
https://datatracker.ietf.org/doc/html/rfc3545
https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc5763

Pauly, et al. Expires April 25, 2019 [Page 15]

Internet-Draft transport security survey October 2018

 the signaling plane. The combination of a mutually authenticated
 DTLS key exchange on the media path and a fingerprint sent in the
 signalling channel protects against active attacks on the media,
 provided the signalling can be trusted. Signalling needs to be
 protected as described in, for example, SIP [RFC3261] Authenticated
 Identity Management [RFC4474] or the WebRTC security architecture
 [I-D.ietf-rtcweb-security-arch], to provide complete system security.

4.5.2. Security Features

 o Forward-secure key establishment.

 o Cryptographic algorithm negotiation.

 o Mutual authentication.

 o Partial datagram confidentiality. (Packet headers are not
 encrypted.)

 o Optional authentication of data packets.

 o Mandatory authentication of control packets.

 o Out-of-order record receipt.

4.5.3. Protocol Dependencies

 o External key derivation and management protocol, e.g., DTLS
 [RFC5763].

 o External identity management protocol, e.g., SIP Authenticated
 Identity Management [RFC4474], WebRTC Security Architecture
 [I-D.ietf-rtcweb-security-arch].

4.5.4. Variant: ZRTP for Media Path Key Agreement

 ZRTP [RFC6189] is an alternative key agreement protocol for SRTP. It
 uses standard SRTP to protect RTP data packets and RTCP packets, but
 provides alternative key agreement and identity management protocols.

 Key agreement is performed using a Diffie-Hellman key exchange that
 runs on the media path. This generates a shared secret that is then
 used to generate the master key and salt for SRTP.

 ZRTP does not rely on a PKI or external identity management system.
 Rather, it uses an ephemeral Diffie-Hellman key exchange with hash
 commitment to allow detection of man-in-the-middle attacks. This
 requires endpoints to display a short authentication string that the

Pauly, et al. Expires April 25, 2019 [Page 16]

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4474
https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc4474
https://datatracker.ietf.org/doc/html/rfc6189

Internet-Draft transport security survey October 2018

 users must read and verbally compare to validate the hashes and
 ensure security. Endpoints cache some key material after the first
 call to use in subsequent calls; this is mixed in with the Diffie-
 Hellman shared secret, so the short authentication string need only
 be checked once for a given user. This gives key continuity
 properties analogous to the secure shell (ssh) [RFC4253].

4.6. tcpcrypt

 Tcpcrypt is a lightweight extension to the TCP protocol to enable
 opportunistic encryption with hooks available to the application
 layer for implementation of endpoint authentication.

4.6.1. Protocol Description

 Tcpcrypt extends TCP to enable opportunistic encryption between the
 two ends of a TCP connection [I-D.ietf-tcpinc-tcpcrypt]. It is a
 family of TCP encryption protocols (TEP), distinguished by key
 exchange algorithm. The use of a TEP is negotiated with a TCP option
 during the initial TCP handshake via the mechanism described by TCP
 Encryption Negotiation Option (ENO) [I-D.ietf-tcpinc-tcpeno]. In the
 case of initial session establishment, once a tcpcrypt TEP has been
 negotiated the key exchange occurs within the data segments of the
 first few packets exchanged after the handshake completes. The
 initiator of a connection sends a list of supported AEAD algorithms,
 a random nonce, and an ephemeral public key share. The responder
 typically chooses a mutually-supported AEAD algorithm and replies
 with this choice, its own nonce, and ephemeral key share. An initial
 shared secret is derived from the ENO handshake, the tcpcrypt
 handshake, and the initial keying material resulting from the key
 exchange. The traffic encryption keys on the initial connection are
 derived from the shared secret. Connections can be re-keyed before
 the natural AEAD limit for a single set of traffic encryption keys is
 reached.

