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Abstract

   This document provides guidance on how to implement and use the
   Transmission Control Protocol (TCP) in Constrained-Node Networks
   (CNNs), which are a characterstic of the Internet of Things (IoT).
   Such environments require a lightweight TCP implementation and may
   not make use of optional functionality.  This document explains a
   number of known and deployed techniques to simplify a TCP stack as
   well as corresponding tradeoffs.  The objective is to help embedded
   developers with decisions on which TCP features to use.
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   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
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   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."
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   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   The Internet Protocol suite is being used for connecting Constrained-
   Node Networks (CNNs) to the Internet, enabling the so-called Internet
   of Things (IoT) [RFC7228].  In order to meet the requirements that
   stem from CNNs, the IETF has produced a suite of new protocols
   specifically designed for such environments (see e.g.  [RFC8352]).
   New IETF protocol stack components include the IPv6 over Low-power
   Wireless Personal Area Networks (6LoWPAN) adaptation layer, the IPv6
   Routing Protocol for Low-power and lossy networks (RPL) routing
   protocol, and the Constrained Application Protocol (CoAP).

   As of the writing, the main current transport layer protocols in IP-
   based IoT scenarios are UDP and TCP.  However, TCP has been
   criticized (often, unfairly) as a protocol for the IoT.  In fact,
   some TCP features are not optimal for IoT scenarios, such as
   relatively long header size, unsuitability for multicast, and always-
   confirmed data delivery.  However, many typical claims on TCP
   unsuitability for IoT (e.g. a high complexity, connection-oriented
   approach incompatibility with radio duty-cycling, and spurious
   congestion control activation in wireless links) are not valid, can
   be solved, or are also found in well accepted IoT end-to-end
   reliability mechanisms (see [IntComp] for a detailed analysis).

   At the application layer, CoAP was developed over UDP [RFC7252].
   However, the integration of some CoAP deployments with existing
   infrastructure is being challenged by middleboxes such as firewalls,
   which may limit and even block UDP-based communications.  This the
   main reason why a CoAP over TCP specification has been developed
   [RFC8323].

   Other application layer protocols not specifically designed for CNNs
   are also being considered for the IoT space.  Some examples include
   HTTP/2 and even HTTP/1.1, both of which run over TCP by default
   [RFC7230] [RFC7540], and the Extensible Messaging and Presence
   Protocol (XMPP) [RFC6120].  TCP is also used by non-IETF application-
   layer protocols in the IoT space such as the Message Queue Telemetry
   Transport (MQTT) and its lightweight variants.

   TCP is a sophisticated transport protocol that includes optional
   functionality (e.g.  TCP options) that may improve performance in
   some environments.  However, many optional TCP extensions require

https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc8352
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8323
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc6120
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   complex logic inside the TCP stack and increase the codesize and the
   RAM requirements.  Many TCP extensions are not required for
   interoperability with other standard-compliant TCP endpoints.  Given
   the limited resources on constrained devices, careful "tuning" of the
   TCP implementation can make an implementation more lightweight.

   This document provides guidance on how to implement and use TCP in
   CNNs.  The overarching goal is to offer simple measures to allow for
   lightweight TCP implementation and suitable operation in such
   environments.  A TCP implementation following the guidance in this
   document is intended to be compatible with a TCP endpoint that is
   compliant to the TCP standards, albeit possibly with a lower
   performance.  This implies that such a TCP client would always be
   able to connect with a standard-compliant TCP server, and a
   corresponding TCP server would always be able to connect with a
   standard-compliant TCP client.

   This document assumes that the reader is familiar with TCP.  A
   comprehensive survey of the TCP standards can be found in [RFC7414].
   Similar guidance regarding the use of TCP in special environments has
   been published before, e.g., for cellular wireless networks
   [RFC3481].

2.  Conventions used in this document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL","SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

3.  Characteristics of CNNs relevant for TCP

3.1.  Network and link properties

   CNNs are defined in [RFC7228] as networks whose characteristics are
   influenced by being composed of a significant portion of constrained
   nodes.  The latter are characterized by significant limitations on
   processing, memory, and energy resources, among others [RFC7228].
   The first two dimensions pose constraints on the complexity and on
   the memory footprint of the protocols that constrained nodes can
   support.  The latter requires techniques to save energy, such as
   radio duty-cycling in wireless devices [RFC8352], as well as
   minimization of the number of messages transmitted/received (and
   their size).

   [RFC7228] lists typical network constraints in CNN, including low
   achievable bitrate/throughput, high packet loss and high variability
   of packet loss, highly asymmetric link characteristics, severe
   penalties for using larger packets, limits on reachability over time,

https://datatracker.ietf.org/doc/html/rfc7414
https://datatracker.ietf.org/doc/html/rfc3481
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc8352
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   etc.  CNN may use wireless or wired technologies (e.g., Power Line
   Communication), and the transmission rates are typically low (e.g.
   below 1 Mbps).

