
LWIG Working Group C. Gomez
Internet-Draft UPC
Intended status: Informational J. Crowcroft
Expires: September 10, 2019 University of Cambridge
 M. Scharf
 Hochschule Esslingen
 March 9, 2019

TCP Usage Guidance in the Internet of Things (IoT)
draft-ietf-lwig-tcp-constrained-node-networks-05

Abstract

 This document provides guidance on how to implement and use the
 Transmission Control Protocol (TCP) in Constrained-Node Networks
 (CNNs), which are a characterstic of the Internet of Things (IoT).
 Such environments require a lightweight TCP implementation and may
 not make use of optional functionality. This document explains a
 number of known and deployed techniques to simplify a TCP stack as
 well as corresponding tradeoffs. The objective is to help embedded
 developers with decisions on which TCP features to use.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Gomez, et al. Expires September 10, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft TCP in IoT March 2019

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions used in this document 4
3. Characteristics of CNNs relevant for TCP 4
3.1. Network and link properties 4
3.2. Usage scenarios . 5
3.3. Communication and traffic patterns 6

4. TCP implementation and configuration in CNNs 6
4.1. Path properties . 6
4.1.1. Maximum Segment Size (MSS) 7
4.1.2. Explicit Congestion Notification (ECN) 7
4.1.3. Explicit loss notifications 8

4.2. TCP guidance for single-MSS windows and buffers 9
4.2.1. Single-MSS stacks - benefits and issues 9
4.2.2. TCP options for single-MSS stacks 9
4.2.3. Delayed Acknowledgments for single-MSS stacks 10
4.2.4. RTO estimation for single-MSS stacks 10

4.3. General recommendations for TCP in CNNs 11
4.3.1. Loss recovery and congestion/flow control 11
4.3.1.1. Selective Acknowledgments (SACK) 11

4.3.2. Delayed Acknowledgments 12
5. TCP usage recommendations in CNNs 12
5.1. TCP connection initiation 12
5.2. Number of concurrent connections 12
5.3. TCP connection lifetime 13

6. Security Considerations 15
7. Acknowledgments . 15
8. Annex. TCP implementations for constrained devices 16
8.1. uIP . 16
8.2. lwIP . 16
8.3. RIOT . 17
8.4. TinyOS . 17
8.5. FreeRTOS . 18
8.6. uC/OS . 18
8.7. Summary . 18

9. Annex. Changes compared to previous versions 20
9.1. Changes between -00 and -01 20
9.2. Changes between -01 and -02 20
9.3. Changes between -02 and -03 20
9.4. Changes between -03 and -04 21

Gomez, et al. Expires September 10, 2019 [Page 2]

Internet-Draft TCP in IoT March 2019

9.5. Changes between -04 and -05 21
10. References . 21
10.1. Normative References 21
10.2. Informative References 23

 Authors' Addresses . 26

1. Introduction

 The Internet Protocol suite is being used for connecting Constrained-
 Node Networks (CNNs) to the Internet, enabling the so-called Internet
 of Things (IoT) [RFC7228]. In order to meet the requirements that
 stem from CNNs, the IETF has produced a suite of new protocols
 specifically designed for such environments (see e.g. [RFC8352]).
 New IETF protocol stack components include the IPv6 over Low-power
 Wireless Personal Area Networks (6LoWPAN) adaptation layer, the IPv6
 Routing Protocol for Low-power and lossy networks (RPL) routing
 protocol, and the Constrained Application Protocol (CoAP).

 As of the writing, the main current transport layer protocols in IP-
 based IoT scenarios are UDP and TCP. However, TCP has been
 criticized (often, unfairly) as a protocol for the IoT. In fact,
 some TCP features are not optimal for IoT scenarios, such as
 relatively long header size, unsuitability for multicast, and always-
 confirmed data delivery. However, many typical claims on TCP
 unsuitability for IoT (e.g. a high complexity, connection-oriented
 approach incompatibility with radio duty-cycling, and spurious
 congestion control activation in wireless links) are not valid, can
 be solved, or are also found in well accepted IoT end-to-end
 reliability mechanisms (see [IntComp] for a detailed analysis).

 At the application layer, CoAP was developed over UDP [RFC7252].
 However, the integration of some CoAP deployments with existing
 infrastructure is being challenged by middleboxes such as firewalls,
 which may limit and even block UDP-based communications. This the
 main reason why a CoAP over TCP specification has been developed
 [RFC8323].

 Other application layer protocols not specifically designed for CNNs
 are also being considered for the IoT space. Some examples include
 HTTP/2 and even HTTP/1.1, both of which run over TCP by default
 [RFC7230] [RFC7540], and the Extensible Messaging and Presence
 Protocol (XMPP) [RFC6120]. TCP is also used by non-IETF application-
 layer protocols in the IoT space such as the Message Queue Telemetry
 Transport (MQTT) and its lightweight variants.

 TCP is a sophisticated transport protocol that includes optional
 functionality (e.g. TCP options) that may improve performance in
 some environments. However, many optional TCP extensions require

https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc8352
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8323
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc6120

Gomez, et al. Expires September 10, 2019 [Page 3]

Internet-Draft TCP in IoT March 2019

 complex logic inside the TCP stack and increase the codesize and the
 RAM requirements. Many TCP extensions are not required for
 interoperability with other standard-compliant TCP endpoints. Given
 the limited resources on constrained devices, careful "tuning" of the
 TCP implementation can make an implementation more lightweight.

 This document provides guidance on how to implement and use TCP in
 CNNs. The overarching goal is to offer simple measures to allow for
 lightweight TCP implementation and suitable operation in such
 environments. A TCP implementation following the guidance in this
 document is intended to be compatible with a TCP endpoint that is
 compliant to the TCP standards, albeit possibly with a lower
 performance. This implies that such a TCP client would always be
 able to connect with a standard-compliant TCP server, and a
 corresponding TCP server would always be able to connect with a
 standard-compliant TCP client.

 This document assumes that the reader is familiar with TCP. A
 comprehensive survey of the TCP standards can be found in [RFC7414].
 Similar guidance regarding the use of TCP in special environments has
 been published before, e.g., for cellular wireless networks
 [RFC3481].

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL","SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Characteristics of CNNs relevant for TCP

3.1. Network and link properties

 CNNs are defined in [RFC7228] as networks whose characteristics are
 influenced by being composed of a significant portion of constrained
 nodes. The latter are characterized by significant limitations on
 processing, memory, and energy resources, among others [RFC7228].
 The first two dimensions pose constraints on the complexity and on
 the memory footprint of the protocols that constrained nodes can
 support. The latter requires techniques to save energy, such as
 radio duty-cycling in wireless devices [RFC8352], as well as
 minimization of the number of messages transmitted/received (and
 their size).