 Each tcpcrypt session is associated with a ladder of resumption IDs,
 each derived from the respective entry in a ladder of shared secrets.
 These resumption IDs can be used to negotiate a stateful resumption
 of the session in a subsequent connection, resulting in use of a new
 shared secret and traffic encryption keys without requiring a new key
 exchange. Willingness to resume a session is signaled via the ENO
 option during the TCP handshake. Given the length constraints
 imposed by TCP options, unlike stateless resumption mechanisms (such
 as that provided by session tickets in TLS) resumption in tcpcrypt
 requires the maintenance of state on the server, and so successful
 resumption across a pool of servers implies shared state.

https://datatracker.ietf.org/doc/html/rfc4253

Pauly, et al. Expires April 25, 2019 [Page 17]

Internet-Draft transport security survey October 2018

 Owing to middlebox ossification issues, tcpcrypt only protects the
 payload portion of a TCP packet. It does not encrypt any header
 information, such as the TCP sequence number.

 Tcpcrypt exposes a universally-unique connection-specific session ID
 to the application, suitable for application-level endpoint
 authentication either in-band or out-of-band.

4.6.2. Security Features

 o Forward-secure key establishment.

 o Record (channel) confidentiality and integrity.

 o Stateful cross-connection session resumption.

 o Session caching and management.

 o Connection re-keying.

 o Application authentication delegation.

4.6.3. Protocol Dependencies

 o TCP.

 o TCP Encryption Negotiation Option (ENO).

4.7. WireGuard

 WireGuard is a layer 3 protocol designed to complement or replace
 IPsec [WireGuard] for certain use cases. It uses UDP to encapsulate
 IP datagrams between peers. Unlike most transport security
 protocols, which rely on PKI for peer authentication, WireGuard
 authenticates peers using pre-shared public keys delivered out-of-
 band, each of which is bound to one or more IP addresses. Moreover,
 as a protocol suited for VPNs, WireGuard offers no extensibility,
 negotiation, or cryptographic agility.

4.7.1. Protocol description

 WireGuard is a simple VPN protocol that binds a pre-shared public key
 to one or more IP addresses. Users configure WireGuard by
 associating peer public keys with IP addresses. These mappings are
 stored in a CryptoKey Routing Table. (See Section 2 of [WireGuard]
 for more details and sample configurations.) These keys are used
 upon WireGuard packet transmission and reception. For example, upon
 receipt of a Handshake Initiation message, receivers use the static

Pauly, et al. Expires April 25, 2019 [Page 18]

Internet-Draft transport security survey October 2018

 public key in their CryptoKey routing table to perform necessary
 cryptographic computations.

 WireGuard builds on Noise [Noise] for 1-RTT key exchange with
 identity hiding. The handshake hides peer identities as per the
 SIGMA construction [SIGMA]. As a consequence of using Noise,
 WireGuard comes with a fixed set of cryptographic algorithms:

 o x25519 [Curve25519] and HKDF [RFC5869] for ECDH and key
 derivation.

 o ChaCha20+Poly1305 [RFC7539] for packet authenticated encryption.

 o BLAKE2s [BLAKE2] for hashing.

 There is no cryptographic agility. If weaknesses are found in any of
 these algorithms, new message types using new algorithms must be
 introduced.

 WireGuard is designed to be entirely stateless, modulo the CryptoKey
 routing table, which has size linear with the number of trusted
 peers. If a WireGuard receiver is under heavy load and cannot
 process a packet, e.g., cannot spare CPU cycles for point
 multiplication, it can reply with a cookie similar to DTLS and IKEv2.
 This cookie only proves IP address ownership. Any rate limiting
 scheme can be applied to packets coming from non-spoofed addresses.

4.7.2. Security Features

 o Forward-secure key establishment.

 o Peer authentication (Public-key and PSK).

 o Mutual authentication.

 o Record replay prevention (Stateful, timestamp-based).

 o DoS mitigation (cookie-based).

4.7.3. Protocol Dependencies

 o Datagram transport.

 o Out-of-band key distribution and management.

Pauly, et al. Expires April 25, 2019 [Page 19]

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc7539

Internet-Draft transport security survey October 2018

4.8. MinimalT

 MinimalT is a UDP-based transport security protocol designed to offer
 confidentiality, mutual authentication, DoS prevention, and
 connection mobility [MinimalT]. One major goal of the protocol is to
 leverage existing protocols to obtain server-side configuration
 information used to more quickly bootstrap a connection. MinimalT
 uses a variant of TCP's congestion control algorithm.