   For use of TCP, one challenge is that not all technologies in CNN may
   be aligned with typical Internet subnetwork design principles
   [RFC3819].  For instance, constrained nodes often use physical/link
   layer technologies that have been characterized as 'lossy', i.e.,
   exhibit a relatively high bit error rate.  Dealing with corruption
   loss is one of the open issues in the Internet [RFC6077].

3.2.  Usage scenarios

   There are different deployment and usage scenarios for CNNs.  Some
   CNNs follow the star topology, whereby one or several hosts are
   linked to a central device that acts as a router connecting the CNN
   to the Internet.  CNNs may also follow the multihop topology
   [RFC6606].  One key use case for the use of TCP is a model where
   constrained devices connect to unconstrained servers in the Internet.
   But it is also possible that both TCP endpoints run on constrained
   devices.

   In constrained environments, there can be different types of devices
   [RFC7228].  For example, there can be devices with single combined
   send/receive buffer, devices with a separate send and receive buffer,
   or devices with a pool of multiple send/receive buffers.  In the
   latter case, it is possible that buffers also be shared for other
   protocols.

   When a CNN comprising one or more constrained devices and an
   unconstrained device communicate over the Internet using TCP, the
   communication possibly has to traverse a middlebox (e.g. a firewall,
   NAT, etc.).  Figure 1 illustrates such scenario.  Note that the
   scenario is asymmetric, as the unconstrained device will typically
   not suffer the severe constraints of the constrained device.  The
   unconstrained device is expected to be mains-powered, to have high
   amount of memory and processing power, and to be connected to a
   resource-rich network.

   Assuming that a majority of constrained devices will correspond to
   sensor nodes, the amount of data traffic sent by constrained devices
   (e.g. sensor node measurements) is expected to be higher than the
   amount of data traffic in the opposite direction.  Nevertheless,
   constrained devices may receive requests (to which they may respond),
   commands (for configuration purposes and for constrained devices
   including actuators) and relatively infrequent firmware/software
   updates.

https://datatracker.ietf.org/doc/html/rfc3819
https://datatracker.ietf.org/doc/html/rfc6077
https://datatracker.ietf.org/doc/html/rfc6606
https://datatracker.ietf.org/doc/html/rfc7228
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                                                      +---------------+
           o     o <-------- TCP communication -----> |               |
          o     o                                     |               |
             o     o                                  | Unconstrained |
       o        o              +-----------+          |    device     |
           o     o   o  ------ | Middlebox |  ------- |               |
            o   o              +-----------+          |  (e.g. cloud) |
          o    o  o                                   |               |
                                                      +---------------+
      constrained devices

      Figure 1: TCP communication between a constrained device and an
               unconstrained device, traversing a middlebox.

3.3.  Communication and traffic patterns

   IoT applications are characterized by a number of different
   communication patterns.  The following non-comprehensive list
   explains some typical examples:

   o  Unidirectional transfers: An IoT device (e.g. a sensor) can send
      (repeatedly) updates to the other endpoint.  Not in every case
      there is a need for an application response back to the IoT
      device.

   o  Request-response patterns: An IoT device receiving a request from
      the other endpoint, which triggers a response from the IoT device.

   o  Bulk data transfers: A typical example for a long file transfer
      would be an IoT device firmware update.

   A typical communication pattern is that a constrained device
   communicates with an unconstrained device (cf.  Figure 1).  But it is
   also possible that constrained devices communicate amongst
   themselves.

4.  TCP implementation and configuration in CNNs

   This section explains how a TCP stack can deal with typical
   constraints in CNN.  The guidance in this section relates to the TCP
   implementation and its configuration.

4.1.  Path properties

Gomez, et al.          Expires September 10, 2019               [Page 6]
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4.1.1.  Maximum Segment Size (MSS)

   For the sake of lightweight implementation and operation, unless
   applications require handling large data units (i.e. leading to an
   IPv6 datagram size greater than 1280 bytes), it may be desirable to
   limit the MTU to 1280 bytes in order to avoid the need to support
   Path MTU Discovery [RFC8201].

   An IPv6 datagram size exceeding 1280 bytes can be avoided by setting
   the TCP MSS not larger than 1220 bytes.  (Note: IP version 6 is
   assumed.)

   Note that setting the MTU to 1280 bytes is possible for link layer
   technologies in the CNN space, even if some of them are characterized
   by a short data unit payload size, e.g. up to a few tens or hundreds
   of bytes.  For example, the maximum frame size in IEEE 802.15.4 is
   127 bytes.  6LoWPAN defined an adaptation layer to support IPv6 over
   IEEE 802.15.4 networks.  The adaptation layer includes a
   fragmentation mechanism, since IPv6 requires the layer below to
   support an MTU of 1280 bytes [RFC2460], while IEEE 802.15.4 lacked
   fragmentation mechanisms.  6LoWPAN defines an IEEE 802.15.4 link MTU
   of 1280 bytes [RFC4944].  Other technologies, such as Bluetooth LE
   [RFC7668], ITU-T G.9959 [RFC7428] or DECT-ULE [RFC8105], also use
   6LoWPAN-based adaptation layers in order to enable IPv6 support.
   These technologies do support link layer fragmentation.  By
   exploiting this functionality, the adaptation layers that enable IPv6
   over such technologies also define an MTU of 1280 bytes.

