
NFSv4 C. Lever
Internet-Draft Oracle
Intended status: Experimental May 29, 2015
Expires: November 30, 2015

Size-Limited Bi-directional Remote Procedure Call On Remote Direct
Memory Access Transports

draft-ietf-nfsv4-rpcrdma-bidirection-00

Abstract

 Recent minor versions of NFSv4 work best when ONC RPC transports can
 send ONC RPC transactions in both directions. This document
 describes conventions that enable RPC-over-RDMA version 1 transport
 endpoints to interoperate when operation in both directions is
 necessary.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 30, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Lever Expires November 30, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft RPC-over-RDMA Bidirection May 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3
1.2. Scope Of This Document 3
1.3. Understanding RPC Direction 3
1.3.1. Forward Direction 4
1.3.2. Backward Direction 4
1.3.3. Bi-direction . 4
1.3.4. XID Values . 4

1.4. Rationale For RPC-over-RDMA Bi-Direction 5
1.4.1. NFSv4.0 Callback Operation 5
1.4.2. NFSv4.1 Callback Operation 6

1.5. Design Considerations 6
1.5.1. Backward Compatibility 7
1.5.2. Performance Impact 7
1.5.3. Server Memory Security 7
1.5.4. Payload Size . 7

2. Conventions For Backward Operation 8
2.1. Flow Control . 8
2.1.1. Forward Credits 9
2.1.2. Backward Credits 9

2.2. Managing Receive Buffers 9
2.2.1. Client Receive Buffers 10
2.2.2. Server Receive Buffers 10
2.2.3. In the Absense of Backward Direction Support 10

2.3. Backward Direction Retransmission 11
2.4. Backward Direction Message Size 12
2.5. Sending A Backward Direction Call 12
2.6. Sending A Backward Direction Reply 13

3. Limits To This Approach 13
3.1. Payload Size . 13
3.2. Preparedness To Handle Backward Requests 13
3.3. Long Term . 14

4. Security Considerations 14
5. IANA Considerations . 14
6. Acknowledgements . 14
7. Normative References . 15

 Author's Address . 15

1. Introduction

Lever Expires November 30, 2015 [Page 2]

Internet-Draft RPC-over-RDMA Bidirection May 2015

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.2. Scope Of This Document

 This document describes a set of experimental conventions that apply
 to RPC-over-RDMA version 1, specified in [RFC5666]. When observed,
 these conventions enable RPC-over-RDMA version 1 endpoints to
 concurrently handle RPC transactions that flow from client to server
 and from server to client.

 These conventions can be observed when using the existing the RPC-
 over-RDMA version 1 protocol definition. Therefore this document
 does not update [RFC5666].

 The purpose of this document is to permit interoperable prototype
 implementations of bi-directional RPC-over-RDMA, enabling the use of
 NFSv4.1 (including pNFS and later NFSv4 minor versions) on RDMA
 transports.

 Providing an Upper Layer Binding for NFSv4.x callback operations is
 outside the scope of this document.

1.3. Understanding RPC Direction

 The ONC RPC protocol as described in [RFC5531] is fundamentally a
 message-passing protocol involving one server and perhaps multiple
 clients. ONC RPC transactions are made up of two types of messages.

 A CALL message, or "call", requests work. A call is designated by
 the value CALL in the message's msg_type field. An arbitrary unique
 value is placed in the message's xid field. A host that originates a
 call is referred to in this document as a "caller."

 A REPLY message, or "reply", reports the results of work requested by
 a call. A reply is designated by the value REPLY in the message's
 msg_type field. The value contained in the message's xid field is
 copied from the call whose results are being reported. A host that
 emits a reply is referred to as a "responder."