4.8.1. Protocol Description

 MinimalT is a secure transport protocol built on top of a widespread
 directory service. Clients and servers interact with local directory
 services to (a) resolve server information and (b) public ephemeral
 state information, respectively. Clients connect to a local resolver
 once at boot time. Through this resolver they recover the IP
 address(es) and public key(s) of each server to which they want to
 connect.

 Connections are instances of user-authenticated, mobile sessions
 between two endpoints. Connections run within tunnels between hosts.
 A tunnel is a server-authenticated container that multiplexes
 multiple connections between the same hosts. All connections in a
 tunnel share the same transport state machine and encryption. Each
 tunnel has a dedicated control connection used to configure and
 manage the tunnel over time. Moreover, since tunnels are independent
 of the network address information, they may be reused as both ends
 of the tunnel move about the network. This does however imply that
 the connection establishment and packet encryption mechanisms are
 coupled.

 Before a client connects to a remote service, it must first establish
 a tunnel to the host providing or offering the service. Tunnels are
 established in 1-RTT using an ephemeral key obtained from the
 directory service. Tunnel initiators provide their own ephemeral key
 and, optionally, a DoS puzzle solution such that the recipient
 (server) can verify the authenticity of the request and derive a
 shared secret. Within a tunnel, new connections to services may be
 established.

4.8.2. Protocol Features

 o Forward-secure key establishment.

 o DoS mitigation (puzzle-based).

 o Connection mobility (based on tunnel identifiers).

Pauly, et al. Expires April 25, 2019 [Page 20]

Internet-Draft transport security survey October 2018

 Additional (orthogonal) transport features include: connection
 multiplexing between hosts across shared tunnels, and congestion
 control state is shared across connections between the same host
 pairs.

4.8.3. Protocol Dependencies

 o A DNS-like resolution service to obtain location information (an
 IP address) and ephemeral keys.

 o A PKI trust store for certificate validation.

4.9. CurveCP

 CurveCP [CurveCP] is a UDP-based transport security protocol from
 Daniel J. Bernstein. Unlike other transport security protocols, it
 is based entirely upon highly efficient public key algorithms. This
 removes many pitfalls associated with nonce reuse and key
 synchronization.

4.9.1. Protocol Description

 CurveCP is a UDP-based transport security protocol. It is built on
 three principal features: exclusive use of public key authenticated
 encryption of packets, server-chosen cookies to prohibit memory and
 computation DoS at the server, and connection mobility with a client-
 chosen ephemeral identifier.

 There are two rounds in CurveCP. In the first round, the client
 sends its first initialization packet to the server, carrying its
 (possibly fresh) ephemeral public key C', with zero-padding encrypted
 under the server's long-term public key. The server replies with a
 cookie and its own ephemeral key S' and a cookie that is to be used
 by the client. Upon receipt, the client then generates its second
 initialization packet carrying: the ephemeral key C', cookie, and an
 encryption of C', the server's domain name, and, optionally, some
 message data. The server verifies the cookie and the encrypted
 payload and, if valid, proceeds to send data in return. At this
 point, the connection is established and the two parties can
 communicate.

 The use of only public-key encryption and authentication, or
 "boxing", is done to simplify problems that come with symmetric key
 management and synchronization. For example, it allows the sender of
 a message to be in complete control of each message's nonce. It does
 not require either end to share secret keying material. Furthermore,
 it allows connections (or sessions) to be associated with unique

Pauly, et al. Expires April 25, 2019 [Page 21]

Internet-Draft transport security survey October 2018

 ephemeral public keys as a mechanism for enabling forward secrecy
 given the risk of long-term private key compromise.

 The client and server do not perform a standard key exchange.
 Instead, in the initial exchange of packets, each party provides its
 own ephemeral key to the other end. The client can choose a new
 ephemeral key for every new connection. However, the server must
 rotate these keys on a slower basis. Otherwise, it would be trivial
 for an attacker to force the server to create and store ephemeral
 keys with a fake client initialization packet.

