Network Working Group A. Bierman

Internet-Draft YumaWorks
Intended status: Standards Track M. Bjorklund
Expires: January 4, 2015 Tail-f Systems

K. Watsen

Juniper Networks
R. Fernando
Cisco

July 3, 2014

YANG Patch Media Type
draft-ietf-netconf-yang-patch-01

Abstract

This document describes a method for applying patches to NETCONF
datastores using data defined with the YANG data modeling language.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 4, 2015.
Copyright Notice

Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of

Bierman, et al. Expires January 4, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft YANG Patch July 2014

the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

1. Introduction .
.1,

1.1. Terminology
1.1.1. NETCONF
1.1.2. HTTP .
1.1.3. YANG .
1.1.4 Terms .
1.1.5. Tree Diagrams
2. YANG Patch .
2.1. Target Resource
2.2. vyang-patch Input . .
2.3. yang-patch-status Output .
2.4. Target Data Node .
2.5. Edit Operations
2.6. Error Handling .

YANG Module .
IANA Considerations .
YANG Module Registry .

[W

4.1. . .
4.2. application/yang.patch Medla Types .
4.3

application/yang.patch-status Media Types
5. Security Considerations e e e e e

6. Normative References .

Appendix A. Change Log .
A.l. b1erman yang-patch-00 to 1etf yang patch OG
A.2. 00 to 01 . e . ..

Appendix B. Open Issues . .

Appendix C. Example YANG Module .

1. YANG Patch Examples

C.1.1. Add Resources: Error .

C.1.2. Add Resources: Success .

C.1.3. Move list entry example
Authors' Addresses .

W NN [N [N [N [N [N [N [N [N [ND [[[[
‘O ‘00 ‘\l ‘U'l ‘U'l ‘-b ‘UJ ‘N ‘N ‘N ‘I—' ‘O ‘00 ‘OO ‘00 ‘00 [©lo o ININo oo U U | | W W W

Bierman, et al. Expires January 4, 2015 [Page 2]

Internet-Draft YANG Patch July 2014

1. Introduction
There is a need for standard mechanisms to patch NETCONF [RFC6241]
datastores which contain conceptual data that conforms to schema
specified with YANG [RFC6020]. An "ordered edit list" approach is
needed to provide client developers with a simpler edit request
format that can be more efficient and also allow more precise client
control of the transaction procedure than existing mechanisms.
This document defines a media type for a YANG-based editing mechanism
that can be used with the HTTP PATCH method [RFC5789] or custom
NETCONF operations (defined with the YANG rpc-stmt).
YANG Patch is designed to support multiple protocols with the same
mechanisms. The RESTCONF [RESTCONF] protocol utilizes YANG Patch
with the HTTP PATCH method. A new RPC operation can be defined to
utilize YANG Patch in the NETCONF protocol. Both the RESTCONF and
NETCONF protocols are designed to utilize the YANG data modeling
language to specify content schema modules.

1.1. Terminology
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14, [RFC2119].

1.1.1. NETCONF
The following terms are defined in [RFC6241]:
0 candidate configuration datastore
o client
o configuration data
0 datastore
o configuration datastore
o protocol operation

0 running configuration datastore

0 server

Bierman, et al. Expires January 4, 2015 [Page 3]

https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6241

The following terms are defined in [RFC2616]:

0

0

1.1.3.

The following terms are defined in [RFC6020]:

0

Bierman, et al.

Internet-Draft YANG Patch
o startup configuration datastore
o state data
0 user

1.1.2. HTTP

entity tag
fragment
header line
message body
method

path

query

request URI
response body

YANG

container
data node
key leaf
leaf
leaf-list
list

presence container (or P-container)

RPC operation (now called protocol operation)

Expires January 4, 2015

July 2014

[Page 4]

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc6020

Internet-Draft YANG Patch July 2014

0 non-presence container (or NP-container)

0 ordered-by system

o ordered-by user

1.1.4. Terms

The following terms are used within this document:

0 YANG Patch: a conceptual edit request using the "yang-patch" YANG
container, defined in Section 3. In HTTP, refers to a PATCH
method where the media type is "application/yang.patch+xml" or
"application/yang.patch+json".

0 YANG Patch Status: a conceptual edit status response using the
YANG "yang-patch-status" container, defined in Section 3. 1In
HTTP, refers to a response message for a PATCH method, where the
message body is identified by the media type "application/
yang.patch-status+xml" or "application/yang.patch-status+json".

