
Workgroup: Network Working Group
Internet-Draft:
draft-ietf-quic-applicability-07
Published: 8 July 2020
Intended Status: Informational
Expires: 9 January 2021
Authors: M. Kuehlewind

Ericsson
B. Trammell
Google

Applicability of the QUIC Transport Protocol

Abstract

This document discusses the applicability of the QUIC transport
protocol, focusing on caveats impacting application protocol
development and deployment over QUIC. Its intended audience is
designers of application protocol mappings to QUIC, and implementors
of these application protocols.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is
at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 January 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


Table of Contents

1.  Introduction
1.1.  Notational Conventions

2.  The Necessity of Fallback
3.  Zero RTT

3.1.  Thinking in Zero RTT
3.2.  Here There Be Dragons
3.3.  Session resumption versus Keep-alive

4.  Use of Streams
4.1.  Stream versus Flow Multiplexing
4.2.  Prioritization
4.3.  Flow Control Deadlocks

5.  Packetization and Latency
6.  Port Selection and Application Endpoint Discovery
7.  Connection Migration
8.  Connection closure
9.  Information exposure and the Connection ID

9.1.  Server-Generated Connection ID
9.2.  Mitigating Timing Linkability with Connection ID Migration
9.3.  Using Server Retry for Redirection

10. Use of Versions and Cryptographic Handshake
11. Enabling New Versions
12. IANA Considerations
13. Security Considerations
14. Contributors
15. Acknowledgments
16. References

16.1.  Normative References
16.2.  Informative References

Authors' Addresses

1. Introduction

QUIC [QUIC] is a new transport protocol currently under development
in the IETF quic working group, focusing on support of semantics as
needed for HTTP/2 [QUIC-HTTP] such as stream-multiplexing to avoid
head-of-line blocking. Based on current deployment practices, QUIC is
encapsulated in UDP. The version of QUIC that is currently under
development will integrate TLS 1.3 [TLS13] to encrypt all payload
data and most control information.

This document provides guidance for application developers that want
to use the QUIC protocol without implementing it on their own. This
includes general guidance for application use of HTTP/2 over QUIC as
well as the use of other application layer protocols over QUIC. For
specific guidance on how to integrate HTTP/2 with QUIC, see [QUIC-
HTTP].

In the following sections we discuss specific caveats to QUIC's
applicability, and issues that application developers must consider
when using QUIC as a transport for their application.

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶

¶

¶

¶



1.1. Notational Conventions

The words "MUST", "MUST NOT", "SHOULD", and "MAY" are used in this
document. It's not shouting; when these words are capitalized, they
have a special meaning as defined in [RFC2119].

2. The Necessity of Fallback

QUIC uses UDP as a substrate for userspace implementation and port
numbers for NAT and middlebox traversal. While there is no evidence
of widespread, systematic disadvantage of UDP traffic compared to TCP
in the Internet [Edeline16], somewhere between three [Trammell16] and
five [Swett16] percent of networks simply block UDP traffic. All
applications running on top of QUIC must therefore either be prepared
to accept connectivity failure on such networks, or be engineered to
fall back to some other transport protocol. This fallback SHOULD
provide TLS 1.3 or equivalent cryptographic protection, if available,
in order to keep fallback from being exploited as a downgrade attack.
In the case of HTTP, this fallback is TLS 1.3 over TCP.

These applications must operate, perhaps with impaired functionality,
in the absence of features provided by QUIC not present in the
fallback protocol. For fallback to TLS over TCP, the most obvious
difference is that TCP does not provide stream multiplexing and
therefore stream multiplexing would need to be implemented in the
application layer if needed. Further, TCP without the TCP Fast Open
extension does not support 0-RTT session resumption. TCP Fast Open
can be requested by the connection initiator but might no be
supported by the far end or could be blocked on the network path.
Note that there is some evidence of middleboxes blocking SYN data
even if TFO was successfully negotiated (see [PaaschNanog]).