 RPC-over-RDMA is a connection-oriented RPC transport. When a
 connection-oriented transport is used, ONC RPC client endpoints are
 responsible for initiating transport connections, while ONC RPC
 service endpoints wait passively for incoming connection requests.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5666
https://datatracker.ietf.org/doc/html/rfc5666
https://datatracker.ietf.org/doc/html/rfc5531

Lever Expires November 30, 2015 [Page 3]

Internet-Draft RPC-over-RDMA Bidirection May 2015

 We do not consider RPC direction on connectionless RPC transports in
 this document.

1.3.1. Forward Direction

 A traditional ONC RPC client is always a caller. A traditional ONC
 RPC service is always a responder. This traditional form of ONC RPC
 message passing is referred to as operation in the "forward
 direction."

 During forward direction operation, the ONC RPC client is responsible
 for establishing transport connections.

1.3.2. Backward Direction

 The ONC RPC standard does not forbid passing messages in the other
 direction. An ONC RPC service endpoint can act as a caller, in which
 case an ONC RPC client endpoint acts as a responder. This form of
 message passing is referred to as operation in the "backward
 direction."

 During backward direction operation, the ONC RPC client is
 responsible for establishing transport connections, even though ONC
 RPC calls may come from the ONC RPC server.

 ONC RPC clients and services are optimized to perform and scale well
 while handling traffic in the forward direction, and may not be
 prepared to handle operation in the backward direction. Not until
 recently has there been a need to handle backward direction
 operation.

1.3.3. Bi-direction

 A pair of endpoints may choose to use only forward or only backward
 direction operations on a particular transport. Or, the endpoints
 may send operations in both directions concurrently on the same
 transport.

 Bi-directional operation occurs when both transport endpoints act as
 a caller and a responder at the same time. As above, the ONC RPC
 client is responsible for establishing transport connections.

1.3.4. XID Values

Section 9 of [RFC5531] introduces the ONC RPC transaction identifier,
 or "xid" for short. The value of an xid is interpreted in the
 context of the message's msg_type field.

https://datatracker.ietf.org/doc/html/rfc5531#section-9

Lever Expires November 30, 2015 [Page 4]

Internet-Draft RPC-over-RDMA Bidirection May 2015

 o The xid of a call is arbitrary but is unique among outstanding
 calls from that caller.

 o The xid of a reply always matches that of the initiating call.

 A caller matches the xid value in each reply with a call it
 previously sent.

1.3.4.1. XIDs with Bi-direction

 During bi-directional operation, the forward and backward directions
 use independent xid spaces.

 In other words, a forward direction caller MAY use the same xid value
 at the same time as a backward direction caller on the same transport
 connection. Though such concurrent requests use the same xid value,
 they represent distinct ONC RPC transactions.

1.4. Rationale For RPC-over-RDMA Bi-Direction

1.4.1. NFSv4.0 Callback Operation

 An NFSv4.0 client employs a traditional ONC RPC client to send NFS
 requests to an NFSv4.0 server's traditional ONC RPC service
 [RFC7530]. NFSv4.0 requests flow in the forward direction on a
 connection established by the client. This connection is referred to
 as a "forechannel."

 NFSv4.0 introduces the use of callback operations, or "callbacks", in
Section 10.2 of [RFC7530], for managing file delegation. An NFSv4.0

 server sets up a traditional ONC RPC client, and an NFSv4.0 client
 sets up a traditional ONC RPC service to handle callbacks. Callbacks
 flow in the forward direction on a connection established by an
 NFSv4.0 server. This connection is distinct from connections being
 used as forechannels. This connection is referred to as a
 "backchannel."

 When an RDMA transport is used as a forechannel, an NFSv4.0 client
 typically provides a TCP callback service. The client's SETCLIENTID
 operation advertises the callback service endpoint with a "tcp" or
 "tcp6" netid. The server then connects to this service using a TCP
 socket.