   On the other hand, there exist technologies also used in the CNN
   space, such as Master Slave / Token Passing (TP) [RFC8163],
   Narrowband IoT (NB-IoT) [RFC8376] or IEEE 802.11ah
   [I-D.delcarpio-6lo-wlanah], that do not suffer the same degree of
   frame size limitations as the technologies mentioned above.  The MTU
   for MS/TP is recommended to be 1500 bytes [RFC8163], the MTU in NB-
   IoT is 1600 bytes, and the maximum frame payload size for IEEE
   802.11ah is 7991 bytes.

   Finally, note that using larger MSS (to a suitable extent) may be
   beneficial, especially when transferring large payloads, as it
   reduces the number of packets (and packet headers) required for a
   given payload.

4.1.2.  Explicit Congestion Notification (ECN)

   Explicit Congestion Notification (ECN) [RFC3168] ECN allows a router
   to signal in the IP header of a packet that congestion is arising,
   for example when a queue size reaches a certain threshold.  An ECN-
   enabled TCP receiver will echo back the congestion signal to the TCP

https://datatracker.ietf.org/doc/html/rfc8201
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc7668
https://datatracker.ietf.org/doc/html/rfc7428
https://datatracker.ietf.org/doc/html/rfc8105
https://datatracker.ietf.org/doc/html/rfc8163
https://datatracker.ietf.org/doc/html/rfc8376
https://datatracker.ietf.org/doc/html/rfc8163
https://datatracker.ietf.org/doc/html/rfc3168
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   sender by setting a flag in its next TCP ACK.  The sender triggers
   congestion control measures as if a packet loss had happened.

   The document [RFC8087] outlines the principal gains in terms of
   increased throughput, reduced delay, and other benefits when ECN is
   used over a network path that includes equipment that supports
   Congestion Experienced (CE) marking.  In the context of CNNs, a
   remarkable feature of ECN is that congestion can be signalled without
   incurring packet drops (which will lead to retransmissions and
   consumption of limited resources such as energy and bandwitdh).

   ECN can further reduce packet losses since congestion control
   measures can be applied earlier [RFC2884].  Less lost packets implies
   that the number of retransmitted segments decreases, which is
   particularly beneficial in CNNs, where energy and bandwidth resources
   are typically limited.  Also, it makes sense to try to avoid packet
   drops for transactional workloads with small data sizes, which are
   typical for CNNs.  In such traffic patterns, it is more difficult to
   detect packet loss without retransmission timeouts (e.g., as there
   may be no three duplicate ACKs).  Any retransmission timeout slows
   down the data transfer significantly.  In addition, if the
   constrained device uses power saving techniques, a retransmission
   timeout will incur a wake-up action, in contrast to ACK clock-
   triggered sending.  When the congestion window of a TCP sender has a
   size of one segment, the TCP sender resets the retransmit timer, and
   the sender will only be able to send a new packet when the retransmit
   timer expires [RFC3168].  Effectively, the TCP sender reduces at that
   moment its sending rate from 1 segment per Round Trip Time (RTT) to 1
   segment per RTO, which can result in a very low throughput.  In
   addition to better throughput, ECN can also help reducing latency and
   jitter.

   ECN can be incrementally deployed in the Internet.  Guidance on
   configuration and usage of ECN is provided in [RFC7567].  Given the
   benefits, more and more TCP stacks in the Internet support ECN, and
   it specifically makes sense to leverage ECN in controlled
   environments such as CNNs.  Note, however, that supporting ECN
   increases implementation complexity.

4.1.3.  Explicit loss notifications

   There has been a significant body of research on solutions capable of
   explicitly indicating whether a TCP segment loss is due to
   corruption, in order to avoid activation of congestion control
   mechanisms [ETEN] [RFC2757].  While such solutions may provide
   significant improvement, they have not been widely deployed and
   remain as experimental work.  In fact, as of today, the IETF has not
   standardized any such solution.

https://datatracker.ietf.org/doc/html/rfc8087
https://datatracker.ietf.org/doc/html/rfc2884
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc7567
https://datatracker.ietf.org/doc/html/rfc2757
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4.2.  TCP guidance for single-MSS windows and buffers

   This section discusses TCP stacks that focus on transferring a single
   MSS.  More general guidance is provided in Section 4.3.