Any fallback mechanism is likely to impose a degradation of
performance; however, fallback MUST not silently violate the
application's expectation of confidentiality or integrity of its
payload data.

Moreover, while encryption (in this case TLS) is inseparably
integrated with QUIC, TLS negotiation over TCP can be blocked. In
case it is RECOMMENDED to abort the connection, allowing the
application to present a suitable prompt to the user that secure
communication is unavailable.

3. Zero RTT

QUIC provides for 0-RTT connection establishment. This presents
opportunities and challenges for applications using QUIC.

3.1. Thinking in Zero RTT

A transport protocol that provides 0-RTT connection establishment to
recently contacted servers is qualitatively different than one that

¶

¶

¶

¶

¶

¶



does not from the point of view of the application using it. Relative
trade-offs between the cost of closing and reopening a connection and
trying to keep it open are different; see Section 3.3.

Applications must be slightly rethought in order to make best use of
0-RTT resumption. Most importantly, application operations must be
divided into idempotent and non-idempotent operations, as only
idempotent operations may appear in 0-RTT packets. This implies that
the interface between the application and transport layer exposes
idempotence either explicitly or implicitly.

3.2. Here There Be Dragons

Retransmission or (malicious) replay of data contained in 0-RTT
resumption packets could cause the server side to receive two copies
of the same data. This is further described in [HTTP-RETRY]. Data
sent during 0-RTT resumption also cannot benefit from perfect forward
secrecy (PFS).

Data in the first flight sent by the client in a connection
established with 0-RTT MUST be idempotent (as specified in section
2.1 in [QUIC-TLS]). Applications MUST be designed, and their data
MUST be framed, such that multiple reception of idempotent data is
recognized as such by the receiverApplications that cannot treat data
that may appear in a 0-RTT connection establishment as idempotent
MUST NOT use 0-RTT establishment. For this reason the QUIC transport
SHOULD provide an interface for the application to indicate if 0-RTT
support is in general desired or a way to indicate whether data is
idempotent, whether PFS is a hard requirement for the application,
and/or whether rejected 0-RTT dgitata should be retransmitted or
withdrawn.

3.3. Session resumption versus Keep-alive

Because QUIC is encapsulated in UDP, applications using QUIC must
deal with short idle timeouts. Deployed stateful middleboxes will
generally establish state for UDP flows on the first packet state,
and keep state for much shorter idle periods than for TCP. According
to a 2010 study ([Hatonen10]), UDP applications can assume that any
NAT binding or other state entry will be expired after just thirty
seconds of inactivity.

A QUIC application has three strategies to deal with this issue:

Ignore it, if the application-layer protocol consists only of
interactions with no or very short idle periods.

Ensure there are no long idle periods.

Resume the session after a long idle period, using 0-RTT
resumption when appropriate.

¶

¶

¶

¶

¶

¶

*
¶

* ¶

*
¶



The first strategy is the easiest, but it only applies to certain
applications.

Either the server or the client in a QUIC application can send PING
frames as keep-alives, to prevent the connection and any on-path
state from timing out. Recommendations for the use of keep-alives are
application specific, mainly depending on the latency requirements
and message frequency of the application. In this case, the
application mapping must specify whether the client or server is
responsible for keeping the application alive. Note that sending PING
frames more frequently than every 30 seconds over long idle periods
may result in a too much unproductive traffic and power usage for
some situations.

Alternatively, the client (but not the server) can use session
resumption instead of sending keepalive traffic. In this case, a
client that wants to send data to a server over a connection idle
longer than the server's idle timeout (available from the
idle_timeout transport parameter) can simply reconnect. When
possible, this reconnection can use 0-RTT session resumption,
reducing the latency involved with restarting the connection. This of
course only applies in cases in which 0-RTT data is safe, when the
client is the restarting peer, and when the data to be sent is
idempotent.

The tradeoffs between resumption and keepalive need to be evaluated
on a per-application basis. However, in general applications should
use keepalives only in circumstances where continued communication is
highly likely; [QUIC-HTTP], for instance, recommends using PING
frames for keepalive only when a request is outstanding.