 NFSv4.0 implementations are fully functional without a backchannel in
 place. In this case, the server does not grant file delegations.
 This might result in a negative performance effect, but functional
 correctness is unaffected.

https://datatracker.ietf.org/doc/html/rfc7530
https://datatracker.ietf.org/doc/html/rfc7530#section-10.2

Lever Expires November 30, 2015 [Page 5]

Internet-Draft RPC-over-RDMA Bidirection May 2015

1.4.2. NFSv4.1 Callback Operation

 NFSv4.1 supports file delegation in a similar fashion to NFSv4.0, and
 extends the repertoire of callbacks to manage pNFS layouts, as
 discussed in Chapter 12 of [RFC5661].

 For various reasons, NFSv4.1 requires that all transport connections
 be initiated by NFSv4.1 clients. Therefore, NFSv4.1 servers send
 callbacks to clients in the backward direction on connections
 established by NFSv4.1 clients.

 An NFSv4.1 client or server indicates to its peer that a backchannel
 capability is available on a given transport when sending a
 CREATE_SESSION or BIND_CONN_TO_SESSION operation.

 NFSv4.1 clients may establish distinct transport connections for
 forechannel and backchannel operation, or they may combine
 forechannel and backchannel operation on one transport connection
 using bi-directional operation.

 When an RDMA transport is used as a forechannel, an NFSv4.1 client
 must additionally connect using a transport with backward direction
 capability to use as a backchannel. Without a backward direction
 RPC-over-RDMA capability, TCP is the only choice at present for an
 NFSv4.1 backchannel connection.

 Some implementations find it more convenient to use a single combined
 transport (ie. a transport that is capable of bi-directional
 operation). This simplifies connection establishment and recovery
 during network partitions or when one endpoint restarts.

 As with NFSv4.0, if a backchannel is not in use, an NFSv4.1 server
 does not grant delegations. But because of its reliance on callbacks
 to manage pNFS layout state, pNFS operation is not possible without a
 backchannel.

1.5. Design Considerations

 As of this writing, the only use case for backward direction ONC RPC
 messages is the NFSv4.1 backchannel. The conventions described in
 this document take advantage of certain characteristics of NFSv4.1
 callbacks, namely:

 o NFSv4.1 callbacks typically bear small argument and result
 payloads

 o NFSv4.1 callback payloads are insensitive to alignment relative to
 system pages

https://datatracker.ietf.org/doc/html/rfc5661

Lever Expires November 30, 2015 [Page 6]

Internet-Draft RPC-over-RDMA Bidirection May 2015

 o NFSv4.1 callbacks are infrequent relative to forechannel
 operations

1.5.1. Backward Compatibility

 Existing clients that implement RPC-over-RDMA version 1 should
 interoperate correctly with servers that implement RPC-over-RDMA with
 backward direction support, and vice versa.

 The approach taken here avoids altering the RPC-over-RDMA version 1
 XDR specification. Keeping the XDR the same enables existing RPC-
 over-RDMA version 1 implementations to interoperate with
 implementations that support operation in the backward direction.

1.5.2. Performance Impact

 Support for operation in the backward direction should never impact
 the performance or scalability of forward direction operation, where
 the bulk of ONC RPC transport activity typically occurs.

1.5.3. Server Memory Security

 RDMA transfers involve one endpoint exposing a section of its memory
 to the other endpoint, which then drives RDMA READ and WRITE
 operations to access or modify the exposed memory. RPC-over-RDMA
 client endpoints expose their memory, and RPC-over-RDMA server
 endpoints initiate RDMA data transfer operations.

 If RDMA transfers are not used for backward direction operations,
 there is no need for servers to expose their memory to clients.
 Further, this avoids the client complexity required to drive RDMA
 transfers.

1.5.4. Payload Size

 Small RPC-over-RDMA messages are conveyed using only RDMA SEND
 operations. SEND is used to transmit both ONC RPC calls and replies.

 To send a large payload, an RPC-over-RDMA client endpoint registers a
 region of memory known as a chunk, and transmits its coordinates to a
 server endpoint, who uses an RDMA transfer to move data to or from
 the client. See Sections 3.1, 3.2, and 3.4 of [RFC5666].