 Servers use cookies for source validation. After receiving a
 client's initial packet, encrypted under the server's long-term
 public key, a server generates and returns a stateless cookie that
 must be echoed back in the client's following message. This cookie
 is encrypted under the client's ephemeral public key. This stateless
 technique prevents attackers from hijacking client initialization
 packets to obtain cookie values to flood clients. (A client would
 detect the duplicate cookies and reject the flooded packets.)
 Similarly, replaying the client's second packet, carrying the cookie,
 will be detected by the server.

 CurveCP supports a weak form of client authentication. Clients are
 permitted to send their long-term public keys in the second
 initialization packet. A server can verify this public key and, if
 untrusted, drop the connection and subsequent data.

 Unlike some other protocols, CurveCP data packets leave only the
 ephemeral public key, the connection ID, and the per-message nonce in
 the clear. Everything else is encrypted.

4.9.2. Protocol Features

 o Datagram confidentiality and integrity (via public key
 encryption).

 o Connection mobility (based on a client-chosen ephemeral
 identifier).

 o Optional length-hiding and anti-amplification padding.

4.9.3. Protocol Dependencies

 o An unreliable transport protocol such as UDP.

Pauly, et al. Expires April 25, 2019 [Page 22]

Internet-Draft transport security survey October 2018

5. Security Features and Transport Dependencies

 There exists a common set of features shared across the transport
 protocols surveyed in this document. Mandatory features constitute a
 baseline of functionality that an application may assume for any TAPS
 implementation. They were selected on the basis that they are either
 (a) required for any secure transport protocol or (b) nearly
 ubiquitous amongst common secure transport protocols. Optional
 features by contrast may vary from implementation to implementation,
 and so an application cannot simply assume they are available.
 Applications learn of and use optional features by querying for their
 presence and support. Optional features may not be implemented, or
 may be disabled if their presence impacts transport services or if a
 necessary transport service is unavailable.

5.1. Mandatory Features

 o Segment or datagram encryption and authentication: Protect transit
 data with an authenticated encryption algorithm.

 o Forward-secure key establishment.

 o Public-key (raw or certificate) based authentication.

 o Unilateral responder authentication.

 o Pre-shared key support.

5.2. Optional Features

 o Cryptographic algorithm negotiation (AN):

 * Transport dependency: None.

 * Application dependency: Application awareness of supported or
 desired algorithms.

 o Application authentication delegation (AD):

 * Transport dependency: None.

 * Application dependency: Application opt-in and policy for
 endpoint authentication

 o Mutual authentication (MA):

 * Transport dependency: None.

Pauly, et al. Expires April 25, 2019 [Page 23]

Internet-Draft transport security survey October 2018

 * Application dependency: Mutual authentication required for
 application support.

 o DoS mitigation (DM):

 * Transport dependency: None.

 * Application dependency: None.

 o Connection mobility (CM):

 * Transport dependency: Connections are unreliable or can change
 due to unpredictable network events, e.g., NAT re-bindings.

 * Application dependency: None.

 o Source validation (SV):

 * Transport dependency: Packets may arrive as datagrams instead
 of streams from unauthenticated sources.

 * Application dependency: None.

 o Application-layer feature negotiation (AFN):

 * Transport dependency: None.

 * Application dependency: Specification of application-layer
 features or functionality.

 o Configuration extensions (CX):

 * Transport dependency: None.

 * Application dependency: Specification of application-specific
 extensions.

 o Session caching and management (SC):

 * Transport dependency: None.

 * Application dependency: None.

 o Early data support (ED):

 * Transport dependency: None.

Pauly, et al. Expires April 25, 2019 [Page 24]

Internet-Draft transport security survey October 2018

 * Application dependency: Anti-replay protections or hints of
 data idempotency.

 o Length-hiding padding (LHP):

 * Transport dependency: None.

 * Application dependency: Knowledge of desired padding policies.

5.3. Optional Feature Availability

 The following table lists the availability of the above-listed
 optional features in each of the analyzed protocols. "Mandatory"
 indicates that the feature is intrinsic to the protocol and cannot be
 disabled. "Supported" indicates that the feature is optionally
 provided natively or through a (standardized, where applicable)
 extension.