4. Use of Streams

QUIC's stream multiplexing feature allows applications to run
multiple streams over a single connection, without head-of-line
blocking between streams, associated at a point in time with a single
five-tuple. Stream data is carried within Frames, where one (UDP)
packet on the wire can carry one of multiple stream frames.

Stream can be independently open and closed, gracefully or by error.
If a critical stream for the application is closed, the application
can generate respective error messages on the application layer to
inform the other end or the higher layer and eventually indicate QUIC
to reset the connection. QUIC, however, does not need to know which
streams are critical, and does not provide an interface to
exceptional handling of any stream. There are special streams in QUIC
that are used for control on the QUIC connection, however, these
streams are not exposed to the application.

Mapping of application data to streams is application-specific and
described for HTTP/s in [QUIC-HTTP]. In general data that can be
processed independently, and therefore would suffer from head of line

¶

¶

¶

¶

¶

¶



blocking if forced to be received in order, should be transmitted
over different streams. If the application requires certain data to
be received in order, the same stream should be used for that data.
If there is a logical grouping of data chunks or messages, streams
can be reused, or a new stream can be opened for each chunk/message.
If one message is mapped to a single stream, resetting the stream to
expire an unacknowledged message can be used to emulate partial
reliability on a message basis. If a QUIC receiver has maximum
allowed concurrent streams open and the sender on the other end
indicates that more streams are needed, it doesn't automatically lead
to an increase of the maximum number of streams by the receiver.
Therefore it can be valuable to expose maximum number of allowed,
currently open and currently used streams to the application to make
the mapping of data to streams dependent on this information.

Further, streams have a maximum number of bytes that can be sent on
one stream. This number is high enough (2^64) that this will usually
not be reached with current applications. Applications that send
chunks of data over a very long period of time (such as days, months,
or years), should rather utilize the 0-RTT session resumption ability
provided by QUIC, than trying to maintain one connection open.

4.1. Stream versus Flow Multiplexing

Streams are meaningful only to the application; since stream
information is carried inside QUIC's encryption boundary, no
information about the stream(s) whose frames are carried by a given
packet is visible to the network. Therefore stream multiplexing is
not intended to be used for differentiating streams in terms of
network treatment. Application traffic requiring different network
treatment SHOULD therefore be carried over different five-tuples
(i.e. multiple QUIC connections). Given QUIC's ability to send
application data in the first RTT of a connection (if a previous
connection to the same host has been successfully established to
provide the respective credentials), the cost of establishing another
connection is extremely low.

4.2. Prioritization

Stream prioritization is not exposed to either the network or the
receiver. Prioritization is managed by the sender, and the QUIC
transport should provide an interface for applications to prioritize
streams [QUIC]. Further applications can implement their own
prioritization scheme on top of QUIC: an application protocol that
runs on top of QUIC can define explicit messages for signaling
priority, such as those defined for HTTP/2; it can define rules that
allow an endpoint to determine priority based on context; or it can
provide a higher level interface and leave the determination to the
application on top.

Priority handling of retransmissions can be implemented by the sender
in the transport layer. [QUIC] recommends to retransmit lost data

¶

¶

¶

¶



before new data, unless indicated differently by the application.
Currently, QUIC only provides fully reliable stream transmission,
which means that prioritization of retransmissions will be beneficial
in most cases, by filling in gaps and freeing up the flow control
window. For partially reliable or unreliable streams, priority
scheduling of retransmissions over data of higher-priority streams
might not be desirable. For such streams, QUIC could either provide
an explicit interface to control prioritization, or derive the
prioritization decision from the reliability level of the stream.

4.3. Flow Control Deadlocks

Flow control provides a means of managing access to the limited
buffers endpoints have for incoming data. This mechanism limits the
amount of data that can be in buffers in endpoints or in transit on
the network. However, there are several ways in which limits can
produce conditions that can cause a connection to either perform
suboptimally or deadlock.