 To transmit RPC-over-RDMA messages larger than the receive buffer
 size (typically 1024 bytes), a chunk must be used. For example, in
 an RDMA_NOMSG type message, the entire RPC header and Upper Layer
 payload are contained in chunks. See Section 5.1 of [RFC5666] for
 details.

https://datatracker.ietf.org/doc/html/rfc5666
https://datatracker.ietf.org/doc/html/rfc5666#section-5.1

Lever Expires November 30, 2015 [Page 7]

Internet-Draft RPC-over-RDMA Bidirection May 2015

 If chunks are not allowed to be used for conveying backward direction
 messages, an RDMA_NOMSG type message cannot be used to convey a
 backward direction message using the conventions described in this
 document. Therefore, backward direction messages sent using the
 conventions in this document can be no larger than a single receive
 buffer.

 Stipulating such a limit on backward direction message size assumes
 that either Upper Layer Protocol consumers of backward direction
 messages can advertise this limit to peers, or that ULP consumers can
 agree by convention on a maximum size of their backchannel payloads.

 In addition, using only inline forms of RPC-over-RDMA messages and
 never populating the RPC-over-RDMA chunk lists means that the RPC
 header's msg_type field is always at a fixed location in messages
 flowing in the backward direction, allowing efficient detection of
 the direction of an RPC-over-RDMA message.

 With few exceptions, NFSv4.1 servers can break down callback requests
 so they fit within this limit. There are potentially large NFSv4.1
 callback operations, such as a CB_GETATTR operation where a large ACL
 must be conveyed. Although we are not aware of any NFSv4.1
 implementation that uses CB_GETATTR, this state of affairs is not
 guaranteed in perpetuity.

2. Conventions For Backward Operation

 Performing backward direction ONC RPC operations over an RPC-over-
 RDMA transport can be accomplished within limits by observing the
 conventions described in the following subsections. For reference,
 the XDR description of RPC-over-RDMA version 1 is contained in

Section 4.3 of [RFC5666].

2.1. Flow Control

 For an RDMA SEND operation to work, the receiving consumer must have
 posted an RDMA RECV Work Request to provide a receive buffer in which
 to capture the incoming message. If a receiver hasn't posted enough
 RECV WRs to catch incoming SEND operations, the RDMA provider is
 allowed to drop the RDMA connection.

 The RPC-over-RDMA version 1 protocol provides built-in send flow
 control to prevent overrunning the number of pre-posted receive
 buffers on a connection's receive endpoint. This is fully discussed
 in Section 3.3 of [RFC5666].

https://datatracker.ietf.org/doc/html/rfc5666#section-4.3
https://datatracker.ietf.org/doc/html/rfc5666#section-3.3

Lever Expires November 30, 2015 [Page 8]

Internet-Draft RPC-over-RDMA Bidirection May 2015

2.1.1. Forward Credits

 An RPC-over-RDMA credit is roughly the capability to handle one RPC-
 over-RDMA transaction. Each forward direction RPC-over-RDMA call
 requests a number of credits from the responder. Each forward
 direction reply informs the caller how many credits the responder is
 prepared to handle in total. The value of the request and grant are
 carried in each RPC-over-RDMA message's rdma_credit field.

 Practically speaking, the critical value is the value of the
 rdma_credit field in RPC-over-RDMA replies. When a caller is
 operating correctly, it sends no more outstanding requests at a time
 than the responder's advertised forward direction credit value.

 The credit value is a guaranteed minimum. However, a receiver can
 post more receive buffers than its credit value. There is no
 requirement in the RPC-over-RDMA protocol for a receiver to indicate
 a credit overrun. Operation continues as long as there are enough
 receive buffers to handle incoming messages.

2.1.2. Backward Credits

 Credits work the same way in the backward direction as they do in the
 forward direction. However, forward direction credits and backward
 direction credits are accounted separately.