 +----------+---+----+----+-----+----+----+-----+----+----+-----+----+
 | Protocol | A | AD | MA | DM | CM | SV | AFN | CX | SC | LHP | ED |
 | | N | | | | | | | | | | |
 +----------+---+----+----+-----+----+----+-----+----+----+-----+----+
TLS	S	S	S	S	U*	M	S	S	S	S	S
DTLS	S	S	S	S	S	M	S	S	S	S	U
IETF	S	S	S	S	S	M	S	S	S	S	S
QUIC											
IKEv2+ES	S	S	M	S	S	M	S	S	S	S	U
P											
SRTP+DTL	S	S	S	S	U	M	S	S	S	U	U
S											
tcpcrypt	S	M	U	U**	U*	M	U	U	S	U	U
WireGuar	U	S	M	S	U	M	U	U	U	S+	U
d											
MinimalT	U	U	M	S	M	M	U	U	U	S	U
CurveCP	U	U	S	S	M	M	U	U	U	S	U
 +----------+---+----+----+-----+----+----+-----+----+----+-----+----+

 M=Mandatory S=Supported but not required U=Unsupported *=On TCP;
 MPTCP would provide this ability **=TCP provides SYN cookies

Pauly, et al. Expires April 25, 2019 [Page 25]

Internet-Draft transport security survey October 2018

 natively, but these are not cryptographically strong +=For transport
 packets only

6. Transport Security Protocol Interfaces

 This section describes the interface surface exposed by the security
 protocols described above. Note that not all protocols support each
 interface. We partition these interfaces into pre-connection
 (configuration), connection, and post-connection interfaces,
 following conventions in [I-D.ietf-taps-interface] and
 [I-D.ietf-taps-arch].

6.1. Pre-Connection Interfaces

 Configuration interfaces are used to configure the security protocols
 before a handshake begins or the keys are negotiated.

 o Identity and Private Keys The application can provide its
 identities (certificates) and private keys, or mechanisms to
 access these, to the security protocol to use during handshakes.
 Protocols: TLS, DTLS, QUIC + TLS, MinimalT, CurveCP, IKEv2,
 WireGuard, SRTP

 o Supported Algorithms (Key Exchange, Signatures, and Ciphersuites)
 The application can choose the algorithms that are supported for
 key exchange, signatures, and ciphersuites. Protocols: TLS, DTLS,
 QUIC + TLS, MinimalT, tcpcrypt, IKEv2, SRTP

 o Session Cache Management The application provides the ability to
 save and retrieve session state (such as tickets, keying material,
 and server parameters) that may be used to resume the security
 session. Protocols: TLS, DTLS, QUIC + TLS, MinimalT

 o Authentication Delegation The application provides access to a
 separate module that will provide authentication, using EAP for
 example. Protocols: IKEv2, SRTP

 o Pre-Shared Key Import Either the handshake protocol or the
 application directly can supply pre-shared keys for the record
 protocol use for encryption/decryption and authentication. If the
 application can supply keys directly, this is considered explicit
 import; if the handshake protocol traditionally provides the keys
 directly, it is considered direct import; if the keys can only be
 shared by the handshake, they are considered non-importable.

 * Explict import: QUIC, ESP

 * Direct import: TLS, DTLS, MinimalT, tcpcrypt, WireGuard

Pauly, et al. Expires April 25, 2019 [Page 26]

Internet-Draft transport security survey October 2018

 * Non-importable: CurveCP

6.2. Connection Interfaces

 o Identity Validation During a handshake, the security protocol will
 conduct identity validation of the peer. This can call into the
 application to offload validation. Protocols: All (TLS, DTLS,
 QUIC + TLS, MinimalT, CurveCP, IKEv2, WireGuard, SRTP (DTLS))

 o Source Address Validation The handshake protocol may delegate
 validation of the remote peer that has sent data to the transport
 protocol or application. This involves sending a cookie exchange
 to avoid DoS attacks. Protocols: QUIC + TLS, DTLS, WireGuard

6.3. Post-Connection Interfaces

 o Connection Termination The security protocol may be instructed to
 tear down its connection and session information. This is needed
 by some protocols to prevent application data truncation attacks.
 Protocols: TLS, DTLS, QUIC + TLS, MinimalT, tcpcrypt, IKEv2

 o Key Update The handshake protocol may be instructed to update its
 keying material, either by the application directly or by the
 record protocol sending a key expiration event. Protocols: TLS,
 DTLS, QUIC + TLS, MinimalT, tcpcrypt, IKEv2

 o Pre-Shared Key Export The handshake protocol will generate one or
 more keys to be used for record encryption/decryption and
 authentication. These may be explicitly exportable to the
 application, traditionally limited to direct export to the record
 protocol, or inherently non-exportable because the keys must be
 used directly in conjunction with the record protocol.