1.1.5. Tree Diagrams

A simplified graphical representation of the data model is used in

this document. The meaning of the symbols in these diagrams is as

follows:

0 Brackets "[" and "]" enclose list keys.

0 Abbreviations before data node names: "rw" means configuration
(read-write) and "ro" state data (read-only).

o Symbols after data node names: "?" means an optional node and "*"
denotes a "list" and "leaf-list".

o Parentheses enclose choice and case nodes, and case nodes are also
marked with a colon (":").

o Ellipsis ("...") stands for contents of subtrees that are not
shown.

Bierman, et al. Expires January 4, 2015 [Page 5]

Internet-Draft YANG Patch July 2014

2. YANG Patch

A "YANG Patch" is an ordered list of edits that are applied to the
target datastore by the server. The specific fields are defined with
the 'yang-patch' container definition in the YANG module Section 3.

For RESTCONF, the YANG Patch operation is invoked by the client by
sending a PATCH method request with the YANG Patch media type. A

message body representing the YANG Patch input parameters MUST be

provided.

The RESTCONF server MUST return the Accept-Patch header in an OPTIONS

response, as specified in [RFC5789], which includes the media type
for YANG Patch. Example:

Accept-Patch: application/yang.patch, application/yang.data
For NETCONF, a YANG "rpc" statement needs to be defined. The
"yang-patch" grouping MUST be included in the input parameters and
the "yang-patch-status" grouping MUST be included in the output
parameters.

2.1. Target Resource

The YANG Patch operation uses a conceptual root within a NETCONF
configuration datastore to identity the patch point for the edit
operation. This root can be the datastore itself, or 1 or more data
nodes within the datastore.

For RESTCONF, the target resource is derived from the request URI.

For NETCONF, the target resource MUST be defined as an input
parameter in the YANG "rpc" statement.

2.2. yang-patch Input
A data element representing the YANG Patch is sent by the client to
specify the edit operation request. When used with the HTTP PATCH
method, this data is identified by the YANG Patch media type.

YANG Tree Diagram For "yang-patch" Container

Bierman, et al. Expires January 4, 2015 [Page 6]

https://datatracker.ietf.org/doc/html/rfc5789

Internet-Draft YANG Patch July 2014

+--rw yang-patch
+--rw patch-id? string

+--rw comment? string

+--rw edit [edit-id]
+--rw edit-id string
+--rw operation enumeration
+--rw target target-resource-offset
+--rw point? target-resource-offset
+--rw where? enumeration

+--rw value
2.3. yang-patch-status Output

A data element representing the YANG Patch Status is returned to the
client to report the detailed status of the edit operation. When

used with the HTTP PATCH method, this data is identified by the YANG
Patch Status media type.

YANG Tree Diagram For "yang-patch-status" Container:

+--rw yang-patch-status
+--rw patch-id? string
+--rw (global-status)?
| +--:(global-errors)
| +--ro errors

|
|
|
| +--rw ok? empty
+

+--:(ok)
--rw edit-status
+--rw edit [edit-id]
+--rw edit-id string
+--rw (edit-status-choice)?
+--:(0ok)
| +--rw ok? empty

+--:(errors)
+--ro errors

2.4. Target Data Node

The target data node for each edit operation is determined by the
value of the target resource in the request and the "target" leaf
within each "edit" entry.

If the target resource specified in the request URI identifies a
datastore resource, then the path string in the "target" leaf is an
absolute path expression. The first node specified in the "target"
leaf is a top-level data node defined within a YANG module.

Bierman, et al. Expires January 4, 2015 [Page 7]

Internet-Draft YANG Patch July 2014

If the target resource specified in the request URI identifies a data
resource, then the path string in the "target" leaf is a relative
path expression. The first node specified in the "target" leaf is a
child node of the data node associated with the target resource.

2.5. Edit Operations
Each YANG patch edit specifies one edit operation on the target data

node. The set of operations is aligned with the NETCONF edit
operations, but also includes some new operations.