 [RFC7228] lists typical network constraints in CNN, including low
 achievable bitrate/throughput, high packet loss and high variability
 of packet loss, highly asymmetric link characteristics, severe
 penalties for using larger packets, limits on reachability over time,

https://datatracker.ietf.org/doc/html/rfc7414
https://datatracker.ietf.org/doc/html/rfc3481
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc8352

Gomez, et al. Expires September 10, 2019 [Page 4]

Internet-Draft TCP in IoT March 2019

 etc. CNN may use wireless or wired technologies (e.g., Power Line
 Communication), and the transmission rates are typically low (e.g.
 below 1 Mbps).

 For use of TCP, one challenge is that not all technologies in CNN may
 be aligned with typical Internet subnetwork design principles
 [RFC3819]. For instance, constrained nodes often use physical/link
 layer technologies that have been characterized as 'lossy', i.e.,
 exhibit a relatively high bit error rate. Dealing with corruption
 loss is one of the open issues in the Internet [RFC6077].

3.2. Usage scenarios

 There are different deployment and usage scenarios for CNNs. Some
 CNNs follow the star topology, whereby one or several hosts are
 linked to a central device that acts as a router connecting the CNN
 to the Internet. CNNs may also follow the multihop topology
 [RFC6606]. One key use case for the use of TCP is a model where
 constrained devices connect to unconstrained servers in the Internet.
 But it is also possible that both TCP endpoints run on constrained
 devices.

 In constrained environments, there can be different types of devices
 [RFC7228]. For example, there can be devices with single combined
 send/receive buffer, devices with a separate send and receive buffer,
 or devices with a pool of multiple send/receive buffers. In the
 latter case, it is possible that buffers also be shared for other
 protocols.

 When a CNN comprising one or more constrained devices and an
 unconstrained device communicate over the Internet using TCP, the
 communication possibly has to traverse a middlebox (e.g. a firewall,
 NAT, etc.). Figure 1 illustrates such scenario. Note that the
 scenario is asymmetric, as the unconstrained device will typically
 not suffer the severe constraints of the constrained device. The
 unconstrained device is expected to be mains-powered, to have high
 amount of memory and processing power, and to be connected to a
 resource-rich network.

 Assuming that a majority of constrained devices will correspond to
 sensor nodes, the amount of data traffic sent by constrained devices
 (e.g. sensor node measurements) is expected to be higher than the
 amount of data traffic in the opposite direction. Nevertheless,
 constrained devices may receive requests (to which they may respond),
 commands (for configuration purposes and for constrained devices
 including actuators) and relatively infrequent firmware/software
 updates.

https://datatracker.ietf.org/doc/html/rfc3819
https://datatracker.ietf.org/doc/html/rfc6077
https://datatracker.ietf.org/doc/html/rfc6606
https://datatracker.ietf.org/doc/html/rfc7228

Gomez, et al. Expires September 10, 2019 [Page 5]

Internet-Draft TCP in IoT March 2019

 +---------------+
 o o <-------- TCP communication -----> | |
 o o | |
 o o | Unconstrained |
 o o +-----------+ | device |
 o o o ------ | Middlebox | ------- | |
 o o +-----------+ | (e.g. cloud) |
 o o o | |
 +---------------+
 constrained devices

 Figure 1: TCP communication between a constrained device and an
 unconstrained device, traversing a middlebox.

3.3. Communication and traffic patterns

 IoT applications are characterized by a number of different
 communication patterns. The following non-comprehensive list
 explains some typical examples:

 o Unidirectional transfers: An IoT device (e.g. a sensor) can send
 (repeatedly) updates to the other endpoint. Not in every case
 there is a need for an application response back to the IoT
 device.

 o Request-response patterns: An IoT device receiving a request from
 the other endpoint, which triggers a response from the IoT device.

 o Bulk data transfers: A typical example for a long file transfer
 would be an IoT device firmware update.

 A typical communication pattern is that a constrained device
 communicates with an unconstrained device (cf. Figure 1). But it is
 also possible that constrained devices communicate amongst
 themselves.

4. TCP implementation and configuration in CNNs

 This section explains how a TCP stack can deal with typical
 constraints in CNN. The guidance in this section relates to the TCP
 implementation and its configuration.

4.1. Path properties

Gomez, et al. Expires September 10, 2019 [Page 6]

Internet-Draft TCP in IoT March 2019

4.1.1. Maximum Segment Size (MSS)

 For the sake of lightweight implementation and operation, unless
 applications require handling large data units (i.e. leading to an
 IPv6 datagram size greater than 1280 bytes), it may be desirable to
 limit the MTU to 1280 bytes in order to avoid the need to support
 Path MTU Discovery [RFC8201].

 An IPv6 datagram size exceeding 1280 bytes can be avoided by setting
 the TCP MSS not larger than 1220 bytes. (Note: IP version 6 is
 assumed.)

 Note that setting the MTU to 1280 bytes is possible for link layer
 technologies in the CNN space, even if some of them are characterized
 by a short data unit payload size, e.g. up to a few tens or hundreds
 of bytes. For example, the maximum frame size in IEEE 802.15.4 is
 127 bytes. 6LoWPAN defined an adaptation layer to support IPv6 over
 IEEE 802.15.4 networks. The adaptation layer includes a
 fragmentation mechanism, since IPv6 requires the layer below to
 support an MTU of 1280 bytes [RFC2460], while IEEE 802.15.4 lacked
 fragmentation mechanisms. 6LoWPAN defines an IEEE 802.15.4 link MTU
 of 1280 bytes [RFC4944]. Other technologies, such as Bluetooth LE
 [RFC7668], ITU-T G.9959 [RFC7428] or DECT-ULE [RFC8105], also use
 6LoWPAN-based adaptation layers in order to enable IPv6 support.
 These technologies do support link layer fragmentation. By
 exploiting this functionality, the adaptation layers that enable IPv6
 over such technologies also define an MTU of 1280 bytes.

 On the other hand, there exist technologies also used in the CNN
 space, such as Master Slave / Token Passing (TP) [RFC8163],
 Narrowband IoT (NB-IoT) [RFC8376] or IEEE 802.11ah
 [I-D.delcarpio-6lo-wlanah], that do not suffer the same degree of
 frame size limitations as the technologies mentioned above. The MTU
 for MS/TP is recommended to be 1500 bytes [RFC8163], the MTU in NB-
 IoT is 1600 bytes, and the maximum frame payload size for IEEE
 802.11ah is 7991 bytes.

 Finally, note that using larger MSS (to a suitable extent) may be
 beneficial, especially when transferring large payloads, as it
 reduces the number of packets (and packet headers) required for a
 given payload.

4.1.2. Explicit Congestion Notification (ECN)

 Explicit Congestion Notification (ECN) [RFC3168] ECN allows a router
 to signal in the IP header of a packet that congestion is arising,
 for example when a queue size reaches a certain threshold. An ECN-
 enabled TCP receiver will echo back the congestion signal to the TCP

https://datatracker.ietf.org/doc/html/rfc8201
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc7668
https://datatracker.ietf.org/doc/html/rfc7428
https://datatracker.ietf.org/doc/html/rfc8105
https://datatracker.ietf.org/doc/html/rfc8163
https://datatracker.ietf.org/doc/html/rfc8376
https://datatracker.ietf.org/doc/html/rfc8163
https://datatracker.ietf.org/doc/html/rfc3168

Gomez, et al. Expires September 10, 2019 [Page 7]

Internet-Draft TCP in IoT March 2019

 sender by setting a flag in its next TCP ACK. The sender triggers
 congestion control measures as if a packet loss had happened.