Deadlocks in flow control are possible for any protocol that uses
QUIC, though whether they become a problem depends on how
implementations consume data and provide flow control credit.
Understanding what causes deadlocking might help implementations
avoid deadlocks.

Large messages can produce deadlocking if the recipient does not
process the message incrementally. If the message is larger than flow
control credit available and the recipient does not release
additional flow control credit until the entire message is received
and delivered, a deadlock can occur. This is possible even where
stream flow control limits are not reached because connection flow
control limits can be consumed by other streams.

A common flow control implementation technique is for a receiver to
extend credit to the sender as a the data consumer reads data. In
this setting, a length-prefixed message format makes it easier for
the data consumer to leave data unread in the receiver's buffers and
thereby withhold flow control credit. If flow control limits prevent
the remainder of a message from being sent, a deadlock will result. A
length prefix might also enable the detection of this sort of
deadlock. Where protocols have messages that might be processed as a
single unit, reserving flow control credit for the entire message
atomically ensures that this style of deadlock is less likely.

A data consumer can read all data as it becomes available to cause
the receiver to extend flow control credit to the sender and reduce
the chances of a deadlock. However, releasing flow control credit
might mean that the data consumer might need other means for holding
a peer accountable for the state it keeps for partially processed
messages.

¶

¶

¶

¶

¶

¶



Deadlocking can also occur if data on different streams is
interdependent. Suppose that data on one stream arrives before the
data on a second stream on which it depends. A deadlock can occur if
the first stream is left unread, preventing the receiver from
extending flow control credit for the second stream. To reduce the
likelihood of deadlock for interdependent data, the sender should
ensure that dependent data is not sent until the data it depends on
has been accounted for in both stream- and connection- level flow
control credit.

Some deadlocking scenarios might be resolved by cancelling affected
streams with STOP_SENDING or RST_STREAM. Cancelling some streams
results in the connection being terminated in some protocols.

5. Packetization and Latency

QUIC provides an interface that provides multiple streams to the
application; however, the application usually cannot control how data
transmitted over one stream is mapped into frames or how those frames
are bundled into packets. By default, QUIC will try to maximally pack
packets with one or more stream data frames to minimize bandwidth
consumption and computational costs (see section 8 of [QUIC]). If
there is not enough data available to fill a packet, QUIC may even
wait for a short time, to optimize bandwidth efficiency instead of
latency. This delay can either be pre-configured or dynamically
adjusted based on the observed sending pattern of the application. If
the application requires low latency, with only small chunks of data
to send, it may be valuable to indicate to QUIC that all data should
be send out immediately. Alternatively, if the application expects to
use a specific sending pattern, it can also provide a suggested delay
to QUIC for how long to wait before bundle frames into a packet.

Similarly, an appliaction has usually no control about the length of
a QUIC packet on the wire. However, QUIC provides the ability to add
a padding frame to impact the packet size. This is mainly used by
QUIC itself in the first packet in order to ensure that the path is
capable of transferring packets of at least a certain size.
Additionally, a QUIC implementation can expose an application layer
interface to specify a certain packet size. This can either be used
by the application to force certian packet sizes in specific use
cases/networks, or ensure that all packets are equally sized to
conceal potential leakage of application layer information when the
data sent by the application are not greedy. Note the initial packet
must have a minimum size of 1200 bytes according to the QUIC
specification. A receiver of a smaller initial packet may reject this
packet in order to avoid amplification attacks.

6. Port Selection and Application Endpoint Discovery

In general, port numbers serves two purposes: "first, they provide a
demultiplexing identifier to differentiate transport sessions between
the same pair of endpoints, and second, they may also identify the

¶

¶

¶

¶



application protocol and associated service to which processes
connect" [RFC6335]. Note that the assumption that an application can
be identified in the network based on the port number is less true
today, due to encapsulation, mechanisms for dynamic port assignments
as well as NATs.