 In other words, the forward direction credit value is the same
 whether or not there are backward direction resources associated with
 an RPC-over-RDMA transport connection. The backward direction credit
 value MAY be different than the forward direction credit value. The
 rdma_credit field in a backward direction RPC-over-RDMA message MUST
 NOT contain the value zero.

 A backward direction caller (an RPC-over-RDMA service endpoint)
 requests credits from the responder (an RPC-over-RDMA client
 endpoint). The responder reports how many credits it can grant.
 This is the number of backward direction calls the responder is
 prepared to handle at once.

 When an RPC-over-RDMA server endpoint is operating correctly, it
 sends no more outstanding requests at a time than the client
 endpoint's advertised backward direction credit value.

2.2. Managing Receive Buffers

 An RPC-over-RDMA transport endpoint must pre-post receive buffers
 before it can receive and process incoming RPC-over-RDMA messages.
 If a sender transmits a message for a receiver which has no prepared

Lever Expires November 30, 2015 [Page 9]

Internet-Draft RPC-over-RDMA Bidirection May 2015

 receive buffer, the RDMA provider is allowed to drop the RDMA
 connection.

2.2.1. Client Receive Buffers

 Typically an RPC-over-RDMA caller posts only as many receive buffers
 as there are outstanding RPC calls. A client endpoint without
 backward direction support might therefore at times have no pre-
 posted receive buffers.

 To receive incoming backward direction calls, an RPC-over-RDMA client
 endpoint must pre-post enough additional receive buffers to match its
 advertised backward direction credit value. Each outstanding forward
 direction RPC requires an additional receive buffer above this
 minimum.

 When an RDMA transport connection is lost, all active receive buffers
 are flushed and are no longer available to receive incoming messages.
 When a fresh transport connection is established, a client endpoint
 must re-post a receive buffer to handle the reply for each
 retransmitted forward direction call, and a full set of receive
 buffers to handle backward direction calls.

2.2.2. Server Receive Buffers

 A forward direction RPC-over-RDMA service endpoint posts as many
 receive buffers as it expects incoming forward direction calls. That
 is, it posts no fewer buffers than the number of RPC-over-RDMA
 credits it advertises in the rdma_credit field of forward direction
 RPC replies.

 To receive incoming backward direction replies, an RPC-over-RDMA
 server endpoint must pre-post a receive buffer for each backward
 direction call it sends.

 When the existing transport connection is lost, all active receive
 buffers are flushed and are no longer available to receive incoming
 messages. When a fresh transport connection is established, a server
 endpoint must re-post a receive buffer to handle the reply for each
 retransmitted backward direction call, and a full set of receive
 buffers for receiving forward direction calls.

2.2.3. In the Absense of Backward Direction Support

 An RPC-over-RDMA transport endpoint might not support backward
 direction operation. There might be no mechanism in the
 implementation to do so. Or the Upper Layer Protocol consumer might

Lever Expires November 30, 2015 [Page 10]

Internet-Draft RPC-over-RDMA Bidirection May 2015

 not yet have configured the transport to handle backward direction
 traffic.

 A loss of the RDMA connection may result if the receiver is not
 prepared to receive an incoming message. Thus a denial-of-service
 could result if a sender continues to send backchannel messages after
 every transport reconnect to an endpoint that is not prepared to
 receive them.

 Generally, for RPC-over-RDMA version 1 transports, the Upper Layer
 Protocol consumer is responsible for informing its peer when it has
 no support for the backward direction. Otherwise even a simple
 backward direction NULL probe from a peer would result in a lost
 connection.

 An NFSv4.1 server should never send backchannel messages to an
 NFSv4.1 client before the NFSv4.1 client has sent a CREATE_SESSION or
 a BIND_CONN_TO_SESSION operation. As long as an NFSv4.1 client has
 prepared appropriate backchannel resources before sending one of
 these operations, denial-of-service is avoided. Legacy versions of
 NFS should never send backchannel operations.