 The document [RFC8087] outlines the principal gains in terms of
 increased throughput, reduced delay, and other benefits when ECN is
 used over a network path that includes equipment that supports
 Congestion Experienced (CE) marking. In the context of CNNs, a
 remarkable feature of ECN is that congestion can be signalled without
 incurring packet drops (which will lead to retransmissions and
 consumption of limited resources such as energy and bandwitdh).

 ECN can further reduce packet losses since congestion control
 measures can be applied earlier [RFC2884]. Less lost packets implies
 that the number of retransmitted segments decreases, which is
 particularly beneficial in CNNs, where energy and bandwidth resources
 are typically limited. Also, it makes sense to try to avoid packet
 drops for transactional workloads with small data sizes, which are
 typical for CNNs. In such traffic patterns, it is more difficult to
 detect packet loss without retransmission timeouts (e.g., as there
 may be no three duplicate ACKs). Any retransmission timeout slows
 down the data transfer significantly. In addition, if the
 constrained device uses power saving techniques, a retransmission
 timeout will incur a wake-up action, in contrast to ACK clock-
 triggered sending. When the congestion window of a TCP sender has a
 size of one segment, the TCP sender resets the retransmit timer, and
 the sender will only be able to send a new packet when the retransmit
 timer expires [RFC3168]. Effectively, the TCP sender reduces at that
 moment its sending rate from 1 segment per Round Trip Time (RTT) to 1
 segment per RTO, which can result in a very low throughput. In
 addition to better throughput, ECN can also help reducing latency and
 jitter.

 ECN can be incrementally deployed in the Internet. Guidance on
 configuration and usage of ECN is provided in [RFC7567]. Given the
 benefits, more and more TCP stacks in the Internet support ECN, and
 it specifically makes sense to leverage ECN in controlled
 environments such as CNNs. Note, however, that supporting ECN
 increases implementation complexity.

4.1.3. Explicit loss notifications

 There has been a significant body of research on solutions capable of
 explicitly indicating whether a TCP segment loss is due to
 corruption, in order to avoid activation of congestion control
 mechanisms [ETEN] [RFC2757]. While such solutions may provide
 significant improvement, they have not been widely deployed and
 remain as experimental work. In fact, as of today, the IETF has not
 standardized any such solution.

https://datatracker.ietf.org/doc/html/rfc8087
https://datatracker.ietf.org/doc/html/rfc2884
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc7567
https://datatracker.ietf.org/doc/html/rfc2757

Gomez, et al. Expires September 10, 2019 [Page 8]

Internet-Draft TCP in IoT March 2019

4.2. TCP guidance for single-MSS windows and buffers

 This section discusses TCP stacks that focus on transferring a single
 MSS. More general guidance is provided in Section 4.3.

4.2.1. Single-MSS stacks - benefits and issues

 A TCP stack can reduce the RAM requirements by advertising a TCP
 window size of one MSS, and also transmit at most one MSS of
 unacknowledged data. In that case, both congestion and flow control
 implementation is quite simple. Such a small receive and send window
 may be sufficient for simple message exchanges in the CNN space.
 However, only using a window of one MSS can significantly affect
 performance. A stop-and-wait operation results in low throughput for
 transfers that exceed the lengths of one MSS, e.g., a firmware
 download.

 If CoAP is used over TCP with the default setting for NSTART in
 [RFC7252], a CoAP endpoint is not allowed to send a new message to a
 destination until a response for the previous message sent to that
 destination has been received. This is equivalent to an application-
 layer window size of 1. For this use of CoAP, a maximum TCP window
 of one MSS will be sufficient.

4.2.2. TCP options for single-MSS stacks

 A TCP implementation needs to support options 0, 1 and 2 [RFC0793].
 These options are sufficient for interoperability with a standard-
 compliant TCP endpoint, albeit many TCP stacks support additional
 options and can negotiate their use.

 A TCP implementation for a constrained device that uses a single-MSS
 TCP receive or transmit window size may not benefit from supporting
 the following TCP options: Window scale [RFC7323], TCP Timestamps
 [RFC7323], Selective Acknowledgments (SACK) and SACK-Permitted
 [RFC2018]. Also other TCP options may not be required on a
 constrained device with a very lightweight implementation. With
 regard to the Window scale option, note that it is only useful if a
 window size greater than 64 kB is needed.

 One potentially relevant TCP option in the context of CNNs is TCP
 Fast Open (TFO) [RFC7413]. As described in Section 5.3, TFO can be
 used to address the problem of traversing middleboxes that perform
 early filter state record deletion.

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc7413

Gomez, et al. Expires September 10, 2019 [Page 9]

Internet-Draft TCP in IoT March 2019

4.2.3. Delayed Acknowledgments for single-MSS stacks

 TCP Delayed Acknowledgments are meant to reduce the number of ACKs
 sent within a TCP connection, thus reducing network overhead, but
 they may increase the time until a sender may receive an ACK. In
 general, usefulness of Delayed ACKs depends heavily on the usage
 scenario. There can be interactions with stacks that use single-MSS
 windows.

 A device that advertises a single-MSS receive window should avoid use
 of Delayed ACKs in order to avoid contributing unnecessary delay (of
 up to 500 ms) to the RTT [RFC5681], which limits the throughput and
 can increase the data delivery time.

 A device that can send at most one MSS of data is significantly
 affected if the receiver uses Delayed ACKs, e.g., if a TCP server or
 receiver is outside the CNN. One known workaround is to split the
 data to be sent into two segments of smaller size. A standard
 compliant TCP receiver will then immediately acknowledge the second
 segment, which can improve throughput. This "split hack" works if
 the TCP receiver uses Delayed ACKs, but the downside is the overhead
 of sending two IP packets instead of one.

 Similar issues happen when the sender uses the Nagle algorithm.
 Disabling the algorithm will not have impact if the sender can only
 handle stop-and-wait operation.

4.2.4. RTO estimation for single-MSS stacks

 The Retransmission Timeout (RTO) estimation is one of the fundamental
 TCP algorithms. There is a fundamental trade-off: A short,
 aggressive RTO behavior reduces wait time before retransmissions, but
 it also increases the probability of spurious timeouts. The latter
 lead to unnecessary waste of potentially scarce resources in CNNs
 such as energy and bandwidth. In contrast, a conservative timeout
 can result in long error recovery times and thus needlessly delay
 data delivery.