As QUIC is a general purpose transport protocol, there are no
requirements that servers use a particular UDP port for QUIC in
general. For applications with a fallback to TCP which do not already
have an alternate mapping to UDP, the registration (if necessary) and
use of the UDP port number corresponding to the TCP port already
registered for the application is RECOMMENDED. For example, the
default port for HTTP/3 [QUIC-HTTP] is UDP port 443, analogous to
HTTP/1.1 or HTTP/2 over TLS over TCP.

Applications SHOULD define an alternate endpoint discovery mechanism
to allow the usage of ports other than the default. For example,
HTTP/3 ([QUIC-HTTP] sections 3.2 and 3.3) specifies the use of ALPN 
[RFC7301] for service discovery which allows the server to use and
announce a different port number. Note that HTTP/3's ALPN token
("h3") identifies not only the version of the application protocol,
but also the binding to QUIC as well as the version of QUIC itself;
this approach allows unambiguous agreement between the endpoints on
the protocol stack in use.

Note that given the prevalence of the assumption in network
management practice that a port number maps unambiguously to an
application, the use of ports that cannot easily be mapped to a
registered service name may lead to blocking or other interference by
network elements such as firewalls that rely on the port number for
application identification.

7. Connection Migration

QUIC supports connection migration. Even if lower-layer addresses
(usually the 4-tuple of IP addresses and ports) changes, QUIC packets
can still be associated with an existing connection based on the
Connection ID (see also section Section 9) in the QUIC header, if
present. This supports cases where address information changes due to
e.g. NAT rebinding or change of the local interface. Currently QUIC
only supports failover cases. Only one "path" can be used at a time,
and as soon as the new path is validated all traffic will be switched
over to the next path. Of course if an endpoint decided to not use
the Connection ID in short packets (Zero-length Conn ID) for a
certain connection, migration is not supported for that direction of
the connection.

8. Connection closure

QUIC connections are closed either by expiration of an idle timeout
or by an explicit indication of the application that a connection
should be closed (immediate close). While data could still be

¶

¶

¶

¶

¶



received after the immediate close has been initiated by one endpoint
(for a limited time period), the expectation is that an immediate
close was negotiated at the application layer and therefore no
additional data is expected from both sides.

An immidate close will emit an CONNECTION_CLOSE frame. This frames
has two sets of types: one for QUIC internal problems that might lead
to connection closure, and one for closures initiated by the
application. An application using QUIC can define application-
specific error codes, e.g. see [QUIC-HTTP] section 8.1. In the case
of a grateful shut-down initiated by the application after
application layer negotiation, a NO_ERROR code is expected. Further,
the CONNECTION_CLOSE frame provides an optional reason field, that
can be used to append human-readable information to an error code.
Note that QUIC RESET_STREAM and STOP_SENDING frames provide similar
capablities. Usually application error codes are defined to be
applicabile to all three frames.

Alternatively, a QUIC connection will be silently closed by each
endpoint separately after an idle timeout. The idle timeout is
announce for each endpoint during connection established and should
be accessible by the application. If an application desires to keep
the connection open for longer than the announced timeout, it can
send keep-alives messages. See {#resumption-v-keepalive} for further
guidance.

9. Information exposure and the Connection ID

QUIC exposes some information to the network in the unencrypted part
of the header, either before the encryption context is established,
because the information is intended to be used by the network. QUIC
has a long header that is used during connection establishment and
for other control processes, and a short header that may be used for
data transmission in an established connection. While the long header
always exposes some information (such as the version and Connection
IDs), the short header exposes at most only a single Connection ID.

Note that the Connection ID in the short header may be omitted. This
is a per-connection configuration option; if the Connection ID is not
present, then the peer omitting the connection ID will use the same
local address for the lifetime of the connection.

9.1. Server-Generated Connection ID

QUIC supports a server-generated Connection ID, transmitted to the
client during connection establishment (see Section 6.1 of [QUIC]).
Servers behind load balancers may need to change the Connection ID
during the handshake, encoding the identity of the server or
information about its load balancing pool, in order to support
stateless load balancing. Once the server generates a Connection ID
that encodes its identity, every CDN load balancer would be able to

¶

¶

¶

¶

¶



forward the packets to that server without retaining connection
state.