R R +
| Operation | Description

R R e +
| create | create a new data resource if it does not already |
| | exist or error

delete	delete a data resource if it already exists or error
insert	insert a new user-ordered data resource
merge	merge the edit value with the target data resource;
	create if it does not already exist
move	re-order the target data resource
replace	replace the target data resource with the edit value
remove	remove a data resource if it already exists or no
	error
Fommm e o R e +

YANG Patch Edit Operations
2.6. Error Handling

If a well-formed, schema-valid YANG Patch message is received, then
then the server will process the supplied edits in ascending order.
The following error modes apply to the processing of this edit list:

All the specified edits MUST be applied or the target datastore
contents SHOULD be returned to its original state before the PATCH
method started. The server MAY fail to restore the contents of the
target datastore completely and with certainty. It is possible for a
rollback to fail or an "undo" operation to fail.

The server will save the running datastore to non-volatile storage if
it has changed, after the edits have been attempted.

Bierman, et al. Expires January 4, 2015 [Page 8]

Internet-Draft

3. YANG Module

YANG Patch

July 2014

The "ietf-yang-patch" module defines conceptual definitions within
groupings, which are not meant to be implemented as datastore
contents by a server.

The "ietf-yang-types" and "ietf-inet types" modules from [RFC6991]

are used by this module for some type definitions.

The "ietf-restconf" module from [RESTCONF] is used by this module for
a grouping definition.

RFC Ed.: update the date below with the date of RFC publication and
remove this note.

<CODE BEGINS> file "ietf-yang-patch@2014-07-03.yang"

module ietf-yang-patch {

namespace "urn:ietf:params:xml:ns:yang:ietf-yang-patch";

prefix "ypatch";

import ietf-restconf { prefix rc; }

organization

"IETF NETCONF (Network Configuration) Working Group";

contact

"WG Web:

WG List:

WG Chair:

WG Chair:

Editor:

Editor:

Editor:

Editor:

Bierman, et al.

<http://tools.ietf.org/wg/netconf/>

<mailto:netconf@ietf.org>

Bert Wijnen
<mailto:bertietf@bwijnen.net>

Mehmet Ersue
<mailto:mehmet.ersue@nsn.com>

Andy Bierman
<mailto:andy@yumaworks.com>

Martin Bjorklund
<mailto:mbj@tail-f.com>

Kent Watsen
<mailto:kwatsen@juniper.net>

Rex Fernando
<mailto:rex@cisco.com>";

Expires January 4, 2015

[Page 9]

https://datatracker.ietf.org/doc/html/rfc6991
http://tools.ietf.org/wg/netconf/

Internet-Draft YANG Patch July 2014

description
"This module contains conceptual YANG specifications
for the YANG Patch and YANG Patch Status data structures.

Note that the YANG definitions within this module do not
represent configuration data of any kind.

The YANG grouping statements provide a normative syntax
for XML and JSON message encoding purposes.

Copyright (c) 2014 IETF Trust and the persons identified as
authors of the code. All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).

This version of this YANG module is part of RFC XXXX; see
the RFC itself for full legal notices.";

// RFC Ed.: replace XXXX with actual RFC number and remove this
// note.

// RFC Ed.: remove this note
// Note: extracted from draft-ietf-netconf-yang-patch-01.txt

// RFC Ed.: update the date below with the date of RFC publication
// and remove this note.
revision 2014-07-03 {
description
"Initial revision.";
reference
"RFC XXXX: YANG Patch";

}

typedef target-resource-offset {

type string {
length "1 .. max";

}

description
"Contains a relative Data Resource Identifier formatted string
to identify a specific data sub-resource instance.
The document root for all data resources is a
target data resource that is specified in the
object definition using this data type.";

http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-yang-patch-01.txt

Bierman, et al. Expires January 4, 2015 [Page 10]

Internet-Draft YANG Patch July 2014

grouping yang-patch {

description
"A grouping that contains a YANG container
representing the syntax and semantics of a
YANG Patch edit request message.";

container yang-patch {
description

"Represents a conceptual sequence of datastore edits,
called a patch. Each patch is given a client-assigned
patch identifier. Each edit MUST be applied
in ascending order, and all edits MUST be applied.
If any errors occur, then the target datastore MUST NOT
be changed by the patch operation.

A patch MUST be validated by the server to be a
well-formed message before any of the patch edits
are validated or attempted.

YANG datastore validation (defined in RFC 6020, section
8.3.3) is performed after all edits have been
individually validated.