 [RFC6298] describes the standard TCP RTO algorithm. If a TCP sender
 uses very small window size, and it cannot use Fast Retransmit/Fast
 Recovery or SACK, the Retransmission Timeout (RTO) algorithm has a
 larger impact on performance than for a more powerful TCP stack. In
 that case, RTO algorithm tuning may be considered, although careful
 assessment of possible drawbacks is recommended
 [I-D.ietf-tcpm-rto-consider].

https://datatracker.ietf.org/doc/html/rfc5681

Gomez, et al. Expires September 10, 2019 [Page 10]

Internet-Draft TCP in IoT March 2019

 As an example, an adaptive RTO algorithm for CoAP over UDP has been
 defined [I-D.ietf-core-cocoa] that has been found to perform well in
 CNN scenarios [Commag].

4.3. General recommendations for TCP in CNNs

 This section summarizes some widely used techniques to improve TCP,
 with a focus on their use in CNNs. The TCP extensions discussed here
 are useful in a wide range of network scenarios, including CNNs.
 This section is not comprehensive. A comprehensive survey of TCP
 extensions is published in [RFC7414].

4.3.1. Loss recovery and congestion/flow control

 Devices that have enough memory to allow larger TCP window size can
 leverage a more efficient loss recovery using Fast Retransmit and
 Fast Recovery [RFC5681], at the expense of slightly greater
 complexity and TCB size. Assuming that Delayed ACKs are used by the
 receiver, the mentioned algorithms work efficiently for window sizes
 of at least 5 MSS: If in a given TCP transmission of segments
 1,2,3,4,5, and 6 the segment 2 gets lost, the sender should get an
 ACK for segment 1 when 3 arrives and duplicate acknowledgements when
 4, 5, and 6 arrive. It will retransmit segment 2 when the third
 duplicate ACK arrives. In order to have segment 2, 3, 4, 5, and 6
 sent, the window has to be at least five. With an MSS of 1220 byte,
 a buffer of the size of 5 MSS would require 6100 bytes.

 For bulk data transfers further TCP improvements may also be useful,
 such as limited transmit [RFC3042].

4.3.1.1. Selective Acknowledgments (SACK)

 If a device with less severe memory and processing constraints can
 afford advertising a TCP window size of several MSS, it makes sense
 to support the SACK option to improve performance. SACK allows a
 data receiver to inform the data sender of non-contiguous data blocks
 received, thus a sender (having previously sent the SACK-Permitted
 option) can avoid performing unnecessary retransmissions, saving
 energy and bandwidth, as well as reducing latency. SACK is
 particularly useful for bulk data transfers. The receiver supporting
 SACK will need to manage the reception of possible out-of-order
 received segments, requiring sufficient buffer space. SACK adds
 8*n+2 bytes to the TCP header, where n denotes the number of data
 blocks received, up to 4 blocks. For a low number of out-of-order
 segments, the header overhead penalty of SACK is compensated by
 avoiding unnecessary retransmissions.

https://datatracker.ietf.org/doc/html/rfc7414
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc3042

Gomez, et al. Expires September 10, 2019 [Page 11]

Internet-Draft TCP in IoT March 2019

4.3.2. Delayed Acknowledgments

 For certain traffic patterns, Delayed ACKs may have a detrimental
 effect, as already noted in Section 4.2.3. Advanced TCP stacks may
 use heuristics to determine the maximum delay for an ACK. For CNNs,
 the recommendation depends on the expected communication patterns.

 If a stack is able to deal with more than one MSS of data, it may
 make sense to use a small timeout or disable delayed ACKs when
 traffic over a CNN is expected to mostly be small messages with a
 size typically below one MSS. For request-response traffic between a
 constrained device and a peer (e.g. backend infrastructure) that uses
 delayed ACKs, the maximum ACK rate of the peer will be typically of
 one ACK every 200 ms (or even lower). If in such conditions the peer
 device is administered by the same entity managing the constrained
 device, it is recommended to disable delayed ACKs at the peer side.

 In contrast, Delayed ACKs allow to reduce the number of ACKs in bulk
 transfer type of traffic, e.g. for firmware/software updates or for
 transferring larger data units containing a batch of sensor readings.

 Note that, in many scenarios, the peer that a constrained device
 communicates with will be a general purpose system that communicates
 with both constrained and unconstrained devices. Since delayed ACKs
 are often configured through system-wide parameters, delayed ACKs
 behavior at the peer will be the same regardless of the nature of the
 endpoints it talks to. Such a peer will typically have delayed ACKs
 enabled.

5. TCP usage recommendations in CNNs

 This section discusses how a TCP stack can be used by applications
 that are developed for CNN scenarios. These remarks are by and large
 independent of how TCP is exactly implemented.

5.1. TCP connection initiation

 In the constrained device to unconstrained device scenario
 illustrated above, a TCP connection is typically initiated by the
 constrained device, in order for this device to support possible
 sleep periods to save energy.

5.2. Number of concurrent connections

 TCP endpoints with a small amount of RAM may only support a small
 number of connections. Each TCP connection requires storing a number
 of variables in the Transmission Control Block (TCB). Depending on
 the internal TCP implementation, each connection may result in

Gomez, et al. Expires September 10, 2019 [Page 12]

Internet-Draft TCP in IoT March 2019

 further memory overhead, and connections may compete for scarce
 resources (e.g. further memory overhead for send and receive buffers,
 etc).

 A careful application design may try to keep the number of concurrent
 connections as small as possible. A client can for instance limit
 the number of simultaneous open connections that it maintains to a
 given server. Multiple connections could for instance be used to
 avoid the "head-of-line blocking" problem in an application transfer.
 However, in addition to comsuming resources, using multiple
 connections can also cause undesirable side effects in congested
 networks. For example, the HTTP/1.1 specification encourages clients
 to be conservative when opening multiple connections [RFC7230].
 Furthermore, each new connection will start with a 3-way handshake,
 therefore increasing message overhead.

 Being conservative when opening multiple TCP connections is of
 particular importance in Constrained-Node Networks.

5.3. TCP connection lifetime

 In order to minimize message overhead, it makes sense to keep a TCP
 connection open as long as the two TCP endpoints have more data to
 send. If applications exchange data rather infrequently, i.e., if
 TCP connections would stay idle for a long time, the idle time can
 result in problems. For instance, certain middleboxes such as
 firewalls or NAT devices are known to delete state records after an
 inactivity interval typically in the order of a few minutes
 [RFC6092]. The timeout duration used by a middlebox implementation
 may not be known to the TCP endpoints.

 In CNNs, such middleboxes may e.g. be present at the boundary between
 the CNN and other networks. If the middlebox can be optimized for
 CNN use cases, it makes sense to increase the initial value for
 filter state inactivity timers to avoid problems with idle
 connections. Apart from that, this problem can be dealt with by
 different connection handling strategies, each having pros and cons.