Server-generated connection IDs should seek to obscure any encoding,
of routing identities or any other information. Exposing the server
mapping would allow linkage of multiple IP addresses to the same host
if the server also supports migration. Furthermore, this opens an
attack vector on specific servers or pools.

The best way to obscure an encoding is to appear random to observers,
which is most rigorously achieved with encryption.

9.2. Mitigating Timing Linkability with Connection ID Migration

While sufficiently robust connection ID generation schemes will
mitigate linkability issues, they do not provide full protection.
Analysis of the lifetimes of six-tuples (source and destination
addresses as well as the migrated CID) may expose these links anyway.

In the limit where connection migration in a server pool is rare, it
is trivial for an observer to associate two connection IDs.
Conversely, in the opposite limit where every server handles multiple
simultaneous migrations, even an exposed server mapping may be
insufficient information.

The most efficient mitigation for these attacks is operational,
either by using a load balancing architecture that loads more flows
onto a single server-side address, by coordinating the timing of
migrations to attempt to increase the number of simultaneous
migrations at a given time, or through other means.

9.3. Using Server Retry for Redirection

QUIC provides a Server Retry packet that can be sent by a server in
response to the Client Initial packet. The server may choose a new
Connection ID in that packet and the client will retry by sending
another Client Initial packet with the server-selected Connection ID.
This mechanism can be used to redirect a connection to a different
server, e.g. due to performance reasons or when servers in a server
pool are upgraded gradually, and therefore may support different
versions of QUIC. In this case, it is assumed that all servers
belonging to a certain pool are served in cooperation with load
balancers that forward the traffic based on the Connection ID. A
server can choose the Connection ID in the Server Retry packet such
that the load balancer will redirect the next Client Initial packet
to a different server in that pool.

10. Use of Versions and Cryptographic Handshake

Versioning in QUIC may change the protocol's behavior completely,
except for the meaning of a few header fields that have been declared
to be invariant [QUIC-INVARIANTS]. A version of QUIC with a higher

¶

¶

¶

¶

¶

¶

¶



version number will not necessarily provide a better service, but
might simply provide a different feature set. As such, an application
needs to be able to select which versions of QUIC it wants to use.

A new version could use an encryption scheme other than TLS 1.3 or
higher. [QUIC] specifies requirements for the cryptographic handshake
as currently realized by TLS 1.3 and described in a separate
specification [QUIC-TLS]. This split is performed to enable light-
weight versioning with different cryptographic handshakes.

11. Enabling New Versions

QUIC provides integrity protection for its version negotiation
process. This process assumes that the set of versions that a server
supports is fixed. This complicates the process for deploying new
QUIC versions or disabling old versions when servers operate in
clusters.

A server that rolls out a new version of QUIC can do so in three
stages. Each stage is completed across all server instances before
moving to the next stage.

In the first stage of deployment, all server instances start
accepting new connections with the new version. The new version can
be enabled progressively across a deployment, which allows for
selective testing. This is especially useful when the new version is
compatible with an old version, because the new version is more
likely to be used.

While enabling the new version, servers do not advertise the new
version in any Version Negotiation packets they send. This prevents
clients that receive a Version Negotiation packet from attempting to
connect to server instances that might not have the new version
enabled.

During the initial deployment, some clients will have received
Version Negotiation packets that indicate that the server does not
support the new version. Other clients might have successfully
connected with the new version and so will believe that the server
supports the new version. Therefore, servers need to allow for this
ambiguity when validating the negotiated version.

The second stage of deployment commences once all server instances
are able accept new connections with the new version. At this point,
all servers can start sending the new version in Version Negotiation
packets.

During the second stage, the server still allows for the possibility
that some clients believe the new version to be available and some do
not. This state will persist only for as long as any Version
Negotiation packets take to be transmitted and responded to. So the
third stage can follow after a relatively short delay.