It is possible for a datastore constraint violation to occur
due to any node in the datastore, including nodes not
included in the edit list. Any validation errors MUST

be reported in the reply message.";

reference
"RFC 6020, section 8.3.";

leaf patch-id {

type string;

description
"An arbitrary string provided by the client to identify
the entire patch. This value SHOULD be present in any
audit logging records generated by the server for the
patch. Error messages returned by the server pertaining
to this patch will be identified by this patch-id value.";

}

leaf comment {
type string {
length "0 .. 1024";
}
description
"An arbitrary string provided by the client to describe

https://datatracker.ietf.org/doc/html/rfc6020#section-8.3.3
https://datatracker.ietf.org/doc/html/rfc6020#section-8.3

Bierman, et al. Expires January 4, 2015 [Page 11]

Internet-Draft YANG Patch July 2014

the entire patch. This value SHOULD be present in any
audit logging records generated by the server for the
patch.";

}

list edit {
key edit-id;
ordered-by user;

description
"Represents one edit within the YANG Patch
request message. The edit list is applied
in the following manner:

- The first edit is conceptually applied to a copy
of the existing target datastore, e.g., the
running configuration datastore.
- Each ascending edit is conceptually applied to
the result of the previous edit(s).
- After all edits have been successfully processed,
the result is validated according to YANG constraints.
- If successful, the server will attempt to apply
the result to the target datastore. ";

leaf edit-id {
type string;
description
"Arbitrary string index for the edit.
Error messages returned by the server pertaining
to a specific edit will be identified by this
value.";

}

leaf operation {
type enumeration {
enum create {
description
"The target data node is created using the
supplied value, only if it does not already

exist.";
}
enum delete {
description
"Delete the target node, only if the data resource
currently exists, otherwise return an error.";
}

enum insert {
description

Bierman, et al. Expires January 4, 2015 [Page 12]

Internet-Draft YANG Patch July 2014

"Insert the supplied value into a user-ordered
list or leaf-list entry. The target node must
represent a new data resource.";

}
enum merge {
description

"The supplied value is merged with the target data
node.";

}
enum move {
description

"Move the target node. Reorder a user-ordered
list or leaf-list. The target node must represent
an existing data resource.";

}
enum replace {
description

"The supplied value is used to replace the target
data node.";

}
enum remove {
description
"Delete the target node if it currently exists.";
}
}
mandatory true;
description
"The datastore operation requested for the associated
edit entry";

}

leaf target {
type target-resource-offset;
mandatory true;

description
"Identifies the target data resource for the edit
operation.";
}
leaf point {
when "(../operation = 'insert' or " +
"../operation = 'move') and " +
"(../where = 'before' or ../where = 'after')" {
description

"Point leaf only applies for insert or move
operations, before or after an existing entry.";

}

type target-resource-offset;

Bierman, et al. Expires January 4, 2015 [Page 13]

Internet-Draft YANG Patch July 2014

description
"The absolute URL path for the data node that is being
used as the insertion point or move point for the
target of this edit entry.";

}
leaf where {
when "../operation = 'insert' or ../operation = 'move'" {
description
"Where leaf only applies for insert or move
operations.";
}

type enumeration {
enum before {
description
"Insert or move a data node before the data resource
identified by the 'point' parameter.";
}
enum after {
description
"Insert or move a data node after the data resource
identified by the 'point' parameter.";
}
enum first {
description
"Insert or move a data node so it becomes ordered
as the first entry.";
}
enum last {
description
"Insert or move a data node so it becomes ordered
as the last entry.";

}
default last;

description
"Identifies where a data resource will be inserted or
moved. YANG only allows these operations for
list and leaf-list data nodes that are ordered-by

user.";
}
anyxml value {
when "(../operation = 'create' or " +
"../operation = 'merge' " +
"or ../operation = 'replace' or " +

"../operation = 'insert')" {

Bierman, et al. Expires January 4, 2015 [Page 14]

Internet-Draft YANG Patch July 2014

description
"Value node only used for create, merge,
replace, and insert operations";

}

description
"Value used for this edit operation.";

}
}
}

} // grouping yang-patch

grouping yang-patch-status {

description
"A grouping that contains a YANG container
representing the syntax and semantics of
YANG Patch status response message.";

container yang-patch-status {
description
"A container representing the response message
sent by the server after a YANG Patch edit
request message has been processed.";

leaf patch-id {
type string;
description
"The patch-id value used in the request";

}

choice global-status {
description
"Report global errors or complete success.
If there is no case selected then errors
are reported in the edit-status container.";

case global-errors {
uses rc:errors;
description
"This container will be present if global
errors unrelated to a specific edit occurred.";
}
leaf ok {
type empty;
description
"This leaf will be present if the request succeeded