 * Explicit export: TLS (for QUIC), tcpcrypt, IKEv2, DTLS (for
 SRTP)

 * Direct export: TLS, DTLS, MinimalT

 * Non-exportable: CurveCP

 o Key Expiration The record protocol can signal that its keys are
 expiring due to reaching a time-based deadline, or a use-based
 deadline (number of bytes that have been encrypted with the key).
 This interaction is often limited to signaling between the record
 layer and the handshake layer. Protocols: ESP ((Editor's note:
 One may consider TLS/DTLS to also have this interface))

Pauly, et al. Expires April 25, 2019 [Page 27]

Internet-Draft transport security survey October 2018

 o Connection mobility The record protocol can be signaled that it is
 being migrated to another transport or interface due to connection
 mobility, which may reset address and state validation.
 Protocols: QUIC, MinimalT, CurveCP, ESP, WireGuard (roaming)

7. IANA Considerations

 This document has no request to IANA.

8. Security Considerations

 This document summarizes existing transport security protocols and
 their interfaces. It does not propose changes to or recommend usage
 of reference protocols. Moreover, no claims of security and privacy
 properties beyond those guaranteed by the protocols discussed are
 made. For example, metadata leakage via timing side channels and
 traffic analysis may compromise any protocol discussed in this
 survey. Applications using Security Interfaces SHOULD take such
 limitations into consideration when using a particular protocol
 implementation.

9. Acknowledgments

 The authors would like to thank Mirja Kuehlewind, Brian Trammell,
 Yannick Sierra, Frederic Jacobs, and Bob Bradley for their input and
 feedback on earlier versions of this draft.

10. Normative References

 [ALTS] "Application Layer Transport Security", n.d..

 [BLAKE2] "BLAKE2 -- simpler, smaller, fast as MD5", n.d..

 [Curve25519]
 "Curve25519 - new Diffie-Hellman speed records", n.d..

 [CurveCP] "CurveCP -- Usable security for the Internet", n.d..

 [I-D.ietf-quic-tls]
 Thomson, M. and S. Turner, "Using Transport Layer Security
 (TLS) to Secure QUIC", draft-ietf-quic-tls-15 (work in
 progress), October 2018.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-15 (work
 in progress), October 2018.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-15
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-15

Pauly, et al. Expires April 25, 2019 [Page 28]

Internet-Draft transport security survey October 2018

 [I-D.ietf-rtcweb-security-arch]
 Rescorla, E., "WebRTC Security Architecture", draft-ietf-

rtcweb-security-arch-15 (work in progress), July 2018.

 [I-D.ietf-taps-arch]
 Pauly, T., Trammell, B., Brunstrom, A., Fairhurst, G.,
 Perkins, C., Tiesel, P., and C. Wood, "An Architecture for
 Transport Services", draft-ietf-taps-arch-02 (work in
 progress), October 2018.

 [I-D.ietf-taps-interface]
 Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G.,
 Kuehlewind, M., Perkins, C., Tiesel, P., and C. Wood, "An
 Abstract Application Layer Interface to Transport
 Services", draft-ietf-taps-interface-02 (work in
 progress), October 2018.

 [I-D.ietf-tcpinc-tcpcrypt]
 Bittau, A., Giffin, D., Handley, M., Mazieres, D., Slack,
 Q., and E. Smith, "Cryptographic protection of TCP Streams
 (tcpcrypt)", draft-ietf-tcpinc-tcpcrypt-13 (work in
 progress), September 2018.

 [I-D.ietf-tcpinc-tcpeno]
 Bittau, A., Giffin, D., Handley, M., Mazieres, D., and E.
 Smith, "TCP-ENO: Encryption Negotiation Option", draft-

ietf-tcpinc-tcpeno-19 (work in progress), June 2018.