 One approach for infrequent data transfer is to use short-lived TCP
 connections. Instead of trying to maintain a TCP connection for long
 time, possibly short-lived connections can be opened between two
 endpoints, which are closed if no more data needs to be exchanged.
 For use cases that can cope with the additional messages and the
 latency resulting from starting new connections, it is recommended to
 use a sequence of short-lived connections, instead of maintaining a
 single long-lived connection.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc6092

Gomez, et al. Expires September 10, 2019 [Page 13]

Internet-Draft TCP in IoT March 2019

 The message and latency overhead that stems from using a sequence of
 short-lived connections could be reduced by TCP Fast Open (TFO)
 [RFC7413], which is an experimental TCP extension, at the expense of
 increased implementation complexity and increased TCP Control Block
 (TCB) size. TFO allows data to be carried in SYN (and SYN-ACK)
 segments, and to be consumed immediately by the receiving endpoint.
 This reduces the message and latency overhead compared to the
 traditional three-way handshake to establish a TCP connection. For
 security reasons, the connection initiator has to request a TFO
 cookie from the other endpoint. The cookie, with a size of 4 or 16
 bytes, is then included in SYN packets of subsequent connections.
 The cookie needs to be refreshed (and obtained by the client) after a
 certain amount of time. Nevertheless, TFO is more efficient than
 frequently opening new TCP connections with the traditional three-way
 handshake, as long as the cookie can be reused in subsequent
 connections. However, as stated in RFC 7413, TFO deviates from the
 standard TCP semantics, since the data in the SYN could be replayed
 to an application in some rare circumstances. Applications should
 not use TFO unless they can tolerate this issue, e.g., by using
 Transport Layer Security (TLS) [RFC7413]. A comprehensive discussion
 on TFO can be found at RFC 7413.

 Another approach is to use long-lived TCP connections with
 application-layer heartbeat messages. Various application protocols
 support such heartbeat messages. Periodic heartbeats requires
 transmission of packets, but they also allow aliveness checks at
 application level. In addition, they can prevent early filter state
 record deletion in middleboxes. In general, it makes sense realize
 aliveness checks at the highest protocol layer possible that is
 meaningful to the application, in order to maximize the depth of the
 aliveness check. In addition, timely detection of a dead peer may
 allow savings in terms of TCB memory use.

 A TCP implementation may also be able to send "keep-alive" segments
 to test a TCP connection. According to [RFC1122], "keep-alives" are
 an optional TCP mechanism that is turned off by default, i.e., an
 application must explicitly enable it for a TCP connection. The
 interval between "keep-alive" messages must be configurable and it
 must default to no less than two hours. With this large timeout, TCP
 keep-alive messages are not very useful to avoid deletion of filter
 state records in middleboxes such as firewalls. However, sending TCP
 keep-alive probes more frequently risks draining power on energy-
 constrained devices.

https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc1122

Gomez, et al. Expires September 10, 2019 [Page 14]

Internet-Draft TCP in IoT March 2019

6. Security Considerations

 Best current practise for securing TCP and TCP-based communication
 also applies to CNN. As example, use of Transport Layer Security
 (TLS) is strongly recommended if it is applicable.

 There are also TCP options which can improve TCP security. One
 example is the TCP Authentication Option (TCP-AO) [RFC5925].
 However, this option adds overhead and complexity. TCP-AO typically
 has a size of 16-20 bytes.

 For the mechanisms discussed in this document, the corresponding
 considerations apply. For instance, if TFO is used, the security
 considerations of [RFC7413] apply.

 Constrained devices are expected to support smaller TCP window sizes
 than less limited devices. In such conditions, segment
 retransmission triggered by RTO expiration is expected to be
 relatively frequent, due to lack of (enough) duplicate ACKs,
 especially when a constrained device uses a single-MSS window size.
 For this reason, constrained devices running TCP may appear as
 particularly appealing victims of the so-called "shrew" Denial of
 Service (DoS) attack [shrew], whereby one or more sources generate a
 packet spike targetted to coincide with consecutive RTO-expiration-
 triggered retry attempts of a victim node. Note that the attack may
 be performed by Internet-connected devices, including constrained
 devices in the same CNN as the victim, as well as remote ones.
 Mitigation techniques include RTO randomization and attack blocking
 by routers able to detect shrew attacks based on their traffic
 pattern.

7. Acknowledgments

 Carles Gomez has been funded in part by the Spanish Government
 (Ministerio de Educacion, Cultura y Deporte) through the Jose
 Castillejo grants CAS15/00336 and and CAS18/00170, and by European
 Regional Development Fund (ERDF) and the Spanish Government through
 project TEC2016-79988-P, AEI/FEDER, UE. Part of his contribution to
 this work has been carried out during his stays as a visiting scholar
 at the Computer Laboratory of the University of Cambridge.

 The authors appreciate the feedback received for this document. The
 following folks provided comments that helped improve the document:
 Carsten Bormann, Zhen Cao, Wei Genyu, Ari Keranen, Abhijan
 Bhattacharyya, Andres Arcia-Moret, Yoshifumi Nishida, Joe Touch, Fred
 Baker, Nik Sultana, Kerry Lynn, Erik Nordmark, Markku Kojo, Hannes
 Tschofenig, David Black, Yoshifumi Nishida, Ilpo Jarvinen and
 Emmanuel Baccelli. Simon Brummer provided details, and kindly

https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc7413

Gomez, et al. Expires September 10, 2019 [Page 15]

Internet-Draft TCP in IoT March 2019

 performed RAM and ROM usage measurements, on the RIOT TCP
 implementation. Xavi Vilajosana provided details on the OpenWSN TCP
 implementation. Rahul Jadhav kindly performed code size measurements
 on the Contiki-NG and lwIP 2.1.2 TCP implementations. He also
 provided details on the uIP TCP implementation.

8. Annex. TCP implementations for constrained devices

 This section overviews the main features of TCP implementations for
 constrained devices. The survey is limited to open source stacks
 with small footprint. It is not meant to be all-encompassing. For
 more powerful embedded systems (e.g., with 32-bit processors), there
 are further stacks that comprehensively implement TCP. On the other
 hand, please be aware that this Annex is based on information
 available as of the writing.

8.1. uIP

 uIP is a TCP/IP stack, targetted for 8 and 16-bit microcontrollers,
 which pioneered TCP/IP implementations for constrained devices. uIP
 has been deployed with Contiki and the Arduino Ethernet shield. A
 code size of ~5 kB (which comprises checksumming, IP, ICMP and TCP)
 has been reported for uIP [Dunk].

 uIP uses the same global buffer for both incoming and outgoing
 traffic, which has a size of a single packet. In case of a
 retransmission, an application must be able to reproduce the same
 user data that had been transmitted. Multiple connections are
 supported, but need to share the global buffer.

 The MSS is announced via the MSS option on connection establishment
 and the receive window size (of one MSS) is not modified during a
 connection. Stop-and-wait operation is used for sending data. Among
 other optimizations, this allows to avoid sliding window operations,
 which use 32-bit arithmetic extensively and are expensive on 8-bit
 CPUs.

 Contiki uses the "split hack" technique (see Section 4.2.3) to avoid
 Delayed ACKs for senders using a single segment.

 The code size of the TCP implementation in Contiki-NG has been
 measured to be of 3.2 kB on CC2538DK, cross-compiling on Linux.