Bierman, et al. Expires January 4, 2015 [Page 15]

Internet-Draft YANG Patch July 2014

and there are no errors reported in the edit-status
container.";
}
}

container edit-status {
description
"This container will be present if there are
edit-specific status responses to report.
If all edits succeeded and the 'global-status'
returned 1is 'ok', then a server MAY omit this
container";

list edit {
key edit-id;

description
"Represents a list of status responses,
corresponding to edits in the YANG Patch
request message. If an edit entry was
skipped or not reached by the server,
then this list will not contain a corresponding
entry for that edit.";

leaf edit-id {
type string;
description
"Response status is for the edit list entry
with this edit-id value.";
}
choice edit-status-choice {
description
"A choice between different types of status
responses for each edit entry.";
leaf ok {
type empty;
description
"This edit entry was invoked without any
errors detected by the server associated
with this edit.";
}
case errors {
uses rc:errors;
description
"The server detected errors associated with the
edit identified by the same edit-id value.";

Bierman, et al. Expires January 4, 2015 [Page 16]

Internet-Draft YANG Patch July 2014

}
}

}
} // grouping yang-patch-status

}

<CODE ENDS>

Bierman, et al. Expires January 4, 2015 [Page 17]

Internet-Draft YANG Patch July 2014

4., IANA Considerations
4.1. YANG Module Registry

This document registers one URI in the IETF XML registry [RFC3688].
Following the format in RFC 3688, the following registration is
requested to be made.

URI: urn:ietf:params:xml:ns:yang:ietf-yang-patch
Registrant Contact: The NETMOD WG of the IETF.
XML: N/A, the requested URI is an XML namespace.

This document registers one YANG module in the YANG Module Names
registry [RFC6020].

name: ietf-yang-patch

namespace: urn:ietf:params:xml:ns:yang:ietf-yang-patch
prefix: ypatch

// RFC Ed.: replace XXXX with RFC number and remove this note
reference: RFC XXXX

4.2. application/yang.patch Media Types

The MIME media type for a YANG Patch document is application/
yang.patch.

Type name: application

Subtype name: yang.patch

Required parameters: TBD

Optional parameters: TBD

Encoding considerations: TBD
Security considerations: TBD
Interoperability considerations: TBD

// RFC Ed.: replace XXXX with RFC number and remove this note
Published specification: RFC XXXX

4.3. application/yang.patch-status Media Types

The MIME media type for a YANG Patch status document is application/
yang.patch-status.

Bierman, et al. Expires January 4, 2015 [Page 18]

https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc6020

Internet-Draft YANG Patch July 2014

Type name: application

Subtype name: yang.patch-status
Required parameters: TBD

Optional parameters: TBD

Encoding considerations: TBD
Security considerations: TBD
Interoperability considerations: TBD

// RFC Ed.: replace XXXX with RFC number and remove this note
Published specification: RFC XXXX

Bierman, et al. Expires January 4, 2015 [Page 19]

Internet-Draft YANG Patch July 2014

5. Security Considerations

TBD

Bierman, et al. Expires January 4, 2015 [Page 20]

Internet-Draft YANG Patch July 2014

6. Normative References

[RESTCONF]
Bierman, A., Bjorklund, M., Watsen, K., and R. Fernando,
"RESTCONF Protocol", draft-ietf-netconf-restconf-01 (work
in progress), July 2014.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999,

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
January 2004.

[RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, March 2010.

[RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF)", RFC 6020,
October 2010.

[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, June 2011.

[RFC6991] Schoenwaelder, J., "Common YANG Data Types", RFC 6991,
July 2013.

[RFC7158] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
Interchange Format", RFC 7158, March 2013.

[W3C.REC-xml-20081126]
Yergeau, F., Maler, E., Paoli, J., Sperberg-McQueen, C.,
and T. Bray, "Extensible Markup Language (XML) 1.0 (Fifth
Edition)", World Wide Web Consortium Recommendation REC-
xml-20081126, November 2008,
<http://www.w3.0rg/TR/2008/REC-xml-20081126>.

Bierman, et al. Expires January 4, 2015 [Page 21]

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6991
https://datatracker.ietf.org/doc/html/rfc7158
http://www.w3.org/TR/2008/REC-xml-20081126

Internet-Draft YANG Patch July 2014

Appendix A. Change Log

A.1.