¶

¶

¶

¶

¶

¶

¶

¶

¶



[QUIC]

[QUIC-INVARIANTS]

The third stage completes the process by enabling validation of the
negotiation version as though the new version were disabled.

The process for disabling an old version or rolling back the
introduction of a new version uses the same process in reverse.
Servers disable validation of the old version, stop sending the old
version in Version Negotiation packets, then the old version is no
longer accepted.

12. IANA Considerations

This document has no actions for IANA; however, note that Section 6
recommends that application bindings to QUIC for applications using
TCP register UDP ports analogous to their existing TCP registrations.

13. Security Considerations

See the security considerations in [QUIC] and [QUIC-TLS]; the
security considerations for the underlying transport protocol are
relevant for applications using QUIC, as well.

Application developers should note that any fallback they use when
QUIC cannot be used due to network blocking of UDP SHOULD guarantee
the same security properties as QUIC; if this is not possible, the
connection SHOULD fail to allow the application to explicitly handle
fallback to a less-secure alternative. See Section 2.

14. Contributors

Igor Lubashev contributed text to Section 9 on server-selected
Connection IDs.

15. Acknowledgments

This work is partially supported by the European Commission under
Horizon 2020 grant agreement no. 688421 Measurement and Architecture
for a Middleboxed Internet (MAMI), and by the Swiss State Secretariat
for Education, Research, and Innovation under contract no. 15.0268.
This support does not imply endorsement.

16. References

16.1. Normative References

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
and Secure Transport", Work in Progress, Internet-Draft,
draft-ietf-quic-transport-29, 9 June 2020, <http://
www.ietf.org/internet-drafts/draft-ietf-quic-
transport-29.txt>. 

Thomson, M., "Version-Independent Properties of
QUIC", Work in Progress, Internet-Draft, draft-ietf-quic-

¶

¶

¶

¶

¶

¶

¶

http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-29.txt


[QUIC-TLS]

[RFC2119]

[RFC6335]

[TLS13]

[Edeline16]

[Hatonen10]

[HTTP-RETRY]

[I-D.nottingham-httpbis-retry]

[PaaschNanog]

invariants-09, 9 June 2020, <http://www.ietf.org/internet-
drafts/draft-ietf-quic-invariants-09.txt>. 

Thomson, M. and S. Turner, "Using TLS to Secure QUIC", 
Work in Progress, Internet-Draft, draft-ietf-quic-tls-29, 
9 June 2020, <http://www.ietf.org/internet-drafts/draft-
ietf-quic-tls-29.txt>. 

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>. 

Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
Cheshire, "Internet Assigned Numbers Authority (IANA)
Procedures for the Management of the Service Name and
Transport Protocol Port Number Registry", BCP 165, RFC
6335, DOI 10.17487/RFC6335, August 2011, <https://www.rfc-
editor.org/info/rfc6335>. 

Thomson, M. and S. Turner, "Using TLS to Secure QUIC", 
Work in Progress, Internet-Draft, draft-ietf-quic-tls-29, 
9 June 2020, <http://www.ietf.org/internet-drafts/draft-
ietf-quic-tls-29.txt>. 

16.2. Informative References

Edeline, K., Kuehlewind, M., Trammell, B., Aben, E., and
B. Donnet, "Using UDP for Internet Transport Evolution
(arXiv preprint 1612.07816)", 22 December 2016, <https://
arxiv.org/abs/1612.07816>. 

Hatonen, S., Nyrhinen, A., Eggert, L., Strowes, S.,
Sarolahti, P., and M. Kojo, "An experimental study of home
gateway characteristics (Proc. ACM IMC 2010)", October
2010. 

Nottingham, M., "Retrying HTTP Requests", Work in
Progress, Internet-Draft, draft-nottingham-httpbis-
retry-01, 1 February 2017, <http://www.ietf.org/internet-
drafts/draft-nottingham-httpbis-retry-01.txt>. 