 Therefore, an Upper Layer Protocol consumer MUST NOT perform backward
 direction ONC RPC operations unless the peer consumer has indicated
 it is prepared to handle them. A description of Upper Layer Protocol
 mechanisms used for this indication is outside the scope of this
 document.

2.3. Backward Direction Retransmission

 In rare cases, an ONC RPC transaction cannot be completed within a
 certain time. This can be because the transport connection was lost,
 the call or reply message was dropped, or because the Upper Layer
 consumer delayed or dropped the ONC RPC request. Typically, the
 caller sends the transaction again, reusing the same RPC XID. This
 is known as an "RPC retransmission".

 In the forward direction, the caller is the ONC RPC client. The
 client is always responsible for establishing a transport connection
 before sending again.

 In the backward direction, the caller is the ONC RPC server. Because
 an ONC RPC server does not establish transport connections with
 clients, it cannot send a retransmission if there is no transport
 connection. It must wait for the ONC RPC client to re-establish the
 transport connection before it can retransmit ONC RPC transactions in
 the backward direction.

Lever Expires November 30, 2015 [Page 11]

Internet-Draft RPC-over-RDMA Bidirection May 2015

 If an ONC RPC client has no work to do, it may be some time before it
 re-establishes a transport connection. Backward direction callers
 must be prepared to wait indefinitely before a connection is
 established before a pending backward direction ONC RPC call can be
 retransmitted.

2.4. Backward Direction Message Size

 RPC-over-RDMA backward direction messages are transmitted and
 received using the same buffers as messages in the forward direction.
 Therefore they are constrained to be no larger than receive buffers
 posted for forward messages. Typical implementations have chosen to
 use 1024-byte buffers.

 It is expected that the Upper Layer Protocol consumer establishes an
 appropriate payload size limit for backward direction operations,
 either by advertising that size limit to its peers, or by convention.
 If that is done, backward direction messages would not exceed the
 size of receive buffers at either endpoint.

 If a sender transmits a backward direction message that is larger
 than the receiver is prepared for, the RDMA provider drops the
 message and the RDMA connection.

 If a sender transmits an RDMA message that is too small to convey a
 complete and valid RPC-over-RDMA and RPC message in either direction,
 the receiver MUST NOT use any value in the fields that were
 transmitted. Namely, the rdma_credit field MUST be ignored, and the
 message dropped.

2.5. Sending A Backward Direction Call

 To form a backward direction RPC-over-RDMA call message on an RPC-
 over-RDMA version 1 transport, an ONC RPC service endpoint constructs
 an RPC-over-RDMA header containing a fresh RPC XID in the rdma_xid
 field (see Section 1.3.4 for full requirements).

 The rdma_vers field MUST contain the value one. The number of
 requested credits is placed in the rdma_credit field (see

Section 2.1).

 The rdma_proc field in the RPC-over-RDMA header MUST contain the
 value RDMA_MSG. All three chunk lists MUST be empty.

 The ONC RPC call header MUST follow immediately, starting with the
 same XID value that is present in the RPC-over-RDMA header. The call
 header's msg_type field MUST contain the value CALL.

Lever Expires November 30, 2015 [Page 12]

Internet-Draft RPC-over-RDMA Bidirection May 2015

2.6. Sending A Backward Direction Reply

 To form a backward direction RPC-over-RDMA reply message on an RPC-
 over-RDMA version 1 transport, an ONC RPC client endpoint constructs
 an RPC-over-RDMA header containing a copy of the matching ONC RPC
 call's RPC XID in the rdma_xid field (see Section 1.3.4 for full
 requirements).

 The rdma_vers field MUST contain the value one. The number of
 granted credits is placed in the rdma_credit field (see Section 2.1).

 The rdma_proc field in the RPC-over-RDMA header MUST contain the
 value RDMA_MSG. All three chunk lists MUST be empty.

 The ONC RPC reply header MUST follow immediately, starting with the
 same XID value that is present in the RPC-over-RDMA header. The
 reply header's msg_type field MUST contain the value REPLY.