>
N

-- RFC Ed.: remove this section before publication.
bierman:yang-patch-00 to ietf:yang-patch-00
Created open issues section
00 to 01

Added text requiring support for Accept-Patch header, and removed
'Identification of YANG Patch capabilities' open issue.

Removed 'location' leaf from yang-patch-status grouping

Removed open issue 'Protocol independence' because the location
leaf was removed.

Removed open issue 'RESTCONF coupling' because thre is no concern
about a normative reference to RESTCONF. There may need to be a
YANG 1.1 mechanism to allow protocol template usage (instead of
grouping wrapper).

Removed open issue 'Is the delete operation needed'. It was
decided that both delete and remove should remain as operations
and clients can choose which one to use. This is not an
implementation burden on the server.

Removed open issue 'global-errors needed'. It was decided that
they are needed as defined because the global <ok/> is needed and
the special key value for edit=global error only allows for 1
global error.

Removed open issue 'Is location leaf needed'. It was decided that
it is not needed so this leaf has been removed.

Removed open issue 'Bulk editing support in yang-patch-status'.
The 'location' leaf has been removed so this issue is no longer
applicable.

Removed open issue 'Edit list mechanism'. Added text to the
'edit' list description-stmt about how the individual edits must
be processed. There is no concern about duplicate edits which
cause intermediate results to be altered by subsequent edits in
the same edit list.

Bierman, et al. Expires January 4, 2015 [Page 22]

Internet-Draft YANG Patch July 2014

Appendix B. Open Issues

-- RFC Ed.: remove this section before publication.

o There are no open issues at this time.

Bierman, et al. Expires January 4, 2015 [Page 23]

Internet-Draft

YANG Patch

Appendix C. Example YANG Module

July 2014

The example YANG module used in this document represents a simple

media jukebox interface.
defined in [RESTCONF].

YANG Tree Diagram for "example-jukebox" Module:

+--rw jukebox?
+--rw library

| +--rw artist [name]

| +--rw name

string

+--rw album [name]

+--rw name string
+--rw genre? identityref
+--rw year? uintleé
+--rw admin

| +--rw catalogue-number? string

+--rw song [name]

|
|
|
|
|
| | +--rw label? string
|
|
|
|
|

+--rw name string
+--rw location string
+--rw format? string
| +--rw length? uint32
+--ro artist-count? uint32
uint32
+--ro song-count? uint32
--rw playlist [name]
+--rw name string
+--rw description? string
+--rw song [index]
+--rw index uint32

+--rw id
--rw player
+--rw gap?

rpcs:

+---x play
+--ro input
+--ro playlist

+--ro song-number

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| +--ro album-count?
|
+
|
|
|
|
|
+

instance-identifier

decimalo4

string
uint32

The "example-jukebox" YANG module is

Bierman, et al. Expires January 4, 2015 [Page 24]

Internet-Draft YANG Patch July 2014

C.1. YANG Patch Examples

This section includes RESTCONF examples. NETCONF examples are TBD.
Most examples are shown in JSON encoding [RFC7158], and some are
shown in XML encoding [W3C.REC-xml-20081126].

C.1.1. Add Resources: Error

The following example shows several songs being added to an existing
album. Each edit contains one song. The first song already exists,
so an error will be reported for that edit. The rest of the edits
were not attempted, since the first edit failed.

Request from client:

PATCH /restconf/data/example-jukebox:jukebox/
library/artist=Fo0%20Fighters/album=Wasting%20Light HTTP/1.1

Host: example.com

Accept: application/yang.patch-status+json

Content-Type: application/yang.patch+json

{

"ietf-yang-patch:yang-patch" : {
"patch-id" : "add-songs-patch",
"edit" : [

{
"edit-id" : 1,
"operation" : "create",
"target" : "/song",
"value" : {
"song" : {
"name" : "Bridge Burning",
"location" : "/media/bridge burning.mp3",
"format" : "MP3",
"length" : 288
}
}
b
{
"edit-id" : 2,
"operation" : "create",
“target" : "/song",
"value" : {
"song" : {
"name" : "Rope",
"location" : "/media/rope.mp3",
"format" : "MP3",

"length" : 259

https://datatracker.ietf.org/doc/html/rfc7158

Bierman, et al. Expires January 4, 2015 [Page 25]