4.2.1.  Single-MSS stacks - benefits and issues

   A TCP stack can reduce the RAM requirements by advertising a TCP
   window size of one MSS, and also transmit at most one MSS of
   unacknowledged data.  In that case, both congestion and flow control
   implementation is quite simple.  Such a small receive and send window
   may be sufficient for simple message exchanges in the CNN space.
   However, only using a window of one MSS can significantly affect
   performance.  A stop-and-wait operation results in low throughput for
   transfers that exceed the lengths of one MSS, e.g., a firmware
   download.

   If CoAP is used over TCP with the default setting for NSTART in
   [RFC7252], a CoAP endpoint is not allowed to send a new message to a
   destination until a response for the previous message sent to that
   destination has been received.  This is equivalent to an application-
   layer window size of 1.  For this use of CoAP, a maximum TCP window
   of one MSS will be sufficient.

4.2.2.  TCP options for single-MSS stacks

   A TCP implementation needs to support options 0, 1 and 2 [RFC0793].
   These options are sufficient for interoperability with a standard-
   compliant TCP endpoint, albeit many TCP stacks support additional
   options and can negotiate their use.

   A TCP implementation for a constrained device that uses a single-MSS
   TCP receive or transmit window size may not benefit from supporting
   the following TCP options: Window scale [RFC7323], TCP Timestamps
   [RFC7323], Selective Acknowledgments (SACK) and SACK-Permitted
   [RFC2018].  Also other TCP options may not be required on a
   constrained device with a very lightweight implementation.  With
   regard to the Window scale option, note that it is only useful if a
   window size greater than 64 kB is needed.

   One potentially relevant TCP option in the context of CNNs is TCP
   Fast Open (TFO) [RFC7413].  As described in Section 5.3, TFO can be
   used to address the problem of traversing middleboxes that perform
   early filter state record deletion.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc7413
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4.2.3.  Delayed Acknowledgments for single-MSS stacks

   TCP Delayed Acknowledgments are meant to reduce the number of ACKs
   sent within a TCP connection, thus reducing network overhead, but
   they may increase the time until a sender may receive an ACK.  In
   general, usefulness of Delayed ACKs depends heavily on the usage
   scenario.  There can be interactions with stacks that use single-MSS
   windows.

   A device that advertises a single-MSS receive window should avoid use
   of Delayed ACKs in order to avoid contributing unnecessary delay (of
   up to 500 ms) to the RTT [RFC5681], which limits the throughput and
   can increase the data delivery time.

   A device that can send at most one MSS of data is significantly
   affected if the receiver uses Delayed ACKs, e.g., if a TCP server or
   receiver is outside the CNN.  One known workaround is to split the
   data to be sent into two segments of smaller size.  A standard
   compliant TCP receiver will then immediately acknowledge the second
   segment, which can improve throughput.  This "split hack" works if
   the TCP receiver uses Delayed ACKs, but the downside is the overhead
   of sending two IP packets instead of one.

   Similar issues happen when the sender uses the Nagle algorithm.
   Disabling the algorithm will not have impact if the sender can only
   handle stop-and-wait operation.

4.2.4.  RTO estimation for single-MSS stacks

   The Retransmission Timeout (RTO) estimation is one of the fundamental
   TCP algorithms.  There is a fundamental trade-off: A short,
   aggressive RTO behavior reduces wait time before retransmissions, but
   it also increases the probability of spurious timeouts.  The latter
   lead to unnecessary waste of potentially scarce resources in CNNs
   such as energy and bandwidth.  In contrast, a conservative timeout
   can result in long error recovery times and thus needlessly delay
   data delivery.

   [RFC6298] describes the standard TCP RTO algorithm.  If a TCP sender
   uses very small window size, and it cannot use Fast Retransmit/Fast
   Recovery or SACK, the Retransmission Timeout (RTO) algorithm has a
   larger impact on performance than for a more powerful TCP stack.  In
   that case, RTO algorithm tuning may be considered, although careful
   assessment of possible drawbacks is recommended
   [I-D.ietf-tcpm-rto-consider].

https://datatracker.ietf.org/doc/html/rfc5681
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   As an example, an adaptive RTO algorithm for CoAP over UDP has been
   defined [I-D.ietf-core-cocoa] that has been found to perform well in
   CNN scenarios [Commag].

4.3.  General recommendations for TCP in CNNs

   This section summarizes some widely used techniques to improve TCP,
   with a focus on their use in CNNs.  The TCP extensions discussed here
   are useful in a wide range of network scenarios, including CNNs.
   This section is not comprehensive.  A comprehensive survey of TCP
   extensions is published in [RFC7414].