 [I-D.ietf-tls-dtls-connection-id]
 Rescorla, E., Tschofenig, H., Fossati, T., and T. Gondrom,
 "The Datagram Transport Layer Security (DTLS) Connection
 Identifier", draft-ietf-tls-dtls-connection-id-01 (work in
 progress), July 2018.

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-28 (work in progress), July
 2018.

 [I-D.ietf-tls-record-limit]
 Thomson, M., "Record Size Limit Extension for Transport
 Layer Security (TLS)", draft-ietf-tls-record-limit-03
 (work in progress), May 2018.

https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-arch-15
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-arch-15
https://datatracker.ietf.org/doc/html/draft-ietf-taps-arch-02
https://datatracker.ietf.org/doc/html/draft-ietf-taps-interface-02
https://datatracker.ietf.org/doc/html/draft-ietf-tcpinc-tcpcrypt-13
https://datatracker.ietf.org/doc/html/draft-ietf-tcpinc-tcpeno-19
https://datatracker.ietf.org/doc/html/draft-ietf-tcpinc-tcpeno-19
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls-connection-id-01
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-28
https://datatracker.ietf.org/doc/html/draft-ietf-tls-record-limit-03

Pauly, et al. Expires April 25, 2019 [Page 29]

Internet-Draft transport security survey October 2018

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-28 (work in progress),
 March 2018.

 [MinimalT]
 "MinimaLT -- Minimal-latency Networking Through Better
 Security", n.d..

 [Noise] "The Noise Protocol Framework", n.d..

 [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
 Signature Option", RFC 2385, DOI 10.17487/RFC2385, August
 1998, <https://www.rfc-editor.org/info/rfc2385>.

 [RFC2508] Casner, S. and V. Jacobson, "Compressing IP/UDP/RTP
 Headers for Low-Speed Serial Links", RFC 2508,
 DOI 10.17487/RFC2508, February 1999,
 <https://www.rfc-editor.org/info/rfc2508>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <https://www.rfc-editor.org/info/rfc3261>.

 [RFC3545] Koren, T., Casner, S., Geevarghese, J., Thompson, B., and
 P. Ruddy, "Enhanced Compressed RTP (CRTP) for Links with
 High Delay, Packet Loss and Reordering", RFC 3545,
 DOI 10.17487/RFC3545, July 2003,
 <https://www.rfc-editor.org/info/rfc3545>.

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",

RFC 3711, DOI 10.17487/RFC3711, March 2004,
 <https://www.rfc-editor.org/info/rfc3711>.

 [RFC3948] Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
 Stenberg, "UDP Encapsulation of IPsec ESP Packets",

RFC 3948, DOI 10.17487/RFC3948, January 2005,
 <https://www.rfc-editor.org/info/rfc3948>.

 [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <https://www.rfc-editor.org/info/rfc4253>.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-28
https://datatracker.ietf.org/doc/html/rfc2385
https://www.rfc-editor.org/info/rfc2385
https://datatracker.ietf.org/doc/html/rfc2508
https://www.rfc-editor.org/info/rfc2508
https://datatracker.ietf.org/doc/html/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://datatracker.ietf.org/doc/html/rfc3545
https://www.rfc-editor.org/info/rfc3545
https://datatracker.ietf.org/doc/html/rfc3711
https://www.rfc-editor.org/info/rfc3711
https://datatracker.ietf.org/doc/html/rfc3948
https://www.rfc-editor.org/info/rfc3948
https://datatracker.ietf.org/doc/html/rfc4253
https://www.rfc-editor.org/info/rfc4253

Pauly, et al. Expires April 25, 2019 [Page 30]

Internet-Draft transport security survey October 2018

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 DOI 10.17487/RFC4302, December 2005,
 <https://www.rfc-editor.org/info/rfc4302>.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, DOI 10.17487/RFC4303, December 2005,

 <https://www.rfc-editor.org/info/rfc4303>.

 [RFC4474] Peterson, J. and C. Jennings, "Enhancements for
 Authenticated Identity Management in the Session
 Initiation Protocol (SIP)", RFC 4474,
 DOI 10.17487/RFC4474, August 2006,
 <https://www.rfc-editor.org/info/rfc4474>.