Internet-Draft YANG Patch July 2014

}
}
b
{
"edit-id" : 3,
"operation" : "create",
"target" : "/song",
"value" : {
"song" : {
"name" : "Dear Rosemary",
"location" : "/media/dear rosemary.mp3",
“format" : "MP3",
"length" : 269
}
}
}

Response from server:

HTTP/1.1 409 Conflict

Date: Mon, 23 Apr 2012 13:01:20 GMT

Server: example-server

Last-Modified: Mon, 23 Apr 2012 13:01:20 GMT
Content-Type: application/yang.patch-status+json

{

"ietf-yang-patch:yang-patch-status" : {
"patch-id" : "add-songs-patch",
"edit-status" : {

"edit" : [
{
"edit-id" : 1,
"errors" : {
"error" : [
{
"error-type": "application",
"error-tag": "data-exists",
"error-path": "/example-jukebox:jukebox/library

/artist=F00%20Fighters/album=Wasting%20Light
/song=Burning%20Light",

"error-message":
"Data already exists, cannot be created"

Bierman, et al. Expires January 4, 2015 [Page 26]

Internet-Draft

C.1.2.

Add Resources:

YANG Patch

Success

July 2014

The following example shows several songs being added to an existing

album.
o Each of

o Both edi

Request fr

PATCH /r
libra
HTTP/

Host: ex

Accept:

2 edits contains one song.

ts succeed and new sub-resources are created

om client:

estconf/data/example-jukebox: jukebox/
ry/artist=Fo0%20Fighters/album=Wasting%20Light
1.1

ample.com

application/yang.patch-status+json

Content-Type: application/yang.patch+json

{
"ietf-
n pat

yang-patch:yang-patch" : {
ch-id" "add-songs-patch-2",

"edit" : [

{

"edit-id" : 1,
"operation”
"target”
"value" : {
"song" : {

"name" "Rope",

"location" "/media/rope.mp3",

"format" "MP3",

"length" : 259

"create",
||/Song|| ,

"edit-id" : 2,
"operation"
"target"
"value" : {
"song" : {

"create",
||/Song|| ,

Bierman, et al. Expires January 4, 2015 [Page 27]

Internet-Draft YANG Patch July 2014

"name" : "Dear Rosemary",
"location” : "/media/dear rosemary.mp3",
"format" : "MP3",
"length" : 269
}
}
}
]
}
}

Response from server:

HTTP/1.1 200 Success

Date: Mon, 23 Apr 2012 13:01:20 GMT

Server: example-server

Last-Modified: Mon, 23 Apr 2012 13:01:20 GMT
Content-Type: application/yang.patch-status+json

{

"ietf-yang-patch:yang-patch-status" : {
"patch-id" : "add-songs-patch-2",
"ok" : [null]

}

}

C.1.3. Move list entry example

The following example shows a song being moved within an existing
playlist. Song "1" in playlist "Foo-0One" is being moved after song

"3" in the playlist. The operation succeeds, so a non-error reply
example can be shown.

Bierman, et al. Expires January 4, 2015 [Page 28]

Internet-Draft YANG Patch July 2014

Request from client:

PATCH /restconf/data/example-jukebox:jukebox/
playlist=Foo-One HTTP/1.1

Host: example.com

Accept: application/yang.patch-status+json

Content-Type: application/yang.patch+json

{

"ietf-yang-patch:yang-patch" : {
"patch-id" : "move-song-patch",
"comment" : "Move song 1 after song 3",
"edit" : [

{
"edit-id" : 1,
"operation" : "move",
"target" : "/song/1",
"point" : "/song3",
"where" : "after"

}

]
}
}

Response from server:

HTTP/1.1 400 OK

Date: Mon, 23 Apr 2012 13:01:20 GMT

Server: example-server

Last-Modified: Mon, 23 Apr 2012 13:01:20 GMT
Content-Type: application/yang.patch-status+json

{
"ietf-restconf:yang-patch-status"” : {
"patch-id" : "move-song-patch",
"ok" : [null]

Bierman, et al. Expires January 4, 2015 [Page 29]

Internet-Draft YANG Patch July 2014

Authors' Addresses

Andy Bierman
YumaWorks

Email: andy@yumaworks.com
Martin Bjorklund

Tail-f Systems

Email: mbj@tail-f.com

Kent Watsen

Juniper Networks

Email: kwatsen@juniper.net
Rex Fernando

Cisco

Email: rex@cisco.com

Bierman, et al. Expires January 4, 2015 [Page 30]