3. Limits To This Approach

3.1. Payload Size

 The major drawback to the approach described in this document is the
 limit on payload size in backward direction requests.

 o Some NFSv4.1 callback operations can have potentially large
 arguments or results. For example, CB_GETATTR on a file with a
 large ACL; or CB_NOTIFY, which can provide a large, complex
 argument.

 o Any backward direction operation protected by RPCSEC_GSS may have
 additional header information that makes it difficult to send
 backward direction operations with large arguments or results.

 o Larger payloads could potentially require the use of RDMA data
 transfers, which are complex and make it more difficult to detect
 backward direction requests. The msg_type field in the ONC RPC
 header would no longer be at a fixed location in backward
 direction requests.

3.2. Preparedness To Handle Backward Requests

 A second drawback is the exposure of the client transport endpoint to
 backward direction calls before it has posted receive buffers to
 handle them.

 Clients that do not support backward direction operation typically
 drop messages they do not recognize. However, this does not allow

Lever Expires November 30, 2015 [Page 13]

Internet-Draft RPC-over-RDMA Bidirection May 2015

 bi-direction-capable servers to quickly identify clients that cannot
 handle backward direction requests.

 The conventions in this document rely on Upper Layer Protocol
 consumers to decide when backward direction transport operation is
 appropriate.

3.3. Long Term

 To address the limitations described in this section in the long run,
 a new version of the RPC-over-RDMA protocol would be required. The
 use of the conventions described in this document to enable backward
 direction operation is thus a transitional approach that is
 appropriate only while RPC-over-RDMA version 1 is the predominantly
 deployed version of the RPC-over-RDMA protocol.

4. Security Considerations

 As a consequence of limiting the size of backward direction RPC-over-
 RDMA messages, the use of RPCSEC_GSS integrity and confidentiality
 services (see [RFC2203]) in the backward direction may be challenging
 due to the size of the additional RPC header information required for
 RPCSEC_GSS.

5. IANA Considerations

 This document does not require actions by IANA.

6. Acknowledgements

 Tom Talpey was an indispensable resource, in addition to creating the
 foundation upon which this work is based. Our warmest regards go to
 him for his help and support.

 Dave Noveck provided excellent review, constructive suggestions, and
 navigational guidance throughout the process of drafting this
 document.

 Dai Ngo was a solid partner and collaborator. Together we
 constructed and tested independent prototypes of the conventions
 described in this document.

 The author wishes to thank Bill Baker for his unwavering support of
 this work. In addition, the author gratefully acknowledges the
 expert contributions of Karen Deitke, Chunli Zhang, Mahesh
 Siddheshwar, and Tom Tucker.

https://datatracker.ietf.org/doc/html/rfc2203

Lever Expires November 30, 2015 [Page 14]

Internet-Draft RPC-over-RDMA Bidirection May 2015

 Special thanks go to the nfsv4 Working Group chair Spencer Shepler
 and the WG Editor Tom Haynes for their support.

7. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2203] Eisler, M., Chiu, A., and L. Ling, "RPCSEC_GSS Protocol
 Specification", RFC 2203, September 1997.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, May 2009.

 [RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File
 System (NFS) Version 4 Minor Version 1 Protocol", RFC

5661, January 2010.

 [RFC5666] Talpey, T. and B. Callaghan, "Remote Direct Memory Access
 Transport for Remote Procedure Call", RFC 5666, January
 2010.

 [RFC7530] Haynes, T. and D. Noveck, "Network File System (NFS)
 Version 4 Protocol", RFC 7530, March 2015.

Author's Address

 Charles Lever
 Oracle Corporation
 1015 Granger Avenue
 Ann Arbor, MI 48104
 US

 Phone: +1 734 274 2396
 Email: chuck.lever@oracle.com

Lever Expires November 30, 2015 [Page 15]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2203
https://datatracker.ietf.org/doc/html/rfc5531
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5666
https://datatracker.ietf.org/doc/html/rfc7530