 [RFC4555] Eronen, P., "IKEv2 Mobility and Multihoming Protocol
 (MOBIKE)", RFC 4555, DOI 10.17487/RFC4555, June 2006,
 <https://www.rfc-editor.org/info/rfc4555>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5723] Sheffer, Y. and H. Tschofenig, "Internet Key Exchange
 Protocol Version 2 (IKEv2) Session Resumption", RFC 5723,
 DOI 10.17487/RFC5723, January 2010,
 <https://www.rfc-editor.org/info/rfc5723>.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763, DOI 10.17487/RFC5763, May
 2010, <https://www.rfc-editor.org/info/rfc5763>.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764,
 DOI 10.17487/RFC5764, May 2010,
 <https://www.rfc-editor.org/info/rfc5764>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

https://datatracker.ietf.org/doc/html/rfc4302
https://www.rfc-editor.org/info/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303
https://www.rfc-editor.org/info/rfc4303
https://datatracker.ietf.org/doc/html/rfc4474
https://www.rfc-editor.org/info/rfc4474
https://datatracker.ietf.org/doc/html/rfc4555
https://www.rfc-editor.org/info/rfc4555
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5723
https://www.rfc-editor.org/info/rfc5723
https://datatracker.ietf.org/doc/html/rfc5763
https://www.rfc-editor.org/info/rfc5763
https://datatracker.ietf.org/doc/html/rfc5764
https://www.rfc-editor.org/info/rfc5764
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc5925
https://www.rfc-editor.org/info/rfc5925

Pauly, et al. Expires April 25, 2019 [Page 31]

Internet-Draft transport security survey October 2018

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/info/rfc6066>.

 [RFC6189] Zimmermann, P., Johnston, A., Ed., and J. Callas, "ZRTP:
 Media Path Key Agreement for Unicast Secure RTP",

RFC 6189, DOI 10.17487/RFC6189, April 2011,
 <https://www.rfc-editor.org/info/rfc6189>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/info/rfc7250>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <https://www.rfc-editor.org/info/rfc7296>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC7539] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 7539, DOI 10.17487/RFC7539, May 2015,
 <https://www.rfc-editor.org/info/rfc7539>.

 [RFC8095] Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
 Ed., "Services Provided by IETF Transport Protocols and
 Congestion Control Mechanisms", RFC 8095,
 DOI 10.17487/RFC8095, March 2017,
 <https://www.rfc-editor.org/info/rfc8095>.

 [RFC8229] Pauly, T., Touati, S., and R. Mantha, "TCP Encapsulation
 of IKE and IPsec Packets", RFC 8229, DOI 10.17487/RFC8229,
 August 2017, <https://www.rfc-editor.org/info/rfc8229>.

 [SIGMA] "SIGMA -- The 'SIGn-and-MAc' Approach to Authenticated
 Diffie-Hellman and Its Use in the IKE-Protocols", n.d..

https://datatracker.ietf.org/doc/html/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc6189
https://www.rfc-editor.org/info/rfc6189
https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7250
https://www.rfc-editor.org/info/rfc7250
https://datatracker.ietf.org/doc/html/rfc7296
https://www.rfc-editor.org/info/rfc7296
https://datatracker.ietf.org/doc/html/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc7539
https://www.rfc-editor.org/info/rfc7539
https://datatracker.ietf.org/doc/html/rfc8095
https://www.rfc-editor.org/info/rfc8095
https://datatracker.ietf.org/doc/html/rfc8229
https://www.rfc-editor.org/info/rfc8229

Pauly, et al. Expires April 25, 2019 [Page 32]

Internet-Draft transport security survey October 2018

 [WireGuard]
 "WireGuard -- Next Generation Kernel Network Tunnel",
 n.d..

Authors' Addresses

 Tommy Pauly
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: tpauly@apple.com

 Colin Perkins
 University of Glasgow
 School of Computing Science
 Glasgow G12 8QQ
 United Kingdom

 Email: csp@csperkins.org

 Kyle Rose
 Akamai Technologies, Inc.
 150 Broadway
 Cambridge, MA 02144
 United States of America

 Email: krose@krose.org

 Christopher A. Wood
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: cawood@apple.com

Pauly, et al. Expires April 25, 2019 [Page 33]