4.3.1.  Loss recovery and congestion/flow control

   Devices that have enough memory to allow larger TCP window size can
   leverage a more efficient loss recovery using Fast Retransmit and
   Fast Recovery [RFC5681], at the expense of slightly greater
   complexity and TCB size.  Assuming that Delayed ACKs are used by the
   receiver, the mentioned algorithms work efficiently for window sizes
   of at least 5 MSS: If in a given TCP transmission of segments
   1,2,3,4,5, and 6 the segment 2 gets lost, the sender should get an
   ACK for segment 1 when 3 arrives and duplicate acknowledgements when
   4, 5, and 6 arrive.  It will retransmit segment 2 when the third
   duplicate ACK arrives.  In order to have segment 2, 3, 4, 5, and 6
   sent, the window has to be at least five.  With an MSS of 1220 byte,
   a buffer of the size of 5 MSS would require 6100 bytes.

   For bulk data transfers further TCP improvements may also be useful,
   such as limited transmit [RFC3042].

4.3.1.1.  Selective Acknowledgments (SACK)

   If a device with less severe memory and processing constraints can
   afford advertising a TCP window size of several MSS, it makes sense
   to support the SACK option to improve performance.  SACK allows a
   data receiver to inform the data sender of non-contiguous data blocks
   received, thus a sender (having previously sent the SACK-Permitted
   option) can avoid performing unnecessary retransmissions, saving
   energy and bandwidth, as well as reducing latency.  SACK is
   particularly useful for bulk data transfers.  The receiver supporting
   SACK will need to manage the reception of possible out-of-order
   received segments, requiring sufficient buffer space.  SACK adds
   8*n+2 bytes to the TCP header, where n denotes the number of data
   blocks received, up to 4 blocks.  For a low number of out-of-order
   segments, the header overhead penalty of SACK is compensated by
   avoiding unnecessary retransmissions.

https://datatracker.ietf.org/doc/html/rfc7414
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3042
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4.3.2.  Delayed Acknowledgments

   For certain traffic patterns, Delayed ACKs may have a detrimental
   effect, as already noted in Section 4.2.3.  Advanced TCP stacks may
   use heuristics to determine the maximum delay for an ACK.  For CNNs,
   the recommendation depends on the expected communication patterns.

   If a stack is able to deal with more than one MSS of data, it may
   make sense to use a small timeout or disable delayed ACKs when
   traffic over a CNN is expected to mostly be small messages with a
   size typically below one MSS.  For request-response traffic between a
   constrained device and a peer (e.g. backend infrastructure) that uses
   delayed ACKs, the maximum ACK rate of the peer will be typically of
   one ACK every 200 ms (or even lower).  If in such conditions the peer
   device is administered by the same entity managing the constrained
   device, it is recommended to disable delayed ACKs at the peer side.

   In contrast, Delayed ACKs allow to reduce the number of ACKs in bulk
   transfer type of traffic, e.g. for firmware/software updates or for
   transferring larger data units containing a batch of sensor readings.

   Note that, in many scenarios, the peer that a constrained device
   communicates with will be a general purpose system that communicates
   with both constrained and unconstrained devices.  Since delayed ACKs
   are often configured through system-wide parameters, delayed ACKs
   behavior at the peer will be the same regardless of the nature of the
   endpoints it talks to.  Such a peer will typically have delayed ACKs
   enabled.

5.  TCP usage recommendations in CNNs

   This section discusses how a TCP stack can be used by applications
   that are developed for CNN scenarios.  These remarks are by and large
   independent of how TCP is exactly implemented.

5.1.  TCP connection initiation

   In the constrained device to unconstrained device scenario
   illustrated above, a TCP connection is typically initiated by the
   constrained device, in order for this device to support possible
   sleep periods to save energy.

5.2.  Number of concurrent connections

   TCP endpoints with a small amount of RAM may only support a small
   number of connections.  Each TCP connection requires storing a number
   of variables in the Transmission Control Block (TCB).  Depending on
   the internal TCP implementation, each connection may result in
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   further memory overhead, and connections may compete for scarce
   resources (e.g. further memory overhead for send and receive buffers,
   etc).

   A careful application design may try to keep the number of concurrent
   connections as small as possible.  A client can for instance limit
   the number of simultaneous open connections that it maintains to a
   given server.  Multiple connections could for instance be used to
   avoid the "head-of-line blocking" problem in an application transfer.
   However, in addition to comsuming resources, using multiple
   connections can also cause undesirable side effects in congested
   networks.  For example, the HTTP/1.1 specification encourages clients
   to be conservative when opening multiple connections [RFC7230].
   Furthermore, each new connection will start with a 3-way handshake,
   therefore increasing message overhead.

   Being conservative when opening multiple TCP connections is of
   particular importance in Constrained-Node Networks.

5.3.  TCP connection lifetime

   In order to minimize message overhead, it makes sense to keep a TCP
   connection open as long as the two TCP endpoints have more data to
   send.  If applications exchange data rather infrequently, i.e., if
   TCP connections would stay idle for a long time, the idle time can
   result in problems.  For instance, certain middleboxes such as
   firewalls or NAT devices are known to delete state records after an
   inactivity interval typically in the order of a few minutes
   [RFC6092].  The timeout duration used by a middlebox implementation
   may not be known to the TCP endpoints.