8.2. lwIP

 lwIP is a TCP/IP stack, targetted for 8- and 16-bit microcontrollers.
 lwIP has a total code size of ~14 kB to ~22 kB (which comprises

Gomez, et al. Expires September 10, 2019 [Page 16]

Internet-Draft TCP in IoT March 2019

 memory management, checksumming, network interfaces, IP, ICMP and
 TCP), and a TCP code size of ~9 kB to ~14 kB [Dunk].

 In contrast with uIP, lwIP decouples applications from the network
 stack. lwIP supports a TCP transmission window greater than a single
 segment, as well as buffering of incoming and outcoming data. Other
 implemented mechanisms comprise slow start, congestion avoidance,
 fast retransmit and fast recovery. SACK and Window Scale support has
 been recently added to lwIP.

8.3. RIOT

 The RIOT TCP implementation (called GNRC TCP) has been designed for
 Class 1 devices [RFC 7228]. The main target platforms are 8- and
 16-bit microcontrollers, with 32-bit platforms also supported. GNRC
 TCP offers a similar function set as uIP, but it provides and
 maintains an independent receive buffer for each connection. In
 contrast to uIP, retransmission is also handled by GNRC TCP. GNRC
 TCP uses a single-MSS window size, which simplifies the
 implementation. The application programmer does not need to know
 anything about the TCP internals, therefore GNRC TCP can be seen as a
 user-friendly uIP TCP implementation.

 The MSS is set on connections establishment and cannot be changed
 during connection lifetime. GNRC TCP allows multiple connections in
 parallel, but each TCB must be allocated somewhere in the system. By
 default there is only enough memory allocated for a single TCP
 connection, but it can be increased at compile time if the user needs
 multiple parallel connections.

 The RIOT TCP implementation offers an optional POSIX socket wrapper
 that enables POSIX compliance, if needed.

 Further details on RIOT and GNRC can be found in the literature
 [RIOT], [GNRC].

8.4. TinyOS

 TinyOS was important as platform for early constrained devices.
 TinyOS has an experimental TCP stack that uses a simple nonblocking
 library-based implementation of TCP, which provides a subset of the
 socket interface primitives. The application is responsible for
 buffering. The TCP library does not do any receive-side buffering.
 Instead, it will immediately dispatch new, in-order data to the
 application and otherwise drop the segment. A send buffer is
 provided by the application. Multiple TCP connections are possible.
 Recently there has been little further work on the stack.

https://datatracker.ietf.org/doc/html/rfc7228

Gomez, et al. Expires September 10, 2019 [Page 17]

Internet-Draft TCP in IoT March 2019

8.5. FreeRTOS

 FreeRTOS is a real-time operating system kernel for embedded devices
 that is supported by 16- and 32-bit microprocessors. Its TCP
 implementation is based on multiple-segment window size, although a
 'Tiny-TCP' option, which is a single-MSS variant, can be enabled.
 Delayed ACKs are supported, with a 20-ms Delayed ACK timer as a
 technique intended 'to gain performance'.

8.6. uC/OS

 uC/OS is a real-time operating system kernel for embedded devices,
 which is maintained by Micrium. uC/OS is intended for 8-, 16- and
 32-bit microprocessors. The uC/OS TCP implementation supports a
 multiple-segment window size.

8.7. Summary

Gomez, et al. Expires September 10, 2019 [Page 18]

Internet-Draft TCP in IoT March 2019

 +---+---------+--------+----+------+--------+-----+
 |uIP|lwIP orig|lwIP 2.1|RIOT|TinyOS|FreeRTOS|uC/OS|
 +------+-------------+---+---------+--------+----+------+--------+-----+
 |Memory|Code size(kB)| <5|~9 to ~14| 38 | <7 | N/A | <9.2 | N/A |
 | | |(a)| (T1) | (T4) |(T3)| | (T2) | |
 +------+-------------+---+---------+--------+----+------+--------+-----+
 | | Single-Segm.|Yes| No | No | Yes| No | No | No |
 | +-------------+---+---------+--------+----+------+--------+-----+
 | | Slow start | No| Yes | Yes | No | Yes | No | Yes |
 | T +-------------+---+---------+--------+----+------+--------+-----+
 | C |Fast rec/retx| No| Yes | Yes | No | Yes | No | Yes |
 | P +-------------+---+---------+--------+----+------+--------+-----+
 | | Keep-alive | No| No | Yes | No | No | Yes | Yes |
 | +-------------+---+---------+--------+----+------+--------+-----+
 | f | Win. Scale | No| No | Yes | No | No | Yes | No |
 | e +-------------+---+---------+--------+----+------+--------+-----+
 | a | TCP timest.| No| No | Yes | No | No | Yes | No |
 | t +-------------+---+---------+--------+----+------+--------+-----+
 | u | SACK | No| No | Yes | No | No | Yes | No |
 | r +-------------+---+---------+--------+----+------+--------+-----+
 | e | Del. ACKs | No| Yes | Yes | No | No | Yes | Yes |
 | s +-------------+---+---------+--------+----+------+--------+-----+
 | | Socket | No| No |Optional|(I) |Subset| Yes | Yes |
 | +-------------+---+---------+--------+----+------+--------+-----+
 | |Concur. Conn.|Yes| Yes | Yes | Yes| Yes | Yes | Yes |
 +------+-------------+---+---------+--------+----+------+--------+-----+
 | TLS supported | No| No | Yes | Yes| Yes | Yes | Yes |
 +--------------------+---+---------+--------+----+------+--------+-----+

 (T1) = TCP-only, on x86 and AVR platforms
 (T2) = TCP-only, on ARM Cortex-M platform
 (T3) = TCP-only, on ARM Cortex-M0+ platform (NOTE: RAM usage for the same
platform
 is ~2.5 kB for one TCP connection plus ~1.2 kB for each additional
connection)
 (T4) = TCP-only, on CC2538DK, cross-compiling on Linux
 (a) = includes IP, ICMP and TCP on x86 and AVR platforms. The Contiki-NG
TCP implementation has a code size of 3.2 kB on CC2538DK, cross-compiling on
Linux
 (I) = optional POSIX socket wrapper which enables POSIX compliance if
needed
 Mult. = Multiple
 N/A = Not Available

 Figure 2: Summary of TCP features for differrent lightweight TCP
 implementations. None of the implementations considered in this
 Annex support ECN or TFO.