Nottingham, M., "Retrying HTTP Requests", Work in
Progress, Internet-Draft, draft-nottingham-httpbis-
retry-01, 1 February 2017, <http://www.ietf.org/internet-
drafts/draft-nottingham-httpbis-retry-01.txt>. 

Paasch, C., "Network Support for TCP Fast Open (NANOG
67 presentation)", 13 June 2016, <https://www.nanog.org/
sites/default/files/Paasch_Network_Support.pdf>. 

http://www.ietf.org/internet-drafts/draft-ietf-quic-invariants-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-invariants-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-tls-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-tls-29.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6335
https://www.rfc-editor.org/info/rfc6335
http://www.ietf.org/internet-drafts/draft-ietf-quic-tls-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-tls-29.txt
https://arxiv.org/abs/1612.07816
https://arxiv.org/abs/1612.07816
http://www.ietf.org/internet-drafts/draft-nottingham-httpbis-retry-01.txt
http://www.ietf.org/internet-drafts/draft-nottingham-httpbis-retry-01.txt
http://www.ietf.org/internet-drafts/draft-nottingham-httpbis-retry-01.txt
http://www.ietf.org/internet-drafts/draft-nottingham-httpbis-retry-01.txt
https://www.nanog.org/sites/default/files/Paasch_Network_Support.pdf
https://www.nanog.org/sites/default/files/Paasch_Network_Support.pdf


[QUIC-HTTP]

[RFC7301]

[Swett16]

[Trammell16]

Bishop, M., "Hypertext Transfer Protocol Version 3 (HTTP/
3)", Work in Progress, Internet-Draft, draft-ietf-quic-
http-29, 9 June 2020, <http://www.ietf.org/internet-
drafts/draft-ietf-quic-http-29.txt>. 

Friedl, S., Popov, A., Langley, A., and E. Stephan, 
"Transport Layer Security (TLS) Application-Layer Protocol
Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301, 
July 2014, <https://www.rfc-editor.org/info/rfc7301>. 

Swett, I., "QUIC Deployment Experience at Google (IETF96
QUIC BoF presentation)", 20 July 2016, <https://
www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf>. 

Trammell, B. and M. Kuehlewind, "Internet Path
Transparency Measurements using RIPE Atlas (RIPE72 MAT
presentation)", 25 May 2016, <https://ripe72.ripe.net/wp-
content/uploads/presentations/86-atlas-udpdiff.pdf>. 

Authors' Addresses

Mirja Kuehlewind
Ericsson

Email: mirja.kuehlewind@ericsson.com

Brian Trammell
Google
Gustav-Gull-Platz 1
CH- 8004 Zurich
Switzerland

Email: ietf@trammell.ch

http://www.ietf.org/internet-drafts/draft-ietf-quic-http-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-http-29.txt
https://www.rfc-editor.org/info/rfc7301
https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
https://ripe72.ripe.net/wp-content/uploads/presentations/86-atlas-udpdiff.pdf
https://ripe72.ripe.net/wp-content/uploads/presentations/86-atlas-udpdiff.pdf
mailto:mirja.kuehlewind@ericsson.com
mailto:ietf@trammell.ch

	Applicability of the QUIC Transport Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. The Necessity of Fallback
	3. Zero RTT
	3.1. Thinking in Zero RTT
	3.2. Here There Be Dragons
	3.3. Session resumption versus Keep-alive

	4. Use of Streams
	4.1. Stream versus Flow Multiplexing
	4.2. Prioritization
	4.3. Flow Control Deadlocks

	5. Packetization and Latency
	6. Port Selection and Application Endpoint Discovery
	7. Connection Migration
	8. Connection closure
	9. Information exposure and the Connection ID
	9.1. Server-Generated Connection ID
	9.2. Mitigating Timing Linkability with Connection ID Migration
	9.3. Using Server Retry for Redirection

	10. Use of Versions and Cryptographic Handshake
	11. Enabling New Versions
	12. IANA Considerations
	13. Security Considerations
	14. Contributors
	15. Acknowledgments
	16. References
	16.1. Normative References
	16.2. Informative References

	Authors' Addresses