   In CNNs, such middleboxes may e.g. be present at the boundary between
   the CNN and other networks.  If the middlebox can be optimized for
   CNN use cases, it makes sense to increase the initial value for
   filter state inactivity timers to avoid problems with idle
   connections.  Apart from that, this problem can be dealt with by
   different connection handling strategies, each having pros and cons.

   One approach for infrequent data transfer is to use short-lived TCP
   connections.  Instead of trying to maintain a TCP connection for long
   time, possibly short-lived connections can be opened between two
   endpoints, which are closed if no more data needs to be exchanged.
   For use cases that can cope with the additional messages and the
   latency resulting from starting new connections, it is recommended to
   use a sequence of short-lived connections, instead of maintaining a
   single long-lived connection.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc6092
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   The message and latency overhead that stems from using a sequence of
   short-lived connections could be reduced by TCP Fast Open (TFO)
   [RFC7413], which is an experimental TCP extension, at the expense of
   increased implementation complexity and increased TCP Control Block
   (TCB) size.  TFO allows data to be carried in SYN (and SYN-ACK)
   segments, and to be consumed immediately by the receiving endpoint.
   This reduces the message and latency overhead compared to the
   traditional three-way handshake to establish a TCP connection.  For
   security reasons, the connection initiator has to request a TFO
   cookie from the other endpoint.  The cookie, with a size of 4 or 16
   bytes, is then included in SYN packets of subsequent connections.
   The cookie needs to be refreshed (and obtained by the client) after a
   certain amount of time.  Nevertheless, TFO is more efficient than
   frequently opening new TCP connections with the traditional three-way
   handshake, as long as the cookie can be reused in subsequent
   connections.  However, as stated in RFC 7413, TFO deviates from the
   standard TCP semantics, since the data in the SYN could be replayed
   to an application in some rare circumstances.  Applications should
   not use TFO unless they can tolerate this issue, e.g., by using
   Transport Layer Security (TLS) [RFC7413].  A comprehensive discussion
   on TFO can be found at RFC 7413.

   Another approach is to use long-lived TCP connections with
   application-layer heartbeat messages.  Various application protocols
   support such heartbeat messages.  Periodic heartbeats requires
   transmission of packets, but they also allow aliveness checks at
   application level.  In addition, they can prevent early filter state
   record deletion in middleboxes.  In general, it makes sense realize
   aliveness checks at the highest protocol layer possible that is
   meaningful to the application, in order to maximize the depth of the
   aliveness check.  In addition, timely detection of a dead peer may
   allow savings in terms of TCB memory use.

   A TCP implementation may also be able to send "keep-alive" segments
   to test a TCP connection.  According to [RFC1122], "keep-alives" are
   an optional TCP mechanism that is turned off by default, i.e., an
   application must explicitly enable it for a TCP connection.  The
   interval between "keep-alive" messages must be configurable and it
   must default to no less than two hours.  With this large timeout, TCP
   keep-alive messages are not very useful to avoid deletion of filter
   state records in middleboxes such as firewalls.  However, sending TCP
   keep-alive probes more frequently risks draining power on energy-
   constrained devices.

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc1122
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6.  Security Considerations

   Best current practise for securing TCP and TCP-based communication
   also applies to CNN.  As example, use of Transport Layer Security
   (TLS) is strongly recommended if it is applicable.

   There are also TCP options which can improve TCP security.  One
   example is the TCP Authentication Option (TCP-AO) [RFC5925].
   However, this option adds overhead and complexity.  TCP-AO typically
   has a size of 16-20 bytes.

   For the mechanisms discussed in this document, the corresponding
   considerations apply.  For instance, if TFO is used, the security
   considerations of [RFC7413] apply.

   Constrained devices are expected to support smaller TCP window sizes
   than less limited devices.  In such conditions, segment
   retransmission triggered by RTO expiration is expected to be
   relatively frequent, due to lack of (enough) duplicate ACKs,
   especially when a constrained device uses a single-MSS window size.
   For this reason, constrained devices running TCP may appear as
   particularly appealing victims of the so-called "shrew" Denial of
   Service (DoS) attack [shrew], whereby one or more sources generate a
   packet spike targetted to coincide with consecutive RTO-expiration-
   triggered retry attempts of a victim node.  Note that the attack may
   be performed by Internet-connected devices, including constrained
   devices in the same CNN as the victim, as well as remote ones.
   Mitigation techniques include RTO randomization and attack blocking
   by routers able to detect shrew attacks based on their traffic
   pattern.
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8.  Annex.  TCP implementations for constrained devices

   This section overviews the main features of TCP implementations for
   constrained devices.  The survey is limited to open source stacks
   with small footprint.  It is not meant to be all-encompassing.  For
   more powerful embedded systems (e.g., with 32-bit processors), there
   are further stacks that comprehensively implement TCP.  On the other
   hand, please be aware that this Annex is based on information
   available as of the writing.