Gomez, et al. Expires September 10, 2019 [Page 19]

Internet-Draft TCP in IoT March 2019

9. Annex. Changes compared to previous versions

 RFC Editor: To be removed prior to publication

9.1. Changes between -00 and -01

 o Changed title and abstract

 o Clarification that communcation with standard-compliant TCP
 endpoints is required, based on feedback from Joe Touch

 o Additional discussion on communication patters

 o Numerous changes to address a comprehensive review from Hannes
 Tschofenig

 o Reworded security considerations

 o Additional references and better distinction between normative and
 informative entries

 o Feedback from Rahul Jadhav on the uIP TCP implementation

 o Basic data for the TinyOS TCP implementation added, based on
 source code analysis

9.2. Changes between -01 and -02

 o Added text to the Introduction section, and a reference, on
 traditional bad perception of TCP for IoT

 o Added sections on FreeRTOS and uC/OS

 o Updated TinyOS section

 o Updated summary table

 o Reorganized Section 4 (single-MSS vs multiple-MSS window size),
 some content now also in new Section 5

9.3. Changes between -02 and -03

 o Rewording to better explain the benefit of ECN

 o Additional context information on the surveyed implementations

 o Added details, but removed "Data size" raw, in the summary table

Gomez, et al. Expires September 10, 2019 [Page 20]

Internet-Draft TCP in IoT March 2019

 o Added discussion on shrew attacks

9.4. Changes between -03 and -04

 o Addressing the remaining TODOs

 o Alignment of the wording on TCP "keep-alives" with related
 discussions in the IETF transport area

 o Added further discussion on delayed ACKs

 o Removed OpenWSN subsection from the Annex

9.5. Changes between -04 and -05

 o Addressing comments by Yoshifumi Nishida

 o Removed mentioning MD5 as an example (comment by David Black)

 o Added memory footprint details of TCP implementations (Contiki-NG
 and lwIP 2.1.2) provided by Rahul Jadhav in the Annex

 o Addressed comments by Ilpo Jarvinen throughout the whole document

 o Improved the RIOT section in the Annex, based on feedback from
 Emmanuel Baccelli

10. References

10.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122,
 DOI 10.17487/RFC1122, October 1989,
 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <https://www.rfc-editor.org/info/rfc2018>.

Gomez, et al. Expires September 10, 2019 [Page 21]

https://datatracker.ietf.org/doc/html/rfc793
https://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://datatracker.ietf.org/doc/html/rfc2018
https://www.rfc-editor.org/info/rfc2018

Internet-Draft TCP in IoT March 2019

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
 December 1998, <https://www.rfc-editor.org/info/rfc2460>.

 [RFC3042] Allman, M., Balakrishnan, H., and S. Floyd, "Enhancing
 TCP's Loss Recovery Using Limited Transmit", RFC 3042,
 DOI 10.17487/RFC3042, January 2001,
 <https://www.rfc-editor.org/info/rfc3042>.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC3819] Karn, P., Ed., Bormann, C., Fairhurst, G., Grossman, D.,
 Ludwig, R., Mahdavi, J., Montenegro, G., Touch, J., and L.
 Wood, "Advice for Internet Subnetwork Designers", BCP 89,

RFC 3819, DOI 10.17487/RFC3819, July 2004,
 <https://www.rfc-editor.org/info/rfc3819>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <https://www.rfc-editor.org/info/rfc5925>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <https://www.rfc-editor.org/info/rfc6298>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",

RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <https://www.rfc-editor.org/info/rfc7323>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2460
https://www.rfc-editor.org/info/rfc2460
https://datatracker.ietf.org/doc/html/rfc3042
https://www.rfc-editor.org/info/rfc3042
https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/bcp89
https://datatracker.ietf.org/doc/html/rfc3819
https://www.rfc-editor.org/info/rfc3819
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc5925
https://www.rfc-editor.org/info/rfc5925
https://datatracker.ietf.org/doc/html/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc7323
https://www.rfc-editor.org/info/rfc7323

Gomez, et al. Expires September 10, 2019 [Page 22]

Internet-Draft TCP in IoT March 2019

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <https://www.rfc-editor.org/info/rfc7413>.

10.2. Informative References

 [Commag] A. Betzler, C. Gomez, I. Demirkol, J. Paradells, "CoAP
 Congestion Control for the Internet of Things", IEEE
 Communications Magazine, June 2016.

 [Dunk] A. Dunkels, "Full TCP/IP for 8-Bit Architectures", 2003.

 [ETEN] R. Krishnan et al, "Explicit transport error notification
 (ETEN) for error-prone wireless and satellite networks",
 Computer Networks 2004.

 [GNRC] M. Lenders et al., "Connecting the World of Embedded
 Mobiles: The RIOTApproach to Ubiquitous Networking for the
 IoT", 2018.

 [I-D.delcarpio-6lo-wlanah]
 Vega, L., Robles, I., and R. Morabito, "IPv6 over
 802.11ah", draft-delcarpio-6lo-wlanah-01 (work in
 progress), October 2015.

 [I-D.ietf-core-cocoa]
 Bormann, C., Betzler, A., Gomez, C., and I. Demirkol,
 "CoAP Simple Congestion Control/Advanced", draft-ietf-

core-cocoa-03 (work in progress), February 2018.

 [I-D.ietf-tcpm-rto-consider]
 Allman, M., "Retransmission Timeout Requirements", draft-

ietf-tcpm-rto-consider-08 (work in progress), February
 2019.

 [IntComp] C. Gomez, A. Arcia-Moret, J. Crowcroft, "TCP in the
 Internet of Things: from ostracism to prominence", IEEE
 Internet Computing, January-February 2018.

 [RFC2757] Montenegro, G., Dawkins, S., Kojo, M., Magret, V., and N.
 Vaidya, "Long Thin Networks", RFC 2757,
 DOI 10.17487/RFC2757, January 2000,
 <https://www.rfc-editor.org/info/rfc2757>.

 [RFC2884] Hadi Salim, J. and U. Ahmed, "Performance Evaluation of
 Explicit Congestion Notification (ECN) in IP Networks",

RFC 2884, DOI 10.17487/RFC2884, July 2000,
 <https://www.rfc-editor.org/info/rfc2884>.

https://datatracker.ietf.org/doc/html/rfc7413
https://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/draft-delcarpio-6lo-wlanah-01
https://datatracker.ietf.org/doc/html/draft-ietf-core-cocoa-03
https://datatracker.ietf.org/doc/html/draft-ietf-core-cocoa-03
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rto-consider-08
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rto-consider-08
https://datatracker.ietf.org/doc/html/rfc2757
https://www.rfc-editor.org/info/rfc2757
https://datatracker.ietf.org/doc/html/rfc2884
https://www.rfc-editor.org/info/rfc2884

Gomez, et al. Expires September 10, 2019 [Page 23]

Internet-Draft TCP in IoT March 2019

 [RFC3481] Inamura, H., Ed., Montenegro, G., Ed., Ludwig, R., Gurtov,
 A., and F. Khafizov, "TCP over Second (2.5G) and Third
 (3G) Generation Wireless Networks", BCP 71, RFC 3481,
 DOI 10.17487/RFC3481, February 2003,
 <https://www.rfc-editor.org/info/rfc3481>.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, DOI 10.17487/RFC4944, September 2007,
 <https://www.rfc-editor.org/info/rfc4944>.

 [RFC6077] Papadimitriou, D., Ed., Welzl, M., Scharf, M., and B.
 Briscoe, "Open Research Issues in Internet Congestion
 Control", RFC 6077, DOI 10.17487/RFC6077, February 2011,
 <https://www.rfc-editor.org/info/rfc6077>.