8.1.  uIP

   uIP is a TCP/IP stack, targetted for 8 and 16-bit microcontrollers,
   which pioneered TCP/IP implementations for constrained devices. uIP
   has been deployed with Contiki and the Arduino Ethernet shield.  A
   code size of ~5 kB (which comprises checksumming, IP, ICMP and TCP)
   has been reported for uIP [Dunk].

   uIP uses the same global buffer for both incoming and outgoing
   traffic, which has a size of a single packet.  In case of a
   retransmission, an application must be able to reproduce the same
   user data that had been transmitted.  Multiple connections are
   supported, but need to share the global buffer.

   The MSS is announced via the MSS option on connection establishment
   and the receive window size (of one MSS) is not modified during a
   connection.  Stop-and-wait operation is used for sending data.  Among
   other optimizations, this allows to avoid sliding window operations,
   which use 32-bit arithmetic extensively and are expensive on 8-bit
   CPUs.

   Contiki uses the "split hack" technique (see Section 4.2.3) to avoid
   Delayed ACKs for senders using a single segment.

   The code size of the TCP implementation in Contiki-NG has been
   measured to be of 3.2 kB on CC2538DK, cross-compiling on Linux.

8.2.  lwIP

   lwIP is a TCP/IP stack, targetted for 8- and 16-bit microcontrollers.
   lwIP has a total code size of ~14 kB to ~22 kB (which comprises
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   memory management, checksumming, network interfaces, IP, ICMP and
   TCP), and a TCP code size of ~9 kB to ~14 kB [Dunk].

   In contrast with uIP, lwIP decouples applications from the network
   stack. lwIP supports a TCP transmission window greater than a single
   segment, as well as buffering of incoming and outcoming data.  Other
   implemented mechanisms comprise slow start, congestion avoidance,
   fast retransmit and fast recovery.  SACK and Window Scale support has
   been recently added to lwIP.

8.3.  RIOT

   The RIOT TCP implementation (called GNRC TCP) has been designed for
   Class 1 devices [RFC 7228].  The main target platforms are 8- and
   16-bit microcontrollers, with 32-bit platforms also supported.  GNRC
   TCP offers a similar function set as uIP, but it provides and
   maintains an independent receive buffer for each connection.  In
   contrast to uIP, retransmission is also handled by GNRC TCP.  GNRC
   TCP uses a single-MSS window size, which simplifies the
   implementation.  The application programmer does not need to know
   anything about the TCP internals, therefore GNRC TCP can be seen as a
   user-friendly uIP TCP implementation.

   The MSS is set on connections establishment and cannot be changed
   during connection lifetime.  GNRC TCP allows multiple connections in
   parallel, but each TCB must be allocated somewhere in the system.  By
   default there is only enough memory allocated for a single TCP
   connection, but it can be increased at compile time if the user needs
   multiple parallel connections.

   The RIOT TCP implementation offers an optional POSIX socket wrapper
   that enables POSIX compliance, if needed.

   Further details on RIOT and GNRC can be found in the literature
   [RIOT], [GNRC].

8.4.  TinyOS

   TinyOS was important as platform for early constrained devices.
   TinyOS has an experimental TCP stack that uses a simple nonblocking
   library-based implementation of TCP, which provides a subset of the
   socket interface primitives.  The application is responsible for
   buffering.  The TCP library does not do any receive-side buffering.
   Instead, it will immediately dispatch new, in-order data to the
   application and otherwise drop the segment.  A send buffer is
   provided by the application.  Multiple TCP connections are possible.
   Recently there has been little further work on the stack.

https://datatracker.ietf.org/doc/html/rfc7228
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8.5.  FreeRTOS

   FreeRTOS is a real-time operating system kernel for embedded devices
   that is supported by 16- and 32-bit microprocessors.  Its TCP
   implementation is based on multiple-segment window size, although a
   'Tiny-TCP' option, which is a single-MSS variant, can be enabled.
   Delayed ACKs are supported, with a 20-ms Delayed ACK timer as a
   technique intended 'to gain performance'.

8.6.  uC/OS

   uC/OS is a real-time operating system kernel for embedded devices,
   which is maintained by Micrium. uC/OS is intended for 8-, 16- and
   32-bit microprocessors.  The uC/OS TCP implementation supports a
   multiple-segment window size.