 [RFC6092] Woodyatt, J., Ed., "Recommended Simple Security
 Capabilities in Customer Premises Equipment (CPE) for
 Providing Residential IPv6 Internet Service", RFC 6092,
 DOI 10.17487/RFC6092, January 2011,
 <https://www.rfc-editor.org/info/rfc6092>.

 [RFC6120] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,
 March 2011, <https://www.rfc-editor.org/info/rfc6120>.

 [RFC6606] Kim, E., Kaspar, D., Gomez, C., and C. Bormann, "Problem
 Statement and Requirements for IPv6 over Low-Power
 Wireless Personal Area Network (6LoWPAN) Routing",

RFC 6606, DOI 10.17487/RFC6606, May 2012,
 <https://www.rfc-editor.org/info/rfc6606>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7414] Duke, M., Braden, R., Eddy, W., Blanton, E., and A.
 Zimmermann, "A Roadmap for Transmission Control Protocol
 (TCP) Specification Documents", RFC 7414,
 DOI 10.17487/RFC7414, February 2015,
 <https://www.rfc-editor.org/info/rfc7414>.

https://datatracker.ietf.org/doc/html/bcp71
https://datatracker.ietf.org/doc/html/rfc3481
https://www.rfc-editor.org/info/rfc3481
https://datatracker.ietf.org/doc/html/rfc4944
https://www.rfc-editor.org/info/rfc4944
https://datatracker.ietf.org/doc/html/rfc6077
https://www.rfc-editor.org/info/rfc6077
https://datatracker.ietf.org/doc/html/rfc6092
https://www.rfc-editor.org/info/rfc6092
https://datatracker.ietf.org/doc/html/rfc6120
https://www.rfc-editor.org/info/rfc6120
https://datatracker.ietf.org/doc/html/rfc6606
https://www.rfc-editor.org/info/rfc6606
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/rfc7414
https://www.rfc-editor.org/info/rfc7414

Gomez, et al. Expires September 10, 2019 [Page 24]

Internet-Draft TCP in IoT March 2019

 [RFC7428] Brandt, A. and J. Buron, "Transmission of IPv6 Packets
 over ITU-T G.9959 Networks", RFC 7428,
 DOI 10.17487/RFC7428, February 2015,
 <https://www.rfc-editor.org/info/rfc7428>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7567] Baker, F., Ed. and G. Fairhurst, Ed., "IETF
 Recommendations Regarding Active Queue Management",

BCP 197, RFC 7567, DOI 10.17487/RFC7567, July 2015,
 <https://www.rfc-editor.org/info/rfc7567>.

 [RFC7668] Nieminen, J., Savolainen, T., Isomaki, M., Patil, B.,
 Shelby, Z., and C. Gomez, "IPv6 over BLUETOOTH(R) Low
 Energy", RFC 7668, DOI 10.17487/RFC7668, October 2015,
 <https://www.rfc-editor.org/info/rfc7668>.

 [RFC8087] Fairhurst, G. and M. Welzl, "The Benefits of Using
 Explicit Congestion Notification (ECN)", RFC 8087,
 DOI 10.17487/RFC8087, March 2017,
 <https://www.rfc-editor.org/info/rfc8087>.

 [RFC8105] Mariager, P., Petersen, J., Ed., Shelby, Z., Van de Logt,
 M., and D. Barthel, "Transmission of IPv6 Packets over
 Digital Enhanced Cordless Telecommunications (DECT) Ultra
 Low Energy (ULE)", RFC 8105, DOI 10.17487/RFC8105, May
 2017, <https://www.rfc-editor.org/info/rfc8105>.

 [RFC8163] Lynn, K., Ed., Martocci, J., Neilson, C., and S.
 Donaldson, "Transmission of IPv6 over Master-Slave/Token-
 Passing (MS/TP) Networks", RFC 8163, DOI 10.17487/RFC8163,
 May 2017, <https://www.rfc-editor.org/info/rfc8163>.

 [RFC8201] McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
 "Path MTU Discovery for IP version 6", STD 87, RFC 8201,
 DOI 10.17487/RFC8201, July 2017,
 <https://www.rfc-editor.org/info/rfc8201>.

 [RFC8323] Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
 Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
 Application Protocol) over TCP, TLS, and WebSockets",

RFC 8323, DOI 10.17487/RFC8323, February 2018,
 <https://www.rfc-editor.org/info/rfc8323>.

https://datatracker.ietf.org/doc/html/rfc7428
https://www.rfc-editor.org/info/rfc7428
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/bcp197
https://datatracker.ietf.org/doc/html/rfc7567
https://www.rfc-editor.org/info/rfc7567
https://datatracker.ietf.org/doc/html/rfc7668
https://www.rfc-editor.org/info/rfc7668
https://datatracker.ietf.org/doc/html/rfc8087
https://www.rfc-editor.org/info/rfc8087
https://datatracker.ietf.org/doc/html/rfc8105
https://www.rfc-editor.org/info/rfc8105
https://datatracker.ietf.org/doc/html/rfc8163
https://www.rfc-editor.org/info/rfc8163
https://datatracker.ietf.org/doc/html/rfc8201
https://www.rfc-editor.org/info/rfc8201
https://datatracker.ietf.org/doc/html/rfc8323
https://www.rfc-editor.org/info/rfc8323

Gomez, et al. Expires September 10, 2019 [Page 25]

Internet-Draft TCP in IoT March 2019

 [RFC8352] Gomez, C., Kovatsch, M., Tian, H., and Z. Cao, Ed.,
 "Energy-Efficient Features of Internet of Things
 Protocols", RFC 8352, DOI 10.17487/RFC8352, April 2018,
 <https://www.rfc-editor.org/info/rfc8352>.

 [RFC8376] Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
 Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
 <https://www.rfc-editor.org/info/rfc8376>.

 [RIOT] E. Baccelli et al., "RIOT: an Open Source Operating
 Systemfor Low-end Embedded Devices in the IoT", 2018.

 [shrew] A. Kuzmanovic, E. Knightly, "Low-Rate TCP-Targeted Denial
 of Service Attacks", SIGCOMM'03 2003.

Authors' Addresses

 Carles Gomez
 UPC
 C/Esteve Terradas, 7
 Castelldefels 08860
 Spain

 Email: carlesgo@entel.upc.edu

 Jon Crowcroft
 University of Cambridge
 JJ Thomson Avenue
 Cambridge, CB3 0FD
 United Kingdom

 Email: jon.crowcroft@cl.cam.ac.uk

 Michael Scharf
 Hochschule Esslingen
 Flandernstr. 101
 Esslingen 73732
 Germany

 Email: michael.scharf@hs-esslingen.de

Gomez, et al. Expires September 10, 2019 [Page 26]

https://datatracker.ietf.org/doc/html/rfc8352
https://www.rfc-editor.org/info/rfc8352
https://datatracker.ietf.org/doc/html/rfc8376
https://www.rfc-editor.org/info/rfc8376