8.7.  Summary
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                        +---+---------+--------+----+------+--------+-----+
                        |uIP|lwIP orig|lwIP 2.1|RIOT|TinyOS|FreeRTOS|uC/OS|
   +------+-------------+---+---------+--------+----+------+--------+-----+
   |Memory|Code size(kB)| <5|~9 to ~14|   38   | <7 | N/A  |  <9.2  | N/A |
   |      |             |(a)|   (T1)  |  (T4)  |(T3)|      |  (T2)  |     |
   +------+-------------+---+---------+--------+----+------+--------+-----+
   |      | Single-Segm.|Yes|    No   |   No   | Yes|  No  |   No   |  No |
   |      +-------------+---+---------+--------+----+------+--------+-----+
   |      |  Slow start | No|   Yes   |   Yes  | No | Yes  |   No   | Yes |
   |  T   +-------------+---+---------+--------+----+------+--------+-----+
   |  C   |Fast rec/retx| No|   Yes   |   Yes  | No | Yes  |   No   | Yes |
   |  P   +-------------+---+---------+--------+----+------+--------+-----+
   |      |  Keep-alive | No|    No   |   Yes  | No |  No  |  Yes   | Yes |
   |      +-------------+---+---------+--------+----+------+--------+-----+
   |  f   |  Win. Scale | No|    No   |   Yes  | No |  No  |  Yes   |  No |
   |  e   +-------------+---+---------+--------+----+------+--------+-----+
   |  a   |  TCP timest.| No|    No   |   Yes  | No |  No  |  Yes   |  No |
   |  t   +-------------+---+---------+--------+----+------+--------+-----+
   |  u   |      SACK   | No|    No   |   Yes  | No |  No  |  Yes   |  No |
   |  r   +-------------+---+---------+--------+----+------+--------+-----+
   |  e   |  Del. ACKs  | No|   Yes   |   Yes  | No |  No  |  Yes   | Yes |
   |  s   +-------------+---+---------+--------+----+------+--------+-----+
   |      |     Socket  | No|    No   |Optional|(I) |Subset|  Yes   | Yes |
   |      +-------------+---+---------+--------+----+------+--------+-----+
   |      |Concur. Conn.|Yes|   Yes   |   Yes  | Yes| Yes  |  Yes   | Yes |
   +------+-------------+---+---------+--------+----+------+--------+-----+
   |    TLS supported   | No|    No   |   Yes  | Yes| Yes  |  Yes   | Yes |
   +--------------------+---+---------+--------+----+------+--------+-----+

     (T1)  = TCP-only, on x86 and AVR platforms
     (T2)  = TCP-only, on ARM Cortex-M platform
     (T3)  = TCP-only, on ARM Cortex-M0+ platform (NOTE: RAM usage for the same 
platform
             is ~2.5 kB for one TCP connection plus ~1.2 kB for each additional 
connection)
     (T4)  = TCP-only, on CC2538DK, cross-compiling on Linux
     (a)   = includes IP, ICMP and TCP on x86 and AVR platforms. The Contiki-NG 
TCP implementation has a code size of 3.2 kB on CC2538DK, cross-compiling on 
Linux
     (I)   = optional POSIX socket wrapper which enables POSIX compliance if 
needed
     Mult. = Multiple
     N/A   = Not Available

     Figure 2: Summary of TCP features for differrent lightweight TCP
     implementations.  None of the implementations considered in this
                         Annex support ECN or TFO.



Gomez, et al.          Expires September 10, 2019              [Page 19]



Internet-Draft                 TCP in IoT                     March 2019

9.  Annex.  Changes compared to previous versions

   RFC Editor: To be removed prior to publication

9.1.  Changes between -00 and -01

   o  Changed title and abstract

   o  Clarification that communcation with standard-compliant TCP
      endpoints is required, based on feedback from Joe Touch

   o  Additional discussion on communication patters

   o  Numerous changes to address a comprehensive review from Hannes
      Tschofenig

   o  Reworded security considerations

   o  Additional references and better distinction between normative and
      informative entries

   o  Feedback from Rahul Jadhav on the uIP TCP implementation

   o  Basic data for the TinyOS TCP implementation added, based on
      source code analysis

9.2.  Changes between -01 and -02

   o  Added text to the Introduction section, and a reference, on
      traditional bad perception of TCP for IoT

   o  Added sections on FreeRTOS and uC/OS

   o  Updated TinyOS section

   o  Updated summary table

   o  Reorganized Section 4 (single-MSS vs multiple-MSS window size),
      some content now also in new Section 5

9.3.  Changes between -02 and -03

   o  Rewording to better explain the benefit of ECN

   o  Additional context information on the surveyed implementations

   o  Added details, but removed "Data size" raw, in the summary table
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   o  Added discussion on shrew attacks

9.4.  Changes between -03 and -04

   o  Addressing the remaining TODOs

   o  Alignment of the wording on TCP "keep-alives" with related
      discussions in the IETF transport area

   o  Added further discussion on delayed ACKs

   o  Removed OpenWSN subsection from the Annex

9.5.  Changes between -04 and -05

   o  Addressing comments by Yoshifumi Nishida

   o  Removed mentioning MD5 as an example (comment by David Black)

   o  Added memory footprint details of TCP implementations (Contiki-NG
      and lwIP 2.1.2) provided by Rahul Jadhav in the Annex

   o  Addressed comments by Ilpo Jarvinen throughout the whole document

   o  Improved the RIOT section in the Annex, based on feedback from
      Emmanuel Baccelli
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